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The strengthening effect caused by an elastic 
contrast—part II: stratification by a thin stiff layer
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Abstract To quantify the gain in strength of a layered

heterogeneous structure caused by the elastic contrast

between the layers, especially if no crack deflection is

observed at the interface, two original mechanisms bap-

tized “step-over” and “jump-through” were proposed

in Part I. They addressed the ability of a crack to pass

through an interface and were applied to a bimateri-

al structure; whereas part II is dedicated to a homoge-

neous beam embedding a thin stiff film. The asymptotic

expansions differ significantly since the small param-

eter is now the layer thickness. Unlike the first part

where it was difficult to evidence the gain in toughness

due to the superposition of two effects: a simultaneous

increase in stiffness and in toughness, here it is possible

to characterize the strength enhancement in using a sin-

gle parameter. A discussion of the possibility to repeat

the effect by multiplying the thin films is presented at

the end.
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1 Introduction

Part I (Leguillon and Martin 2012b) provides an anal-

ysis of the role of an interface in improving the tough-

ness of a material, especially if no crack deflection

is observed. “Step-over” and “jump-through” mecha-

nisms are applied to a bimaterial made of two layers of

equal thickness, a compliant and a stiff one. For sim-

plicity, the first is predominant if the elastic contrast

between the materials is high, while the second takes

over otherwise. Both avoid a paradox: it is not neces-

sary to indefinitely increase the load for a crack to cross

an interface between a compliant and a stiff material,

as confirmed by intuition and testing. Our goal was to

show, against conventional wisdom, that the addition

of a rigid layer could improve the apparent toughness

of a structure, even without deflection along the inter-

face. However, the strengthening enhancement is not

clearly evidenced due to the superimposition of two

effects: the simultaneous increase in apparent stiffness

and toughness.

Note that it is usually the addition of compliant slabs

that is supposed to enhance the damage tolerance. But,

from our point of view, this is not directly for their elas-

tic properties but more likely for their high toughness;

these slabs are able to withstand very large deforma-

tions, even in the plastic range, before breaking. On

the contrary, there is a tendency to associate stiff layers

with brittleness, which not exact either, there is no rela-

tionship between these two properties and all situations

may be encountered.
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In an attempt to extend this concept, we propose

here to study the influence of the succession of thin

stiff and thick soft layers on the apparent toughness

of a laminate even if no crack deflection occurs. A

crack in a soft layer approaching a stiffer one tends

to decelerate and stop (weak singularity, Leguillon and

Sanchez-Palencia 1992). Then growth can be achieved

only by increasing the load, it is the origin of the tough-

ening effect. The situation is exactly reversed for a

crack in a rigid layer. The crack tends to accelerate

and to pass through this layer toward the compliant

layer located ahead (strong singularity). By varying

the thicknesses of the soft and rigid layers, the rigid

layers being somewhat sacrificed, it seems possible to

improve the apparent toughness of a layered structure

(Chai and Ravichandran 2007). This enhancement can

be characterized by a single parameter in the present

case.

Okumura and de Gennes (2001) have approached

this phenomenon but have studied the limit case of

a dramatically small Young’s moduli contrast 0.0002

with the additional assumption that compliant layers

are by far much thinner than the stiff ones, both being

at some nanometers scale in nacre. Xia et al. (2012)

were interested in a quite similar problem of the peel-

ing of an adhesive tape periodically reinforced by small

rigid plates. However, such 1D models simply highlight

the phenomena but have sometimes the disadvantage of

hiding difficulties. Besides the materials mentioned at

the beginning of this presentation, there are examples

in the nature which appear to meet the same idea: the

succession of winter and summer wood in the growth

of tree trunks (Simon 2009), the presence or absence

of stratification in volcanic materials which lead to two

very different types of volcanic eruptive properties for

instance (Gudmundsson 2009).

The outline of this second part follows that of Part

I. After analyzing a 3-point bending test (Sect. 2), two

mechanisms of a crack crossing interfaces are stud-

ied: the “step-over” (Sect. 3) and the “jump-through”

(Sect. 4). The penetration mechanism called He and

Hutchinson is not studied here, it only served as a

comparison in the previous paper (He and Hutchin-

son 1989). In order to avoid the coupling between the

strengthening and the stiffening effects observed in Part

I, the stiffer layer is here much thinner that the com-

pliant layer. Thus, the stiffness of the specimen is not

affected whereas the strength does increase as we shall

try to prove. The asymptotics are now carried out with

Fig. 1 The 3-point bending 10 × 41.5 × 160 mm specimen

embedding a thin layer of stiff material in the middle with a

crack with length a growing in the bottom layer

respect to the thin layer thickness (preferentially to the

crack extension length or the ligament width as done in

Part I). Many notations and hypothesis refer to Part I,

but we tried to make this second part as self-contained

as possible.

2 The 3-point bending test

In this second part we still consider a bimaterial but the

stiffer material (material 2) appears only as a thin layer

with thickness e between two substrates made of the

same material 1 (Fig. 1). We assume that the surface

flaws are regularly distributed and their size is negligi-

ble at our scale, which allows considering the material

(and the interface) as homogeneous with appropriate

fracture parameters. Moreover, the interface is assumed

to be tough enough to avoid any crack deflection.

Our statement is mainly based on a thought exper-

iment with fictitious materials; however it proves

useful to consider also realistic situations. Parame-

ters for material 1 are those of PMMA: E (1) =
3, 500 MPa, ν = 0.3, G

(1)
Ic = 0.35 MPa mm (K

(1)
Ic =

36.7 MPa mm1/2), σ
(1)
c = 70 MPa. Material 2, the thin

layer in between, is from 2 to 50 times stiffer. As an

example, parameters for glass are selected: E (2) =
70, 000 MPa, ν = 0.3, G

(2)
Ic = 0.01 MPa mm(K

(2)
Ic =

27.7 MPa mm1/2), σ
(2)
c = 100 MPa. As before, it may

be noted that the choice of Poisson’s ratios are not very

realistic, it is a little bit more than 0.3 for PMMA and

a little bit less for glass. This choice is made to focus

solely on Young’s modulus contrast, knowing that the

role of Poisson’s ratio is not critical within the range of

values involved here.

Note that interesting experiments and modeling have

been carried out by Chai and Ravichandran (2007) on

this kind of stacking sequence (glass/epoxy instead of

glass/PMMA).
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Fig. 2 The actual specimen with a thin stiff layer with thickness

e between two substrates of the same material (top) and the limit

domain (e → 0) without thin layer (bottom)

The ligament d is assumed to be smaller or of the

same order of magnitude than e (Fig. 2, top), this

assumption being as usual a posteriori checked.

There are two small parameters d and e. For practical

reasons, the asymptotic expansions are carried out with

respect to e, and d is a parameter. It is easier to vary

the ligament width by buttoning and unbuttoning nodes

than to vary the layer thickness which requires a reme-

shing. The outer expansion is written

U e(x1, x2, d) = U 0(x1, x2) + small correction (1)

where U 0(x1, x2) is solution to the simplified prob-

lem of a crack in a homogeneous material (Fig. 2, bot-

tom). No details, neither the layer thickness nor the

ligament width, are visible. The behavior of U 0(x1, x2)

is described by the classical Williams expansion

U 0(x1, x2) = U 0(O) + KI

√
ruI(θ) + · · · (2)

Using the same notations as in Part I, KI is the stress

intensity factor (SIF) of the crack tip singularity and

uI(θ) the shape function associated to mode I, mode II

is absent for symmetry reasons. The matching proce-

dure being the same (Leguillon and Sanchez-Palencia

1987; Leguillon and Martin 2012b), but carried out with

respect to e instead of d , it leads to an inner expansion

of the form

U e(x1, x2, d) = U e(ey1, ey2, eξ)

= U 0(O) + KI

√
eV 1

0(y1, y2, ξ) + · · ·
= U 0(O)

+KI

√
e
(√

ρuI(θ) + V̂
1

0(y1, y2, ξ)
)

+· · · with ξ = d/e (3)

With (the lower index 0 means that there is no crack

extension, see Sects. 3 and 4)

V 1
0(y1, y2, ξ) = √

ρuI(θ) + V̂
1

0(y1, y2, ξ) (4)

Fig. 3 The inner domain, the dimensionless width of the

stretched stiff layer is 1

This is a crucial point in matched asymptotics and espe-

cially with a thin layer. It is not possible to solve directly

for V 1
0(y1, y2, ξ) in the unbounded inner domain shown

in Fig. 3 because of its behaviour at infinity (it grows

indefinitely like
√

ρ due to the matching conditions).

It is necessary to proceed by superposition [see (4)]

where V̂
1

0(y1, y2, ξ) tends to 0 at infinity. The varia-

tional formulation of the problem in this new unknown

function involves integrals within the unbounded thin

layer and along its interfaces. Roughly, they converge

because, within the layer, the polar angle θ behaves like

1/ρ as ρ → ∞ and thus V̂
1

0(y1, y2, ξ) is solution to a

well-posed problem.
As before (Leguillon and Martin 2012b), the actual

SIF K ′
I at the tip O ′ of the primary crack can be calcu-

lated

U e
0(x1, x2, d) = · · · + KIκ

√
r ′uI(θ

′) + · · · ⇒ K ′
I = KIκ (5)

The coefficient κ is a function of ξ (the dimension-

less ligament width) and is shown in Fig. 4 for differ-

ent values of Young’s moduli contrast R = E (1)/E (2).

The theoretical value 0 at ξ = 0 is forced, it is diffi-

cult to numerically capture it. Note that the location of

the singular point is varying in the inner domain, thus

it was difficult to compute κ using path independent

integrals for any ξ without defining new contours at

each new tip location. It was calculated by identifying

the crack opening at the first node with the opening

mode I, but this procedure is less accurate and tends to

underestimate the actual value. This is why κ was first

calculated at ξ = 1 by both methods (path independent

integral and identification) and then a correction using

a multiplier based on this first double determination

was systematically applied for the other values of ξ .

We checked on different meshes that this way of doing

worked well.
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Fig. 4 The coefficient κ function of ξ for different values of

Young’s moduli contrast R = 0.9, 0.5, 0.2, 0.1, 0.05, 0.02. The

dashed line corresponds to the homogeneous case R = 1

The toughening effect can be directly expressed

through the coefficient 1/κ since the primary crack is

assumed to travel quasistatically in material 1

K ′
I = K

(1)
Ic ⇒ KI/K

(1)
Ic = 1/κ with K

(1)
Ic

=

√

E (1)G
(1)
Ic

2π(1 − ν2)
(6)

where K
(1)
Ic is the critical value of the mode I SIF in

material 1, it relies on G
(1)
Ic through the Irwin relation

(the unusual 1/2π coefficient is due to the normaliza-

tion chosen for the William’s expansion, see Part I for

details). Here the comparison is easy to do because at

the leading order, the structure behaves like the homo-

geneous material 1 [see (1)].

Figure 5 shows the energy release rate (ERR) G (the

derivative of the potential energy with respect to the

crack length) computed by FE, function of the total

crack length a for two Young’s moduli contrast R = 1

and 0.05 for a 1 mm displacement of the loading point.

We observe the same phenomenon as in the bimateri-

al case (Leguillon and Martin 2012b), G decreases to

0 as the crack approaches the first interface which is

the effect of a weak singularity, whereas it indefinitely

grows as the crack approaches the second interface

(strong singularity). However, this remains localized

because of the thinness of the layer.

The ERR reduction can “slow down” a crack that is

momentarily trapped near the interface with the rigid

layer whereas the same crack in a homogeneous struc-

ture, at the same load level, would grow and lead to

almost ruin the structure. But obviously if, after being

trapped, the crack restarts, it leads also to the total fail-

0

2

4

6

8

0 5 10 15 20 25 30 35 40

G

a

R=1

R=0.05

Fig. 5 The ERR G (MPa mm) function of the crack length a

(mm) for two Young’s moduli contrast R = 1 and 0.05 for a

1 mm displacement of the loading point. As before the 0 value is

forced

ure in a quite similar manner to that occurring in a

homogeneous material. The point to retain is that the

crack was “delayed” (see Sect. 5 for an estimation of

the gain).

Once again, in the following, the interfaces between

materials 1 and 2 are assumed to be strong enough to

prevent any debonding. The case of the crack prop-

agating along its axis without branching is the only

one retained. A mechanism analogous to that described

below can be analyzed taking into account the crack

deflection and the interface debonding instead of the

penetration into material 2.

A family of simulations is conducted with the

same fracture properties in the two materials: G
(1)
Ic =

G
(2)
Ic , σ

(1)
c = σ

(2)
c , to highlight the gain of toughness

obtained only through the contrast of Young’s moduli

(a kind of Einstein’s thought experiment).

3 The “step-over” mechanism

In this section and in the next one we propose an exten-

sion of the mixed criterion (Leguillon 2002). It relies on

an incremental energy balance and leads to the conclu-

sion that, in most cases, the crack jump over a finite and

often small length. This is completed by a stress condi-

tion which usually determines univocally the length of

the jump. The role of the rigid layer can be compared to

a kind of blunting (Leguillon et al. 2007) which leads

to a formulation similar to the one developed herein.

The “step-over” mechanism should a priori take into

account a crack starting from the first interface and
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Fig. 6 The step-over mechanism observed from the inner point

of view

extending forward in the thin layer and possibly in the

next material 1. Nevertheless, the conditions for the

crack to extend beyond the thin film and reach mate-

rial 1 are not met during the nucleation phase. It must

be remembered that the primary crack grows in a sta-

ble manner in the first part of material 1 and that a

nucleation ahead of it in the same material is unreal-

istic even if enhanced by the thin layer. Anyway, this

is checked numerically. Moreover, for simplicity and

to retain only the situations most frequently observed

numerically, we will consider only cracks which pass

completely through the thin layer as shown in Fig. 6.

The inner expansion can be written now

U e
1(x1, x2, d) = U e

1(ey1, ey2, eξ)

= U 0(O) + KI

√
eV 1

1(y1, y2, ξ) + · · ·
(7)

The lower index 1 corresponds to a problem settled on

the inner domain with a crack extension in material 2

(Fig. 6) as opposed to the index 0 in Sect. 2.

The energy balance leads to (δW p is the change in

potential energy prior to and following the new crack

onset and t the specimen thickness)

δW p = K 2
I e (A1(ξ) − A0(ξ)) t ≥ G

(2)
Ic et (8)

where the two coefficients A j (ξ) j = 0,1 are scaling

coefficients derived from V 1
j (y1, y2, ξ) computed in

the inner domains respectively defined by Figs. 3 and 6

(i.e. without and with a crack extension). On the right

hand side, et is the newly created crack surface. On

the other side, t is a consequence of the plane elasticity

assumption and e comes from the asymptotic expan-

sions (3) and (7). Then the energy condition can be

written

0.0

2.5

5.0

7.5

10.0

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

1

0.5

0.2

0.1

0.05

0.0211σ

2
y

∼

Fig. 7 The dimensionless function σ̃11(0, y2, 1) for different

Young’s moduli contrast: R = 0.5, 0.2, 0.1, 0.05 and 0.02 fol-

lowing the arrows. The dashed line is the homogeneous case

R = 1, the very weak contrast R = 0.9 is not plotted because

the two curves almost merge. The crack tip singularity is visible

on the left and the discontinuities due to the interfaces are visible

at y2 = 0 and y2 = 1

K 2
I (A1(ξ) − A0(ξ)) ≥ G

(2)
Ic (9)

Using the same notations as in Part I, the stress condi-

tion gives

KI√
e
σ̃11(0, y2, ξ) ≥ σ (2)

c for 0 < y2 ≤ 1

⇒ KI√
e
σ̃11(0, 1−, ξ) ≥ σ (2)

c (10)

with

σ̃ (y1, y2, ξ) = C : ∇S
y V 1(y1, y2, ξ) (11)

where C is the elastic tensor and ∇S
y the symmetric

part of the gradient operator with respect to the space

variables yi . The notation 1_ in (10) holds for the limit

as y2 ≤ 1 and y2 → 1. The function σ̃11(0, y2, 1) (i.e.

for ξ = 1, the ligament dimensionless width equals

the layer thickness) is shown in Fig. 7; it is piecewise

decreasing which justifies (10).

Taking into account (6) leads to two conditions on

the unknown parameter ξ

⎧

⎪

⎨

⎪

⎩

(

K
(1)
Ic

κ(ξ)

)2

(A1(ξ) − A0(ξ)) − G
(2)
Ic ≥ 0

K
(1)
Ic

κ(ξ)
√

e
− σ

(2)
c

σ̃11(0,1−,ξ)
≥ 0

(12)

The smallest ξ corresponding to the highest remote load

must be retained to simultaneously fulfill the two con-

ditions (see Sect. 5). Results are shown in Table 1 for

different elastic contrasts R and three different layer

thicknesses e = 0.5, 0.1 and 0.02 mm.
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Table 1 The dimensionless ligament width ξ for various elastic

contrasts: R = 0.5, 0.2, 0.1, 0.05 and 0.02 and for three different

layer thicknesses: e = 0.02, 0.1 and 0.5 mm; ξ < 0.04 means it

is below the accuracy due to the mesh refinement. Here σ
(2)
c =

70 MPa(σ
(1)
c plays no role) and G

(1)
Ic = G

(2)
Ic = 0.35 MPa mm

R 0.5 0.2 0.1 0.05 0.02

ξ for e = 0.02 mm <0.04 0.22 0.72 2.07 6.96

ξ for e = 0.1 mm <0.04 0.22 0.72 2.07 6.96

ξ for e = 0.5 mm <0.04 <0.04 0.72 2.07 6.96

Unlike Part I, the crack extension length l is no

longer an adjustable parameter (l = e) and the two

conditions (12) do not merge, the criterion remains two-

fold. Moreover, it is noteworthy that the energy condi-

tion (12)1 does not depend on the layer thickness e.

Thus, for e small enough, the mechanism is governed

by the energy condition as seen in Table 1, most of the

results being independent of e. Note that ξ ≤ 0.1 means

e ≥ 10d , in this case results obtained in the bimaterial

case of Part I are taking over. But the crucial point is

that the mechanism is very difficult or even impossible

to trigger when the elastic contrast is low.

The nucleation phase predicts the onset of a crack

through the thin stiff layer but emphasis is put again on

the fact that this is not a final state. Once the thin layer

is broken, there are 3 crack tips, the primary crack tip

opening is enhanced by the onset of a crack ahead of it

and the primary crack starts to grow forward again. The

two tips of the new crack undergo a strong singularity

(Leguillon and Sanchez-Palencia 1992; Leguillon et al.

2000; Leguillon and Martin 2012a) and moves respec-

tively forward for the front tip and backward for the

other. These combined effects tend to reduce and then

eliminate the ligament.

4 The “jump-through” mechanism

The analogous to the “jump-through” mechanism

described in Part I is shown in Fig. 8. This mecha-

nism should a priori take into account a crack starting

from the primary tip O ′ (Fig. 3) and extending forward

through the ligament (material 1), then in the thin layer

(material 2) and possibly in the next substrate (mate-

rial 1 again). Moreover, as before, the conditions for the

crack to extend beyond the thin film and reach mate-

rial 1 are not met during the nucleation phase. Finally,

for simplicity, we will consider only cracks which pass

completely through the ligament and the thin layer but

Fig. 8 The “jump-through” mechanism observed from the inner

point of view

do not penetrate the next substrate shown in Fig. 8. It

has been numerically observed that, during the nucle-

ation phase, the crack rarely partly breaks the thin layer.

The crack jump is made of the broken ligament

(width d) and the broken layer (width e). The total

length of the crack extension is l = d + e. The two

inner expansions (3) and (7) still hold but now the index

1 in (7) corresponds to Fig. 8.

As above, the energy balance leads to

δW p = K 2
I e (A1(ξ) − A0(ξ)) t ≥ G

(1)
Ic dt + G

(2)
Ic et

(13)

where A1(ξ) now derives from V 1
1(y1, y2, ξ) computed

in the inner domain defined by Fig. 8. The surface of

the new crack splits in two parts dt in material 1 and et

in the layer, they occur in the right hand side member.

The left handside is unchanged in its form. Then

K 2
I (A1(ξ) − A0(ξ)) ≥ ξG

(1)
Ic + G

(2)
Ic (14)

There are now two stress conditions, one in material 1
and the other in material 2
{

KI√
e
σ̃11(0, y2, ξ) ≥ σ

(1)
c if y2 < 0 ⇒ KI√

e
σ̃11(0, 0−, ξ) ≥ σ

(1)
c

KI√
e
σ̃11(0, y2, ξ) ≥ σ

(2)
c if 0 < y2 ≤ 1 ⇒ KI√

e
σ̃11(0, 1−, ξ) ≥ σ

(2)
c

(15)

Since σ̃11(0, y2, ξ) is a stepwise decreasing function of

y2 (i.e. separately decreasing in the different domains
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but discontinuous at the interfaces, Fig. 7). The nota-

tion 0_ holds for the limit as y2 ≤ 0 and y2 → 0 and

1_ for the limit as y2 ≤ 1 and y2 → 1.

The two conditions (15) can be resumed in

KI ≥ 
c(ξ)
√

e with 
c(ξ)

= Max

[

σ
(1)
c

σ̃11(0, 0−, ξ)
; σ

(2)
c

σ̃11(0, 1−, ξ)

]

(16)

In addition, since it is assumed that prior to the jump,

the primary crack was growing in material 1 in a stable

manner, then according to (6), (14) and (16) provide

two inequalities
⎧

⎪

⎨

⎪

⎩

(

K
(1)
Ic

κ(ξ)

)2

(A1(ξ) − A0(ξ)) − ξG
(1)
Ic − G

(2)
Ic ≥ 0

K
(1)
Ic

κ(ξ)
√

e
− 
c(ξ) ≥ 0

(17)

The first one relies on the energy balance whereas the

second one does on the stress condition and depends

on e. As above in Sect. 3 the smallest ξ corresponding

to the highest remote load must be retained to simul-

taneously fulfill the two conditions. Table 2 shows the

dimensionless ligament width ξ for various elastic con-

trast R and for 3 different layer thicknesses: e = 0.02,

0.1, 0.5 mm and the same conclusions can be drawn

concerning the role of e and the accuracy.

Table 3 summarizes Tables 1 and 2 results stating

which mechanism seems preferentially activated when

the fracture properties are the same in the layer and the

substrates, for different elastic contrasts and various

layer thicknesses. It provides also the gain in tough-

ness g = 1/κ(ξc) (Eq. 5) where ξc is fixed by Table 1

or 2 according to the activated mechanism. Table 3

and parameter g are the most significant results of this

work.

In the homogeneous case, the load at failure is 0.112

kN (Part I), it corresponds to the row R = 1. For vari-

ous elastic contrasts and layer thicknesses this critical

load varies according to the coefficient g (Table 3). The

“jump-through” is favored by low contrast and small

thicknesses and evolves in “step-over” when the con-

trast increases (i.e. R decreases). For a given thickness,

it seems that the “jump-through” leads to an improve-

ment in toughness, the gain increases when the contrast

increases, whereas the opposite occurs for the “step-

over”.

In the particular case of a thin layer of glass (e =
0.5 mm) inserted in a PMMA specimen, the promoted

mechanism is the step over, the gain g = 18% lead

to a failure load 0.132 kN (instead of 0.112 kN for

the homogeneous specimen). It is important to note

that although the glass is by far much more brittle than

PMMA, the high contrast of Young’s moduli (R = 20)

still leads to an increase in the failure load of the spec-

imen and thus an apparent improvement in toughness.

Table 2 The dimensionless ligament width ξ for various elastic contrasts: R = 0.5, 0.2, 0.1, 0.05 and 0.02 and for three different layer

thicknesses: e = 0.02, 0.1, 0.5 mm. Here σ
(1)
c = σ

(2)
c = 70 MPa and G

(1)
Ic = G

(2)
Ic = 0.35 MPa mm

R 0.5 0.2 0.1 0.05 0.02

ξ for e = 0.02 mm 2.87 3.26 3.4 3.55 3.88

ξ for e = 0.1 mm 0.08 0.72 0.74 0.76 0.76

ξ for e = 0.5 mm <0.04 <0.04 0.14 0.14 0.14

Table 3 The mechanisms preferentially activated for σ
(1)
c = σ

(2)
c = 70 MPa and G

(1)
Ic = G

(2)
Ic = 0.35 MPa mm and the gain in

toughness g = (1/κ) − 1 (%)

R 1 0.5 0.2 0.1 0.05 0.02

e = 0.02 mm Jump-through Jump-through Jump-through Jump-through Step-over

g (%) 0 3 8 13 21 23

e = 0.1 mm Bimaterial Case Jump-through Jump-through /step-over Step-over Step-over

g (%) 0 20 33 29 23

e = 0.5 mm Bimaterial case Bimaterial case Step-over Step-over Step-over

g (%) 0 34 29 23
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5 Miscellanous comments on the numerical

simulations

In both cases, “step-over” and “jump-through” mecha-

nisms, the twofold criterion was solved by retaining the

smallest of the two values of ξ given by each condition

before originating the crack growth; it is the only way to

satisfy both criteria simultaneously. The curves below

give a numerical justification of this argument. Figure 9

(bottom) shows the stress condition for 3 different layer

thicknesses e = 0.5, 0.1 and 0.02 mm for the “step-

over” and R = 0.1, whereas Fig. 9 (top) shows the

energy condition which is independent of e. Units on

the vertical axes are useless. In this case, as already

observed, it is the energy condition that governs the

inequality system and ξ keeps constant whatever e. It

may be noted, however, that for e = 0.5 mm the two

conditions give similar solutions (the energy condition

gives ξ = 0.72 and the stress one ξ = 0.76).

Figure 10 shows the same in the case of “jump-

through”. The situation is now different: it is the stress
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Fig. 9 The stress condition (bottom) for 3 different layer thick-

nesses and the energy condition (top) for the “step-over” mech-

anism and G
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Fig. 10 The stress condition (bottom) for 3 different layer thick-

nesses and the energy condition (top) for the “step-over” mech-

anism and G
(1)
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(2)
Ic , σ

(1)
c = σ
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condition that governs the mechanism. Moreover (16)

and then (17)2 are discontinuous and it is the first item

of (16) which is dominant with the present parameters,

i.e. the condition at y2 = 0−. This is not always the

case and at lower elastic contrasts R, it is the second

item of (16) that prevails at least as the ligament is

small.

6 Discussion

As stated in the introduction, it could be expected

to repeat the strengthening effect exhibited in Fig. 5

by multiplying the interfaces. Quick calculations were

performed in the situation described in Fig. 11, i.e. that

of a 10×41.5×160 mm specimen made of a compliant

material and embedding three thin layers (3 × 0.5 mm)

of a stiff material (R = 0.05).

The analogue of Fig. 5 is shown in Fig. 12. For a pri-

mary crack larger than 2.5 mm and smaller than 5 mm,

the strengthening effect of the first interface plays its

role, the crack is trapped in material 1 by the first stiff
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Fig. 11 The 3-point bending multi-layer 10 × 41.5 × 160 mm

specimen with a crack growing in the bottom layer

0

2

4

6

8

0 5 10 15 20 25 30 35 40
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R=0.05

Fig. 12 The ERR G (MPa mm) (solid line) function of the crack

length a (mm) for R = 1 and 0.05 for a 1 mm displacement of

the loading point of the multi-layer specimen. Note that 0 values

are forced for better clarity

layer. But, if the load sufficiently increases, one of the

mechanisms of crack jump described in Sects. 3 and 4

initiates and the crack penetrates the stiffer layer, then

it is clear from Fig. 12 that if a substantial part of the

excess energy is fed back into rupture (Leguillon and

Martin 2012b), nothing will stop the crack until the

complete ruin of the specimen.

On the other hand, if the excess energy is entirely dis-

sipated by various mechanisms such as acoustic waves,

the crack will be trapped ahead of each rigid layer pro-

vided that the distance at which it stops (G = GIc)

is larger than the calculated length in (17). The con-

dition for this to hold true is essentially based on the

geometry of the specimen and the chosen test which

lead to a global decrease of G once the middle line is

passed. It is visible in the homogeneous case (dashed

line in Fig. 12) and affects also the heterogeneous one.

Here in Fig. 12, the third layer seems to be the only

one likely to stop the crack, but anyway the extra load

leading to the final ruin remains small because it adds

to the already increased load to cross the first interface.

7 Conclusion

A crack crossing an interface is not a simple mechanism

and cannot be solved by using the Griffith criterion and

the classical tools of brittle fracture mechanics. Thanks

to the coupled criterion (Leguillon 2002), we pro-

pose two mechanisms called “step-over” and “jump-

through” which respond to the paradox: it is not neces-

sary to indefinitely increase the load for a crack to cross

an interface between a compliant and a stiff material,

as confirmed by intuition and testing. Thus the gain

in toughness brought by stratification of a material is

not “infinite” but still substantial. Of course, it would

be very interesting to compare this model with exper-

iments, unfortunately there are very few of these tests

in the literature. We plan to develop ourselves experi-

ments in the future.

Obviously, it would be necessary to conduct also

further simulations by varying the number of layers,

varying the elastic contrast R between the layers and

changing the ratio of the compliant and stiff layers

thicknesses. Decreasing the contrast is expected to store

less energy but at the same time reduces the strength-

ening effect according to Fig. 4. On the other hand,

increasing the thickness of compliant layers is expected

to absorb a part of the excess energy. All these changes

could be incorporated in a future optimization process.
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