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Energy Consumption Trends in Sound Event Detection
Systems

Constance Douwes, Romain Serizel
Université de Lorraine, CNRS, Inria, Loria
Nancy, France

Abstract—Deep learning systems have become increasingly energy-
and computation-intensive, raising concerns about their environmental
impact. As organizers of the Detection and Classification of Acoustic
Scenes and Events (DCASE) challenge, we recognize the importance of
addressing this issue. For the past three years, we have integrated energy
consumption metrics into the evaluation of sound event detection (SED)
systems. In this paper, we analyze the impact of this energy criterion
on the challenge results and explore the evolution of system complexity
and energy consumption over the years. We highlight a shift towards
more energy-efficient approaches during training without compromising
performance, while the number of operations and system complexity
continue to grow. Through this analysis, we hope to promote more
environmentally friendly practices within the SED community.'

Index Terms—sound event detection, energy consumption, complexity,
performance, carbon footprint

I. INTRODUCTION

For several years now, deep learning (DL) has revolutionized the
fields of signal processing and machine listening [1], driven by a
constant quest for better performance enabled by high-performance
hardware. However, as DL systems become more powerful, the
associated computational overhead also increases [2]-[4], resulting
in high energy costs. This growing energy demand raises concerns
about the associated environmental impact [5]-[7], concerns that
first emerged in the field of natural language processing [8] and,
more recently, within the audio processing and machine listening
communities [9], [10].

As organizers of the Detection and Classification of Acoustic
Scenes and Events (DCASE) challenge, the reference challenge for
sound event detection (SED) systems, we acknowledge our role in
this pursuit of performance and the associated energy cost [11].
Therefore, starting from 2022, energy and compute considerations
were integrated in task 4 of the challenge [12]. This task aims
to study SED systems on a heterogeneous dataset with potentially
missing labels and varying levels of detail [13]. The introduction
of this new criterion raised questions about the comparability of
energy measurements under different hardware setups. For example,
Ronchini et al. proposed the use of a trivial normalization for energy
consumption that takes into account hardware disparities [12]. From
this starting point, we performed an in-depth analysis of different
normalization strategies showing the high influence of the reference
system and highlighting that normalization is far from straightforward
[14].

Another way to account for the energy consumption of neural
networks-based systems is to consider their computational cost, as
the number of parameters or the number of operations. However,
we have shown that there is no simple correlation between energy
consumption and the computational cost across different simple ar-
chitecture types (e.g., fully connected, convolutional, recurrent layers)
for training and testing SED systems on the same setup [15]. This

IThe data related to the submissions used for the analysis will be added
after the review process.

is particularly true when the hardware and the implementation are
different, as in the DCASE challenge [16]. Nevertheless, considering
all of these metrics together provides a more comprehensive view of
the environmental cost of such systems [17].

In this paper, we explore the evolution of the energy consumption
and the computational load of the systems submitted to DCASE
task 4 over the past three years. We build on last year’s analysis
of the 2023 submissions [16], which focused on performance and
energy balance, and incorporate the new 2024 entries. We do not
address the link between energy consumption and computational load,
as this aspect was already covered by last year’s analysis and led
to the above-mentioned conclusions. Instead, we focus on the key
differences between the DCASE 2023 and DCASE 2024 submissions,
particularly due to the availability of normalized energy consumption
data. Additionally, we incorporate to our analysis novelties from this
year’s submissions [18], including the detailed energy consumption
measurements with a focus on GPU utilization, and the introduction
of a new performance metric.

II. ANALYSIS SETUP AND NOVELTIES

This study is based on DCASE task 4 submissions in 2022, 2023,
and 2024. We encourage the reader to visit the DCASE challenge
website to learn more about system submissions’. In the following,
we detail the evolution of task 4, performance metrics and energy
measurements over the years.

A. Task setup and performance metrics

Task 4 of the DCASE challenge has evolved over the years. In
2022, the task focused on detecting sound events using systems
trained on weakly labeled data (without timestamps) and synthetic
soundscapes. In 2023, task 4 was divided into two subtasks: 4a, which
was a direct continuation of 2022, and 4b, which introduced soft
labeled data (which value can be between 0 and 1). In 2024, task 4
unified these subtasks, with the goal of detecting sound events while
leveraging training data with varying levels of annotation granularity,
such as temporal resolution and soft/hard labels [18]. All the baselines
systems are based on the same mean-teacher model [13], with some
adjustments for new datasets and challenges.

To evaluate task 4 submissions, the primary metric used is the
Polyphonic Sound Detection Score (PSDS), as proposed by Bilen et
al. [19]. This metric assesses a system’s ability to correctly detect and
classify overlapping sound events, with higher scores indicating better
performance. In 2024, a second metric is included to complement
the PSDS, the segmented-based partial area under the ROC curve
(segMPAUC) [18]. This metric allows for more targeted evaluation in
scenarios where the goal is to minimize false positives, higher values
of segMPAUC also indicate better performance. The final ranking of
the systems is the sum of these two metrics, the PSDS evaluated on

Zhttps://dcase.community/challenge2024/task-sound-event-detection-with-
heterogeneous-training-dataset-and-potentially-missing-labels



the DESED dataset [13], [20], and the segMPAUC on the MAESTRO
dataset [21].

B. Energy and compute metrics

The introduction of the energy as an evaluation metric was in-
troduced in 2022 [12]. Participants were invited to report the energy
consumption related to both the training and the testing phases of their
submissions using CodeCarbon toolkit [22]. CodeCarbon estimates
the energy by tracking the power consumption of various components,
including the GPU, CPU, and RAM, and sums these values to
compute the total energy consumed. Since 2023, reporting energy is
mandatory when participating to the task. In addition, participants are
required to measure the energy consumption of the baseline system
for 10 epochs of training on the same setup used for submission
[16]. This aims to normalize energy consumption and allows for
fairer comparisons between systems by taking into account potential
material differences [11]. As of this year, we ask participants to report
not only the overall energy consumption, but also the component-
specific energy consumption provided by CodeCarbon, especially the
energy consumed by the GPU [18]. All energy measurements are
expressed in kilowatt-hours (kWh), and the normalization factor is
calculated as the ratio of the energy consumed for 10 epochs of the
baseline on our setup (NVIDIA A100 40GB) to that consumed on
the participants’ setup. In 2024, we record 0.029 kWh for 10 epochs,
compared to 0.032 kWh in 2023. Based on this normalization, we also
compute the energy-weighted (EW) performance score as proposed
by Ronchini and Serizel [16].

In addition, we also require participants to report hardware-
agnostic metrics to account for the computational load, such as the
number of parameters of the system, and since 2023, the Multiply-
Accumulate Operations (MACs) needed to process 10 seconds of au-
dio. The MACs are computed using the THOP: PyTorch-OpCounter
tool [23].

C. Submissions

Submissions are divided into single systems (or non-ensemble
systems) and ensemble systems, that combines multiple systems
outputs for the final evaluation. This year, each team is allowed
to submit a maximum of four systems, compared to eight systems
in the last edition. This change had a significant impact on the
number of submissions, which dropped from 101 in 2022 and 84
in 2023 to 42 in 2024 - a reduction by 50%. Moreover, each team
is required to submit at least one non-ensemble system to limit the
growing use of resource-intensive ensembles and to better understand
the performance when participants are restricted to a single system.
After filtering out submissions with missing or incorrect energy and
compute data reports, the final number of valid submissions is 60,
64, and 35 for 2022, 2023, and 2024, respectively. The amount of
non-ensemble systems is about half of the number of submissions.

III. ENERGY AND COMPLEXITY EVOLUTION

In this section, we analyze trends in computational cost and energy
consumption of the 2022, 2023, and 2024 DCASE task 4 submissions,
including normalized energy comparisons and GPU-specific energy
consumption.

A. General comparisons (2022 - 2024)

Table I shows the 25th percentile, median, and 75th percentile
values for system complexity and MACs over the years. We use
quartiles and medians as measures of central tendency rather than
mean and standard deviation due to the high variability of the
data. As expected, system complexity continues to increase over the

TABLE I: Comparison of system complexity and MACs of DCASE
2022, 2023 and 2024 submissions.

System complexity | MACs |
Year 25% Median 75% 25% Median 75%
2022 2.2M 6.68 M 189M - - -
2023 | 4.80M 14.66M 97.18M | 3.50G  9.74G 124G
2024 | 3.44M 17.40M 207M 1.74G  20.82G 108G

TABLE II: Comparison of energy consumption for training and
testing of DCASE 2022, 2023, and 2024 submissions.

Energy train (kWh) | Energy test (kWh) |
Year | 25%  Median 75% 25%  Median  75%
2022 | 1.82 3.70 17.30 | 0.01 0.03 0.05
2023 | 1.62 4.30 13.98 | 0.02 0.04 0.28
2024 | 3.47 8.78 17.58 | 0.06 0.14 0.42

years, with a clear trend toward larger and more complex systems.
In particular, the significant increase in the 75th percentile reflects
that participants submitted much larger models this year than in
the previous editions. The number of operations introduced in 2023
reinforces this upward trend, with the median also increasing from
2023 to 2024. However, in contrast to system complexity, the 75th
percentile for MACs decreases slightly in 2024. This could be due
to the inherent composition of the networks, where increasing the
number of parameters does not necessarily lead to a proportional
increase in the number of operations. We further investigate whether
these trends are reflected in the energy consumption.

Table II shows the analysis for the energy consumption at training
and test over the years. We see a strong increase in the training
energy consumption from 2022 to 2024, the median value even
doubling between 2023 and 2024. While there is a slight decrease
between 2022 and 2023 at the 25th percentile, this effect is reversed
and amplified in 2024, with the most efficient models consuming
more energy. Similarly, at test, the energy consumption increases
significantly for both the median and the second percentile, showing
that more complex architectures are not only more energy intensive
during training, but also at test. However, it should be noted that the
energy values are not normalized and this analysis only shows general
trends in energy consumption and cannot be conclusive. Therefore,
we continue our analysis on the normalized energy consumption in
the remainder of this study, focusing solely on 2023 and 2024 entries
due to the availability of data.

B. Energy normalized comparisons (2023 - 2024)

Table III provides a summary of normalized energy consumption
for 2023 and 2024 submissions. Note that only 60 and 30 systems in
2023 and 2024, respectively, accurately report their baseline energy
consumption and are included in the remainder of the analysis.
Contrary to the trends observed previously, the normalized training
energy does not increase from 2023 to 2024. In fact, both of the
median and the two percentiles actually decrease, reflecting a positive
shift toward more energy-efficient models. The gap between the
absolute energy consumption and the normalized energy is likely
attributable to variations in hardware setups used by participants.

In order to verify this hypothesis we compare the energy con-
sumption reported by participants to perform 10 epochs of training
for the baseline. Despite the changes between 2023 and 2024, the
energy to train the baseline remained similar on our setup (0.032
kWh in 2023 vs. 0.029 kWh in 2024, see also Section II-B) so
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Fig. 1: Relationship between PSDS and training energy consumption
Baselines from both years are reported as references.

TABLE III: Comparison of energy consumption normalized for
training and testing DCASE 2023 and 2024 submissions.

Energy train norm. (kWh) | | Energy test norm. (kWh) |
Year | 25%  Median 75% 25%  Median 75%
2023 | 2.51 6.59 13.14 0.02 0.05 0.37
2024 | 1.86 4.37 9.59 0.03 0.07 0.16

TABLE IV: Comparison of the energy consumed for training 10
epochs of the baselines system in 2023 and 2024.

Year ‘ Energy 10 epochs (kWh)
2023 0.030 £ 0.020
2024 0.052 £ 0.023

changes in the participants reports are likely due to changes in
hardware usage. In Table IV, we report the average consumption of
submissions to compute 10 epochs of the baseline. As expected, there
is a significant increase in energy consumption of 0.012 kWh from
2023 to 2024. These results indicate that, on average, the hardware
used by participants in 2024 consumed more energy than in 2023.

In contrast, for the normalized energy consumption at test, the
median and the 25th percentile increase between 2023 and 2024, in
line with the system complexity and the absolute energy consumption
at test. However, the 75th percentile of the energy consumption at test
decreases by a factor of two, consistently to the reduction previously
observed for MACs-intensive systems. It is important to note that
most of these systems are designed to run on target devices with
specifications far from those of a GPU (e.g., embedded devices).
However, the energy consumption is measured here on a GPU where
the GPU may be underutilized. To confirm the latter, we continue our
analysis on the relationship between the total and the GPU-specific
energy consumption.

C. GPU energy consumption (2024)

This year, we ask participant to record the GPU consumption for
training and testing their systems [18]. We present in Table V the
proportion of the energy consumed by the GPU relative to the total
energy consumption, expressed as percentage (%GPU). On average,
we observe that the GPU accounts for half of the energy consumed
during training, but this drops to 38% at test. Moreover, the larger
standard deviation and wider range of GPU usage at test reflect
significant differences in the participants’ hardware usage between
train and test. This variability is partially due to the high utilization
of the GPU during training compared to its underuse at test.
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for the best ensemble and non-ensemble systems from 2023 and 2024.

TABLE V: Ratio of GPU energy to total energy (%GPU) for training
and testing DCASE 2024 systems.

| Mean +Std  Min  Max
%GPU Train | 53% + 17% 21%  87%
%GPU Test | 38% +21% 5%  85%

Additionally, measuring the energy consumption at test on GPU
may not accurately reflect the intended deployment hardware for these
type of relatively small models. Therefore, for the remainder of our
analysis, we focus only on training energy consumption.

IV. PERFORMANCE ANALYSIS

In this section, we put a highlight on the performance of DCASE
task 4 submissions and how it relates to energy consumption.
We compare ensemble and non-ensemble systems, explore energy-
weighted metrics, and consider the effect of energy consumption
thresholds.

A. Energy and performance comparisons (2023 - 2024)

To better understand the evolution of the normalized energy con-
sumption at training and the relation with performance, we separate
ensemble from non-ensemble systems. In total, there are 33 and
13 ensemble systems, and 27 and 17 single systems for 2023 and
2024, respectively. For this analysis, we focus specifically on the
top 10 systems in terms of PSDS performance. Figure 1 illustrates
the relationship between PSDS and normalized training energy con-
sumption. For ensemble systems, we see an increase in PSDS scores
between 2023 and 2024, while the energy consumption remain in
a similar range. This points out that performance improvements
are achieved without a proportional increase in energy consumption
from one year to another. For non-ensemble systems, we observe
that it is even possible to reduce energy consumption while also
increasing performance, which is a promising sign of optimization
and efficiency. When comparing the two graphs in parallel, we see
that all ensemble systems consume more energy than non-ensemble
systems - the logarithmic scale underrepresenting the gap in energy
consumption. Despite achieving better PSDS results, the significant
energy cost associated with ensemble methods raises questions about
their overall effectiveness. For example, in 2024, the best ensemble
system achieves a PSDS score of 0.68 and consumes 25.9 kWh.
In contrast, the top non-ensemble system reaches a PSDS score of
0.64 with a much lower energy consumption of 1.2 kWh. This non-
ensemble system also outperforms the best ensemble system from
2023, which had a PSDS score of 0.62 but consumed 69.1 kWh.
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systems in 2024, compared to the baseline system.

TABLE VI: Performance comparison of DCASE 2023 and 2024 non-ensemble submitted systems when thresholding system complexity,
MACs, and normalized training energy consumption. For each threshold (25% and median), the best systems in terms of PSDS below the
threshold are reported. ”All” represents results without any threshold applied.

System complexity MACs Energy train norm. (kWh)
2023 2024 2023 2024 2023 2024
Max | PSDS T | Max | PSDS 1 Max | PSDS T | Max | PSDS 1 Max || PSDS 1 | Max | PSDS 1
All 1G 0.59 181M 0.64 460G 0.59 45G 0.64 23.01 0.59 9.84 0.64
25% SM 0.55 1.6M 0.52 912M 0.55 1.2G 0.57 0.99 0.55 1.18 0.53
Median 6M 0.59 3.4M 0.59 4G 0.55 1.7G 0.59 2.33 0.56 1.99 0.64

B. Energy-weighted performance (2024)

We continue our analysis on the trade-offs between energy con-
sumption and performance improvements by considering the energy-
weighted metrics. Due to space constraint we focus on the 2024
systems only. Figure 2 shows the relationships between PSDS and
EW-PSDS on the left, and segMPAUC and EW-segMPAUC on the
right. The green dotted lines segment the graphs into areas where
systems either consume more energy while being outperformed by the
baseline (bottom-left), outperform the baseline but with higher energy
use (bottom-right), or achieve better performance with lower energy
consumption (top-right). Unfortunately, we observe that only a few
systems are located in that optimal corner (top-right) independently
of the metric, and these are exclusively non-ensemble systems.
Ensemble systems are particularly concentrated towards the lower end
of the bottoms quadrants, highlighting their relatively high energy
costs compared to performance improvements. For the PSDS plot
(left), most systems are located in the bottom-right corner, while the
segMPAUC plot (right) shows a more dispersed distribution, with
systems spread across the bottom-left and bottom-right quadrants.
This dispersion suggests that some systems have optimized for PSDS
at the expense of segMPAUC, where the majority of the energy
consumption is concentrated on this optimization.

C. Threshold based on energy consumption (2023 - 2024)

The previous analysis shows that large energy costs can result
in small performance gains, which leads us to consider the notion
of an “energy cap”, simulating a scenario where participants have
limited resources or budget. This approach was previously proposed
by Ronchini and Serizel [16], but here we extend the analysis to
compare differences between 2023 and 2024. All results are presented
on Table VI. Generally, we see that setting a cap on complexity and
energy metrics results in reduced performance, but the extent of the
drop depends on the specific threshold level and the year.

When looking at median energy consumption in 2024, there
are notable improvements in both energy efficiency and system

performance compared to 2023, which is encouraging. However,
when focusing on low-energy systems (25%), the results are less
positive: in 2024, these systems perform worse and consume more
energy than in 2023. This suggests a reduction in the number of
high-performing, low-energy systems in 2024. A similar trend is
observed in the MACs metric, although the 25th percentile shows a
slight improvement despite higher MACs in 2024. In contrast, system
complexity has decreased in 2024 (at all, median, and 25th percentile
levels). While performance is improved when considering the most
complex systems, it is either been maintained or deteriorated when
considering only lower complexity system. Furthermore, applying the
median energy cap in 2024 allows best performance to be maintained,
a result not observed in 2023. This suggests that, unlike in 2023, the
best performing systems in 2024 are not necessarily those with the
highest training energy consumption.’

V. CONCLUSIONS

In conclusion, our analysis of DCASE Task 4 submissions from
2022 to 2024 highlights considerable evolution in system perfor-
mance and energy efficiency. Despite a general trend toward in-
creasingly complex and energy-intensive systems, we observe notable
improvements in energy efficiency when accounting for hardware dis-
parities. Specifically, the normalized energy consumption for training
has decreased in 2024 while the systems performed better in terms
of PSDS. However, ensemble systems still consume large amounts
of energy relative to their performance gains, and few single systems
outperform the baseline with lower energy use. In addition, we find
that setting a cap on resources can lead to performance loss, but
also highlights advances in energy efficiency. This also emphasize
the energy cost for performance improvements that are sometimes
relatively modest. Finally, in 2024, the best performing systems are
not necessarily those with the highest energy consumption, indicating
a positive shift towards more sustainable and efficient solutions.

3Similar results for segMPAUC can be found in the additional results page.
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