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MARGINAL-PRESERVING MODIFIED WASSERSTEIN
BARYCENTERS FOR GAUSSIAN DISTRIBUTIONS AND

GAUSSIAN MIXTURES ∗

MAXIME DALERY ∗, GENEVIÈVE DUSSON ∗, AND VIRGINIE EHRLACHER †

Abstract. Wasserstein barycenters do not preserve marginals in general. In this work, we first
characterize sufficient and necessary conditions for the Wasserstein barycenter between two Gauss-
ian distributions to preserve marginals, and provide necessary conditions in the case of more than
two Gaussians. We then propose modified Wasserstein barycenters that preserve the marginals of
the distributions, both for Gaussian distributions and for mixtures of Gaussian distributions. In
the case of Gaussian distributions, the marginal-preserving modified Wasserstein barycenters can be
analytically computed, while for Gaussian mixtures, computing the marginal-preserving barycenter
consists in a postprocessing of the Gaussian mixture Wasserstein barycenter. In both cases, we pro-
vide numerical simulations illustrating the difference between Wasserstein barycenters and modified
marginal-preserving Wasserstein barycenters.

1. Introduction. Barycenters of a family of probability measures with finite
second-order moments with respect to the Wasserstein-2 metric have been introduced
and studied in the seminal paper [2]. Since then, these Wasserstein barycenters have
been successfully used in a large variety of practical applications, ranging from imag-
ing [17, 13], data science [18, 9], model order reduction techniques [12], tomographic re-
construction [1], and quantum chemistry [10]. In all these works, Wasserstein barycen-
ters are used to build meaningful interpolations between various probability measures
that are relevant to the considered application.

The motivation of the present work stems from the following well-known obser-
vation: given nx and ny two positive integers, ρ0 and ρ1 two probability measures
defined on the cartesian product Rnx × Rny with finite second-order moments, the
marginals of the Wasserstein-2 barycenter between ρ0 and ρ1, respectively in Rnx and
Rny are not equal in general to the Wasserstein-2 barycenters of the marginals of ρ0
and ρ1 respectively.

This is an issue in applicative contexts where interpolations between two or more
probability measures defined on a cartesian product set have to be considered in
a Wasserstein sense but where the preservation of marginals by the interpolation
procedure is necessary to obtain relevant quantities. Indeed, in the study of statistical
properties of large particle or agent systems, two-body correlations enable to obtain
very precious insight on the statistical distribution of the particles or agents in the
underlying system. The latter are probability measures defined on a cartesian product
domain, that is the product of the set of possible particle or agent positions in the
system with itself, the marginals of which are equal to the one-body particle density
of the system. Interpolating between two-body correlations or one-body densities
in a Wasserstein sense is meaningful in many situations, however, due to the issue
highlighted above, the marginal of the interpolated two-body correlation is not equal
to the interpolation of the one-body density in general, which is not satisfactory from
a modeling point of view. This is the case for instance in quantum chemistry, see [10].
Other applications include population dynamics, where the populations are observed
through the spectrum of several parameters, compartmental models in epidemiology,
medical imaging with e.g. tumor growth study, as well as crowd modeling or kinetic
equations in physics.
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It is thus of practical interest to define interpolations between measures defined on
a cartesian product domain that are close to Wasserstein barycenters, with marginals
that are guaranteed to be the Wasserstein barycenters of their marginals. The only
attempt we are aware of in this direction is [1] where the authors propose a modi-
fied version of Wasserstein barycenters through an optimization problem where the
marginal constraint was introduced in a penalized form. In the present work, the
proposed modified Wasserstein barycenters exactly satisfy the marginal constraints.
For simplicity, we restrict ourselves to Gaussian measures and Gaussian mixtures,
which is already of significant practical interest in many applications including those
related to quantum chemistry. Our main contributions are the following: (i) we give
an explicit necessary and sufficient condition on the covariance matrices of two Gauss-
ian measures for the marginals of their Wasserstein barycenter to be the Wasserstein
barycenter of their marginals, whatever the value of the barycentric weights. We also
show that, if this condition is not satisfied, for any non-trivial barycentric weights, the
marginals of their Wasserstein barycenter is not equal to the Wasserstein barycenter
of their marginals; (ii) we propose two definitions of modified marginal-preserving
Wasserstein barycenters, prove their well-posedness; one of these definitions leads to
an analytically computable barycenter (iii) we use this modified barycenter to define
marginal-preserving barycenters for Gaussian mixtures with respect to the mixture
Wasserstein distance (see for instance [11, 8]), for which the computation is done as
a post-processing of the mixture Wasserstein barycenter; (iv) we illustrate the alter-
native definitions we propose here through various numerical tests to highlight the
differences between the proposed marginal-preserving modified Wasserstein barycen-
ters and the exact Wasserstein barycenters.

The outline of the article is the following. In Section 2, we recall the main classical
notions related to optimal transport theory between Gaussian measures that will be
useful in our analysis. In Section 3, we prove several results on the geometric mean be-
tween covariance matrices that will be useful in our analysis. In Section 4, we state our
first main result concerning the necessary and sufficient condition on covariance matri-
ces of Gaussian measures for their Wasserstein barycenter to be marginal-preserving.
In Section 5, we introduce the modified marginal-preserving barycenters for Gaussian
distributions. In Section 6, we extend the definition by proposing modified marginal-
preserving barycenters for mixtures of Gaussian distributions. In Section 7, we pro-
vide numerical results illustrating the findings. Finally, in Section 8, we give some
concluding remarks.

2. Optimal transport for Gaussian distributions. The aim of this section is
to summarize some basic facts about optimal transport theory and Gaussian measures,
that can e.g. be found in [16]. We first recall some fundamentals about the Wasserstein
metric in Section 2.1. We then present some well-known properties of the Wasserstein
metric for Gaussian measures in Section 2.2.

2.1. Wasserstein-2 metric. In the whole document we denote by N∗ the set
N \ {0}. Let n ∈ N∗ and let P2(Rn) denote the set of probability measures on Rn

with finite second-order moments. The 2-Wasserstein distance over P2(Rn) is defined
for ρ0, ρ1 ∈ P2(Rn) as

W2(ρ0, ρ1) := inf
π∈Π(ρ0,ρ1)

(∫
Rn×Rn

∥x− y∥2 dπ(x, y)
)1/2

,
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where ∥ · ∥ denotes the euclidean norm of Rn and Π(ρ0, ρ1) the set of probability
measures over Rn ×Rn with marginals ρ0 and ρ1, which is called the set of transport
plans between ρ0 and ρ1. More precisely,

Π(ρ0, ρ1) =

{
π ∈ P2(Rn × Rn) :

∫
y∈Rn

dπ(x, y) = dρ0(x),

∫
x∈Rn

dπ(x, y) = dρ1(y)

}
.

For M ∈ N∗, let us denote by

ΛM =

{
(λ1, . . . , λM ) ∈ (R+)

M ,

M∑
m=1

λm = 1

}

the set of barycentric weights of cardinality M . The Wasserstein barycenter of a
collection of M probability measures ρ := (ρ1, . . . , ρM ) ∈ P2(Rn)M associated to a
set of barycentric weights λ := (λ1, . . . , λM ) ∈ ΛM is then defined (see [2]) as the
unique solution to the problem

(2.1) inf
ρ∈P2(Rn)

M∑
m=1

λm W2(ρ, ρ
m)2.

The unique minimizer of (2.1) is denoted by BarλW2
(ρ). This barycenter is also related

to the so-called multi-marginal optimal transport problem [2, 14, 15], defined, given
M elements ρ = (ρ1, . . . , ρM ) in P2(R)M , as
(2.2)

mmW2(ρ;λ) := inf
π∈Π(ρ1,...,ρM )

(∫
(Rn)M

1

2

M∑
m1,m2=1

λm1
λm2

∥xm1
− xm2

∥2 dπ(x1, . . . , xM )

)1/2

,

where Π(ρ1, . . . , ρM ) is the set of probability measures over (Rn)M with marginals
ρ1, . . . , ρM , and there holds

mmW2(ρ;λ) =

[
M∑

m=1

λmW2(Bar
λ
W2

(ρ), ρm)2

]1/2
.

In all the sequel, we will assume that n = nx + ny for some nx, ny ∈ N∗, so that
Rn = Rnx ×Rny . For a given probability measure ρ ∈ P2(Rnx ×Rny ), we will denote
by margx(ρ) ∈ P2(Rnx) the first marginal of ρ and by margy(ρ) ∈ P2(Rny ) its second
marginal. More precisely,

dmargx(ρ)(x) =

∫
y∈Rny

dρ(x, y) and dmargy(ρ)(y) =

∫
x∈Rnx

dρ(x, y).

2.2. Gaussian measures. For any n ∈ N∗, let us denote by Sn
+,∗ (respectively

Sn
+, Sn) the set of symmetric definite positive (respectively symmetric semi-definite

positive, symmetric) matrices of Rn×n. For any S ∈ Sn, we denote by ∥S∥2 its
operator norm. For any S ∈ Sn

+, we denote by S1/2 or by
√
S its unique symmetric

semi-definite positive square root. For any S ∈ Sn
+,∗, we also denote by S−1/2 the

inverse of its square root. For any µ ∈ Rn and any S ∈ Sn
+,∗, we denote by N (µ, S)

the Gaussian probability measure on Rn with mean µ and covariance matrix S.
3



If for i ∈ {0, 1}, ρi = N (µi, Si) is the Gaussian measure with mean mi and
covariance matrix Si, with µi ∈ Rn and Si ∈ Sn

+,∗, the 2-Wasserstein distance between
ρ0 and ρ1 has a closed form expression which can be written as

W2(ρ0, ρ1)
2 = ∥µ1 − µ0∥2 +Tr

(
S0 + S1 − 2

(√
S0S1

√
S0

)1/2)
.

In the following, we denote by W2 : Sn
+ ×Sn

+ → R+ the Bures–Wasserstein metric [7]

∀S0, S1 ∈ Sn
+, W2(S0, S1)

2 := Tr

(
S0 + S1 − 2

(√
S0S1

√
S0

)1/2)
,

so that

∀µ0, µ1 ∈ Rn, ∀S0, S1 ∈ Sn
+,∗,W2 (N (µ0, S0),N (µ1, S1))

2
= ∥µ0−µ1∥2+W2(S0, S1)

2.

For any M ∈ N∗, λ = (λ1, . . . , λM ) ∈ ΛM and ρ = (ρ1, . . . , ρM ) ∈ P2(Rn)M so that
for all i ∈ {1, . . . ,M}, ρi = N (µi, Si) for some µi ∈ Rn and Si ∈ Sn

+,∗, it holds that
BarλW2

(ρ) = N (µ∗, S∗) where

µ∗ =

M∑
m=1

λmµm,

and S∗ ∈ Sn
+,∗ is the unique symmetric positive definite matrix solution to the follow-

ing equation
M∑

m=1

λm

(√
S∗Sm

√
S∗

)1/2
= S∗.

In the sequel, we will denote S∗ by BarλW2
(S) where S := (S1, . . . , SM ).

Let us note that, in the case where n = nx + ny for some nx, ny ∈ N∗, if ρ =

N (µ, S) with µ = (µx, µy) for some µx ∈ Rnx and µy ∈ Rny , and S ∈ Snx+ny

+,∗

written as a block matrix as S =

(
Sx Sxy

S⊺
xy Sy

)
with Sx ∈ Snx

+,∗, Sy ∈ Sny

+,∗ and

Sxy ∈ Rnx×ny , it holds that

margx(ρ) = N (µx, Sx) and margy(ρ) = N (µy, Sy).

This motivates us to introduce the following applications, which we call hereafter with
a slight abuse of language, the marginals of covariance matrices:

Mx :

 Snx+ny

+ → Snx
+

S =

(
Sx Sxy

S⊺
xy Sy

)
7→ Sx

and My :

 Snx+ny

+ → Sny

+

S =

(
Sx Sxy

S⊺
xy Sy

)
7→ Sy

.

The aim of Sections 3, 4 and 5 is to propose some definitions of marginal-
preserving Wasserstein-like barycenters for a family of Gaussian distributions. The
aim of Section 6 is to extend the definition of such preserving Wasserstein-like barycen-
ters to families of mixtures of Gaussian distributions [11].

The definitions of modified marginal-preserving barycenters of a family of Gauss-
ian distributions, which will be the object of Section 5.3, will be very closely linked
to properties of their covariance matrices, and in particular their geometric mean.
Hence, in Section 3 and 4, we first focus on the mathematical properties of these
covariance matrices.
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3. Properties of the geometric mean of covariance matrices. The aim of
this section is to recall some well-known results about the geometric mean of positive
definite matrices and prove some new results which will be useful in the rest of our
analysis. Indeed this geometric mean studied by Bhatia and coauthors [5, Chapter 4]
and [6] will play a key role in our subsequent analysis.

We begin by recalling the definition of the geometric mean of two symmetric
positive definite matrices and its main properties.

Definition 3.1. Let n ∈ N∗ and S, T ∈ Sn
+,∗. We call geometric mean of S and

T the matrix

(3.1) S#T := S1/2
(
S1/2T−1S1/2

)−1/2

S1/2.

A few properties of this geometric mean will be useful.

Lemma 3.2. [4, Theorem 4.1.3] Let n ∈ N∗ and S, T ∈ Sn
+,∗. It then holds that

(i) S#T is the unique matrix C ∈ Sn
+,∗ solution to the equation CS−1C = T ;

(ii) S#T = T#S;
(iii) (S#T )−1 = S−1#T−1.

The following result is a preliminary lemma that will be very useful in the subse-
quent analysis.

Lemma 3.3. Let nx, ny ∈ N∗ and let S ∈ Snx+ny

+,∗ with block decomposition

(3.2) S =

(
Sx Sxy

S⊺
xy Sy

)
and T =

(
Tx Txy

T ⊺
xy Ty

)
,

with Sx, Tx ∈ Snx
+,∗, Sy, Ty ∈ Sny

+,∗ and Sxy, Txy ∈ Rnx×ny . Let
(3.3)

∀Z ∈ CTx,Ty
:=
{
Z ∈ Rnx×ny , ∥T−1/2

x ZT−1/2
y ∥2 < 1

}
, T (Z) :=

(
Tx Z
Z⊺ Ty

)
.

The function F defined as

(3.4) F : CTx,Ty
∋ Z 7−→ W2(S, T (Z))2 = Tr

(
S + T (Z)− 2

(√
ST (Z)

√
S
)1/2)

is strictly convex. Moreover, the minimization problem

(3.5) Z∗
S,T ∈ argmin

Z∈CTx,Ty

W2
2 (S, T (Z)),

has a unique minimizer which is given by

(3.6) Z∗
S,T = (Sx

−1#Tx)Sxy(Sy
−1#Ty).

Remark 3.4. Note that from the definition of CTx,Ty
, which is a convex cone, it

is obvious to see that, for all Z ∈ CTx,Ty
, T (Z) ∈ Snx+ny

+,∗ (see also [7, (14)]) with
Mx(T (Z)) = Tx and My(T (Z)) = Ty.

Proof. First, for n ∈ N∗, the application Sn
+ ∋ M 7→ Tr M1/2 is a strictly

operator concave function (see [5, Chapter V] and [7, Theorem 7]). Noting that
CTx,Ty

∋ Z 7→
√
ST (Z)

√
S is an affine mapping, and that CTx,Ty

∋ Z 7−→ Tr(S+T (Z))
is a constant function, we easily deduce that F is strictly (operator) convex.
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We will now compute the first-order derivatives of F and show that there exists
a unique stationary point belonging to CTx,Ty

. Note that, since CTx,Ty
is not a closed

set, the existence of a minimizer is not obvious a priori.
For all 1 ≤ i, j ≤ n, let us denote by Jij the matrix

Jij :=

(
0nx

Eij

E⊺
ij 0ny

)
where Eij ∈ Rnx×ny is the matrix with all components equal to 0, except the (i, j)th

component which is equal to 1. It is then easy to remark that for all 1 ≤ i ≤
nx, 1 ≤ j ≤ ny, for all Z = (Zij)1≤i≤nx,1≤j≤ny

∈ CTx,Ty
, it holds that

∂T

∂Zij
(Z) = Jij .

From [7, p. 182] the matrix square root defined on symmetric definite positive matrices
√

: M ∈ Sn
+ 7−→

√
M has for derivative

∀H ∈ Sn, d√(M)(H) =

∫ +∞

0

e−t
√
MHe−t

√
Mdt,

from which we deduce that the application G : Z ∈ CTx,Ty
7−→

(√
ST (Z)

√
S
)1/2

has
partial derivatives equal to

∂G

∂Zij
(Z) = d√

(√
ST (Z)

√
S
)(√

S
∂T

∂Zij
(Z)

√
S

)
= d√

(√
ST (Z)

√
S
)(√

SJij
√
S
)

=

∫ +∞

0

e−t(
√
ST (Z)

√
S)

1/2 (√
SJij

√
S
)
e−t(

√
ST (Z)

√
S)

1/2

dt.(3.7)

Noting that CTx,Ty ∋ Z 7−→ Tr(S + T (Z)) is a constant function, we see that

∂F

∂Zij
(Z) = −2Tr

(
∂G

∂Zij
(Z)

)
.

From (3.7) and using the cyclicity of the trace, we obtain

∂F

∂Zij
(Z) = −2Tr

(√
S

∫ +∞

0

e−2t(
√
ST (Z)

√
S)

1/2

dt
√
SJij

)
.

Moreover, using that for any A ∈ Sn
+,∗∫ +∞

0

e−tAdt = A−1,

with A = 2
(√

ST (Z)
√
S
)1/2

and (3.1) we obtain

∂F

∂Zij
(Z) = −Tr

(√
S
(√

ST (Z)
√
S
)−1/2 √

SJij

)
= −Tr

((
T (Z)

−1
#S
)
Jij

)
= −2

(
T (Z)

−1
#S
)
xy,ij

,
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where
(
T (Z)

−1
#S
)
xy

is the right upper off-diagonal term of the matrix T (Z)
−1

#S.

Hence the derivative of F is equal to 0 if and only if for all i = 1, . . . , nx and all j =

1, . . . , ny,
(
T (Z)

−1
#S
)
xy,ij

= 0, that is if and only if T (Z)
−1

#S is block diagonal.

This implies that the matrix S−1#T (Z) is also block diagonal. Since this matrix
satisfies T (Z) = (S−1#T (Z))S(S−1#T (Z)), we obtain by computing the off-diagonal

blocks that if there exists Z ∈ CTx,Ty
such that

∂F

∂Zij
(Z) = 0 for all i = 1, . . . , nx and

all j = 1, . . . , ny, then necessarily Z = Z∗
S,T where

(3.8) Z∗
S,T := (Sx

−1#Tx)Sxy(Sy
−1#Ty).

Let us now prove that Z∗
S,T defined by (3.8) necessarily belongs to CTx,Ty

, which
will yield the desired result. Since S ∈ Snx+ny

+,∗ , the Schur complement condition gives

Sx − SxyS
−1
y Syx ∈ Snx

+,∗.

Multiplying on both sides by (Sx
−1#Tx) ∈ Snx

+,∗, we obtain

Tx − (Sx
−1#Tx)SxyS

−1
y Syx(Sx

−1#Tx) ∈ Snx
+,∗.

Noting that S−1
y = (Sy

−1#Ty)T
−1
y (Sy

−1#Ty) leads to

I − T−1/2
x (Sx

−1#Tx)Sxy(Sy
−1#Ty)T

−1
y (Sy

−1#Ty)Syx(Sx
−1#Tx)T

−1/2
x ∈ Snx

+,∗,

so that
∥T−1/2

x (Sx
−1#Tx)Sxy(Sy

−1#Ty)T
−1/2
y ∥2 < 1,

that is ∥T−1/2
x Z∗

S,TT
−1/2
y ∥2 < 1 and so Z∗

S,T ∈ CTx,Ty
. This concludes the proof.

The following result links the blocks of covariance matrices and the structure of
the geometric mean and will later play a role to characterize the covariance matrices
with Wasserstein barycenters conserving marginals.

Lemma 3.5. Let nx, ny ∈ N∗ and let S, T ∈Snx+ny

+,∗ with block decomposition (3.2),
with Sx, Tx ∈ Snx

+,∗, Sy, Ty ∈ Sny

+,∗ and Sxy, Txy ∈ Rnx×ny . Then, the four following
assertions are equivalent.

(i) the matrix S−1#T is block diagonal with block of dimensions of nx × nx and
ny × ny,

(ii) the matrix S−1#T is equal to

S−1#T =

(
Sx

−1#Tx 0
0 Sy

−1#Ty

)
,

(iii) the off-diagonal blocks verify

Txy = (Sx
−1#Tx)Sxy(Sy

−1#Ty);

(iv) we have the Pythagorean-type formula

W2
2 (S, T ) = W2

2 (Sx, Tx) +W2
2 (Sy, Ty).

In the following, if a pair (S, T ) ∈ (Snx+ny

+,∗ )2 meets one of these four assertions, we
will write S ▷◁ T .
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Remark 3.6 (Not an equivalence relationship). The relationship ▷◁ is reflexive
(i.e. for any S, T ∈ Snx+ny

+,∗ , if S ▷◁ T then necessarily T ▷◁ S) but is not transitive.
Indeed, for any R,S, T ∈ Snx+ny

+,∗ , R ▷◁ S and S ▷◁ T do not necessarily imply that
R ▷◁ T . Hence, ▷◁ is not an equivalence relationship.

Remark 3.7. The solution to problem (3.5) satisfies T
(
Z∗
S,T

)
▷◁ S.

Proof. Proof of (i) ⇒ (ii): If the matrix S−1#T is block diagonal with blocks Cx

of dimension nx×nx and Cy of dimension ny×ny, then both Cx and Cy are symmetric
positive definite matrices since S−1#T is positive definite. Moreover, noting that
S−1#T is the only positive definite matrix such that

(S−1#T )S(S−1#T ) = T,

and looking at the diagonal blocks identities, there holds{
CxSxCx = Tx,

CySyCy = Ty.

Since Sx
−1#Tx is the unique symmetric positive definite solution to the matrix equa-

tion CxSxCx = Tx, there holds Cx = Sx
−1#Tx. Similarly, we obtain Cy = Sy

−1#Ty,
so that

S−1#T =

(
Sx

−1#Tx 0
0 Sy

−1#Ty

)
.

Proof of (ii) ⇒ (i): The result is straightforward.

Proof of (ii) ⇒ (iii): The matrix S−1#T satisfies T = (S−1#T )S(S−1#T ). Com-
puting the off-diagonal blocks, there holds that Txy = (Sx

−1#Tx)Sxy(Sy
−1#Ty).

Proof of (iii) ⇒ (ii): There is a unique symmetric positive definite matrix C ∈
Snx+ny

+,∗ solution to the matrix equation CSC = T , which is S−1#T . By remarking

that our guess
(
Sx

−1#Tx 0
0 Sy

−1#Ty

)
is also a positive definite solution to the same

equation, we then have that

S−1#T =

(
Sx

−1#Tx 0
0 Sy

−1#Ty

)
.

Hence, at that point we have proved that (i) ⇔ (ii) ⇔ (iii).

Proof of (ii) ⇒ (iv): First, let us note that(√
ST

√
S
)1/2

=
√
S(S−1#T )

√
S,

and similarly (√
SxTx

√
Sx

)1/2
=
√

Sx(Sx
−1#Tx)

√
Sx,(√

SyTy

√
Sy

)1/2
=
√
Sy(Sy

−1#Ty)
√
Sy.
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Using the cyclicity of the trace, noting that (S−1#T ) is block diagonal, and using the
cyclicity of the trace again

Tr

((√
ST

√
S
)1/2)

= Tr
(
S(S−1#T )

)
= Tr

(
Sx(Sx

−1#Tx)
)
+Tr

(
Sy(Sy

−1#Ty)
)

= Tr
(√

Sx(Sx
−1#Tx)

√
Sx

)
+Tr

(√
Sy(Sy

−1#Ty)
√

Sy

)
.

We then deduce that

W2
2 (S, T ) = Tr

(
T + S − 2

((√
ST

√
S
)1/2))

= Tr

(
Tx + Sx − 2

((√
SxTx

√
Sx

)1/2))
+Tr

(
Ty + Sy − 2

((√
SyTy

√
Sy

)1/2))
= W2

2 (Tx, Sx) +W2
2 (Ty, Sy),

hence the desired result.

Proof of (iv) ⇒ (ii): Let us denote by T ∗ the matrix

T ∗ =

(
Tx (Sx

−1#Tx)Sxy(Sy
−1#Ty)

(Sy
−1#Ty)Syx(Sx

−1#Tx) Ty

)
which satisfies (iii). Using that (i) ⇔ (ii) ⇔ (iii) and (ii) ⇒ (iv), T ∗ satisfies (iv).
Therefore, there holds

W2
2 (S, T

∗) = W2
2 (Sx, Tx) +W2

2 (Sy, Ty).

From Lemma 3.3, T ∗ is the solution to the optimization problem (3.5). Hence

W2
2 (S, T

∗) ≤ W2
2 (S, T ) = W2

2 (Sx, Tx) +W2
2 (Sy, Ty),

using the assumption, from which we deduce that

W2
2 (S, T

∗) = W2
2 (S, T ),

and thus T ∗ = T , noting that problem (3.5) admits a unique solution. Hence T
satisfies (iii) and the proof is complete.

4. Marginals of Bures–Wasserstein barycenters. In this section, we pres-
ent a first result linking the preservation of the marginals of the Bures–Wasserstein
barycenter between two covariance matrices S and T to the condition S ▷◁ T .

Theorem 4.1. Let S, T ∈ Snx+ny

+,∗ with block decomposition (3.2), with Sx, Tx ∈
Snx
+,∗, Sy, Ty ∈ Sny

+,∗ and Sxy, Txy ∈ Rnx×ny . Then, the five following statements are
equivalent:

(i) ∃λ ∈]0, 1[, Mx

(
Bar

(1−λ,λ)
W2

(S, T )
)
= Bar

(1−λ,λ)
W2

(Sx, Tx);

(ii) ∀λ ∈ [0, 1], Mx

(
Bar

(1−λ,λ)
W2

(S, T )
)
= Bar

(1−λ,λ)
W2

(Sx, Tx);

(iii) ∃λ ∈]0, 1[, My

(
Bar

(1−λ,λ)
W2

(S, T )
)
= Bar

(1−λ,λ)
W2

(Sy, Ty);

9



(iv) ∀λ ∈ [0, 1], My

(
Bar

(1−λ,λ)
W2

(S, T )
)
= Bar

(1−λ,λ)
W2

(Sy, Ty);
(v) S ▷◁ T .

Proof. Proof of (i) ⇔ (ii): First there holds
(4.1)

Bar
(1−λ,λ)
W2

(S, T ) =
(
(1− λ)Inx+ny

+ λ(S−1#T )
)
S
(
(1− λ)Inx+ny

+ (S−1#T )
)
.

Denoting S−1#T =

(
Ax Axy

A⊺
xy Ay

)
, the marginal in x of the barycenter is

Mx

(
Bar

(1−λ,λ)
W2

(S, T )
)
=(1− λ)2Sx + λ(1− λ)(SxAx +AxSx + SxyA

⊺
xy +AxyS

⊺
xy)

+ λ2(AxSxAx +AxSxyA
⊺
xy +AxyS

⊺
xyAx +AxySyA

⊺
xy).

Now, the barycenter of the marginals in x is

Bar
(1−λ,λ)
W2

(Sx, Tx) =
(
(1− λ)Inx

+ λ(Sx
−1#Tx)

)
Sx

(
(1− λ)Inx

+ (Sx
−1#Tx)

)
.

Both functions [0, 1] ∋ λ 7→ Mx

(
Bar

(1−λ,λ)
W2

(S, T )
)

and [0, 1] ∋ λ 7→ Bar
(1−λ,λ)
W2

(Sx, Tx)

are second order polynomials. They coincide at λ = 0 and λ = 1, thus proving the
equivalence between the first and second statements.

Proof of (ii) ⇒ (v): Assuming both polynomials [0, 1]∋λ 7→Mx

(
Bar

(1−λ,λ)
W2

(S, T )
)

and [0, 1] ∋ λ 7→ Bar
(1−λ,λ)
W2

(Sx, Tx) are equal, then each coefficient of these functions
in the basis {(1− λ)2, λ(1− λ), λ2} are also equal, hence in particular{

SxAx +AxSx + SxyA
⊺
xy +AxyS

⊺
xy = Sx(Sx

−1#Tx) + (Sx
−1#Tx)Sx,

AxSxAx +AxSxyA
⊺
xy +AxyS

⊺
xyAx +AxySyA

⊺
xy = Tx.

Denoting by B =
√
Sx

(
Ax − (Sx

−1#Tx)
)
+
√
Sx

−1
SxyA

⊺
xy, we rewrite the system as{√

SxB +B⊺
√
Sx = 0,

B⊺B+(Sx
−1#Tx)

√
SxB+B⊺

√
Sx(Sx

−1#Tx)+Axy

(
Sy − S⊺

xySx
−1Sxy

)
A⊺

xy = 0.

Since (Sx
−1#Tx) is a symmetric matrix, there exists an orthogonal matrix P such that

P (Sx
−1#Tx)P

⊺ is a diagonal matrix. Therefore noting B̃ = PBP ⊺, S̃x = PSxP
⊺, so

that
√
S̃x = P

√
SxP

⊺, we obtain
√
S̃xB̃ + B̃⊺

√
S̃x = 0,

B̃⊺B̃ + P (Sx
−1#Tx)P

⊺
√
S̃xB̃ + B̃⊺

√
S̃xP (Sx

−1#Tx)P
⊺

+(PAxy)
(
Sy − S⊺

xySx
−1Sxy

)
(PAxy)

⊺ = 0.

From the first equation, we deduce that the matrix
√
S̃xB̃ is antisymmetric. In par-

ticular, as P (Sx
−1#Tx)P

⊺ is diagonal, we have that the diagonals of the two matrices

P (Sx
−1#Tx)P

⊺
√
S̃xB̃ and B̃⊺

√
S̃xP (Sx

−1#Tx)P
⊺ are filled with zeros. As both

remaining matrices B⊺B and (PAxy)
(
Sy − S⊺

xySx
−1Sxy

)
(PAxy)

⊺ are positive semi-
definite matrices, we deduce they are both equal to 0nx

. Hence, as Sy − S⊺
xySx

−1Sxy
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is a positive definite matrix as a Schur complement of S ∈ Snx+ny

+,∗ , we deduce that
PAxy, and thus Axy are equal to zero as well.

This finally shows that the matrix S−1#T is block diagonal, hence, by Lemma 3.5,
that S ▷◁ T .

Proof of (v) ⇒ (ii): Using Lemma 3.5, there holds

S−1#T =

(
Sx

−1#Tx 0
0 Sy

−1#τy

)
.

Computing the marginals from (4.1), we easily obtain that for any λ ∈ [0, 1],

Mx

(
Bar

(1−λ,λ)
W2

(S, T )
)
= Bar

(1−λ,λ)
W2

(Sx, Tx).

The proofs can be extended similarly to the marginals with respect to the y
variable. This concludes the proof.

The extension of this result to a family of Gaussians with given covariance ma-
trices seems more involved and so far, we have only managed to prove a partial
result. First we present a necessary condition for the marginals to be preserved by
the Wasserstein barycenter.

Theorem 4.2. Let M ∈ N∗ and let S1, . . . , SM ∈ Snx+ny

+,∗ so that for all 1 ≤ m ≤
M , the matrix Sm admits the block decomposition

(4.2) Sm =

(
Sm
x Sm

xy

Sm
xy

⊺ Sm
y

)
.

If for all λ ∈ ΛM , Mx

(
BarλW2

(S1, . . . , SM )
)
= BarλW2

(S1
x, . . . , S

M
x ) or for all λ ∈

ΛM , My

(
BarλW2

((S1, . . . , SM ))
)
= BarλW2

((S1
y , . . . , S

M
y )), then

∀i, j ∈ {1, . . . ,M}, Si ▷◁ Sj .

Proof. Let assume that for all λ ∈ ΛM ,

Mx

(
BarλW2

(S1, . . . , SM )
)
= BarλW2

(S1
x, . . . , S

M
x ).

Let i, j ∈ {1, . . . ,M}, taking weights λ with zeros except for the ith and jth vari-
able, we apply Theorem 4.1 which implies that Si ▷◁ Sj . The proof is similar if the
assumption is satisfied for the y marginals instead of the x marginals.

We now turn to the inverse statement. For this, we need to make an additional
assumption.

Theorem 4.3. Let M ∈ N∗ and let S1, . . . , SM ∈ Snx+ny

+,∗ so that for all 1 ≤ m ≤
M , Sm admits the block decomposition (4.2). Assume that

(4.3) ∀i, j ∈ {1, . . . ,M}, Si ▷◁ Sj ,

and that one of the following two assumptions below is satisfied
(i) The matrices (Si)

−1
#Sj for all i, j = 1, . . . ,M commute.

(ii) The off-diagonal blocks satisfy for all m = 1, . . . ,M , Sm
xy = 0.
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Then, for all λ ∈ ΛM ,

Mx

(
BarλW2

(S1, . . . , SM )
)
= BarλW2

(S1
x, . . . , S

M
x ),

and
My

(
BarλW2

(S1, . . . , SM )
)
= BarλW2

(S1
y , . . . , S

M
y ).

Remark 4.4. Assumption (i) is always satisfied if nx = ny = 1, meaning that the
condition (4.3) is in this case a sufficient and necessary condition for the marginals
to be preserved by the Wasserstein barycenter.

Proof. First, we assume that (i) holds. From [3, Theorem 4.2], the following
sequence converges to the Wasserstein barycenter with weights λ ∈ ΛM : B0 ∈ Snx+ny

+,∗ ,
and for k ≥ 1,

Bk+1 = B
−1/2
k

(
M∑

m=1

λm

(
B

1/2
k SmB

1/2
k

)1/2)2

B
−1/2
k ,

which can be rewritten as

Bk
−1#Bk+1 =

M∑
m=1

λm

(
Bk

−1#Sm
)
.

Choosing B0 = S1, there holds for all m = 1, . . . ,M, B0 ▷◁ Sm. Then B1 is the only
matrix satisfying

(S1)
−1

#B1 =

M∑
m=1

λm

(
(S1)

−1
#Sm

)
.

Using (i), the matrix (S1)
−1

#B1 commutes with (S1)
−1

#Sm for m = 1, . . . ,M

hence with ((S1)
−1

#Sm)−1. Therefore for m = 1, . . . ,M the matrices B1
−1#Sm are

respectively equal to

B1
−1#Sm =

(
(S1)

−1
#B1

)−1 (
(S1)

−1
#Sm

)
,

and block diagonal since each term on the righthandside is a block diagonal matrix.
Moreover, combining the two previous equations leads to

M∑
m=1

λm

(
B1

−1#Sm
)
= Inx+ny

,

so that B1 is the Wasserstein barycenter BarλW2
(S1, . . . , SM ). As each of the matrices

B1
−1#Sm is block diagonal, and denoting by B1x and B1y the diagonal blocks of B1

we can now write the two equations{∑M
m=1 λm

(
B1x

−1#Sm
x

)
= Inx ,∑M

m=1 λm

(
B1y

−1#Sm
y

)
= Iny

,

which show that B1x = BarλW2
(S1

x, . . . , S
M
x ) (resp. B1y = BarλW2

(S1
y , . . . , S

M
y )). Not-

ing that Mx(B1) = B1x and My(B1) = B1y concludes the proof.
12



Second we assume that (ii) holds. If the matrices Sm for m = 1, . . . ,M are block
diagonal, noting that B0 = S1 is also block diagonal, are chosen to be block diagonal,
then so are all iterates (Bk)k of the iterative algorithm. Therefore at the limit, the
property is kept and the barycenter BarλW2

(S1, . . . , SM ) is also block diagonal. We
easily deduce that the marginals match.

5. Marginal-preserving modified Wasserstein barycenters between sev-
eral Gaussian distributions. The aim of this section is to propose, based on
the theoretical results presented in Section 3 the definition of modified Wasserstein
barycenters between Gaussian distributions that are marginal-preserving. We propose
here two different ways to define such modified barycenters, which yield to two differ-
ent objects. The first approach consists in finding the marginal-preserving Gaussian
distribution which is the closest in the Wassersein sense to the exact Wasserstein
barycenter (which is not marginal-preserving in general) and is presented in Sec-
tion 5.1. The second one consists in solving a barycentric optimization problem and
is presented in Section 5.2.

In all this section, we denote by M ∈ N∗ a positive integer, by λ := (λ1, . . . , λM ) ∈
ΛM and by S := (S1, . . . , SM ) ∈ (Sn

+,∗)
M . We also assume that for all m = 1, . . . ,M ,

the matrix Sm admits the block-decomposition (4.2), with Sm
x ∈ Snx

+,∗, Sm
y ∈ Sny

+,∗ and
Sm
xy ∈ Rnx×ny . We also denote by Sx := (S1

x, . . . , S
M
x ) and by Sy := (S1

y , . . . , S
M
y ).

Let us also denote by bλx := BarλW2
(Sx) and by bλy := BarλW2

(Sy).

5.1. Modified barycenter based on minimal distance between Bures–
Wasserstein barycenter and marginal-preserving barycenter. Our first defini-
tion of modified marginal-preserving Wasserstein barycenter is based on the following
theorem.

Theorem 5.1. There exists a unique solution Z∗ to the minimization problem

(5.1) Z∗ = argmin
Z∈C

bλ
x ,bλ

y

W2
2

(
BarλW2

(S),Bλ(Z)
)
,

where

Cbλ
x ,bλ

y
:=

{
Z ∈ Rnx×ny ,

∥∥∥∥√bλx

−1

Z
√
bλy

−1
∥∥∥∥
2

< 1

}
,

and for all Z ∈ Cbλ
x ,bλ

y
,

Bλ(Z) :=

(
bλx Z
Z⊺ bλy

)
.

Assuming that BarλW2
(S) admits the following block-decomposition

BarλW2
(S) =

(
bλx bλxy
bλxy

⊺
bλy

)
,

with bλx ∈ Snx
+,∗, bλy ∈ Sny

+,∗ and bλxy ∈ Rnx×ny , it holds that

Z∗ =
(
bλx

−1
#bλx

)
bλxy

(
bλy

−1
#bλy

)
.

Proof. It is a direct consequence of Lemma 3.3 applied with S = BarλW2
(S),

Tx = bλx and Ty = bλy .
13



In the following, we will denote this modified marginal-preserving barycenter by
Bλ(S) := Bλ(Z∗) where Z∗ is the unique solution of the minimization problem (5.1).
The main advantage of this first definition is that the solution of the problem is
explicit, provided one has computed the exact Wasserstein barycenter BarλW2

(S).

5.2. Modified barycenter based on Bures–Wasserstein barycenter opti-
mization problem with marginal constraints. We now present another natural
definition of modified marginal-preserving Wasserstein barycenter, considering the
following optimization problem, which is an alternative to (5.1): we know that there
exists a unique solution Z∗ ∈ Cbλ

x ,bλ
y

to

(5.2) Z∗ = argmin
Z∈C

bλ
x ,bλ

y

M∑
m=1

λmW2
2

(
Sm,Bλ(Z)

)
,

where

Cbλ
x ,bλ

y
=

{
Z ∈ Rnx×ny ,

∥∥∥∥√bλx

−1

Z
√
bλy

−1
∥∥∥∥
2

≤ 1

}
,

and for all Z ∈ Cbλ
x ,bλ

y
,

Bλ(Z) =

(
bλx Z
Z⊺ bλy

)
.

Indeed, (5.2) reads as a minimization problem of a strictly convex function over a
convex compact domain. If such a minimizer Z∗ is an element of Cbλ

x ,bλ
y
, which we

conjecture to be true, but were unable to prove, then it is necessarily solution to the
equation [

M∑
m=1

λmBλ(Z∗)−1#Sm

]
xy

= 0.

In the following, we will denote by Bλ(S) := Bλ(Z∗) where Z∗ is the unique solution
of the convex minimization problem (5.2), that is found using standard optimization
packages.

Let us emphasize here that, in general, Bλ(S) and Bλ(S) are different as will be
shown in the numerical tests presented in Section 7.

5.3. Extension to Gaussian distributions. In the previous sections, we pre-
sented two ways of defining modified marginal-preserving Bures–Wasserstein barycen-
ters associated to a family of covariance matrices. These two definitions can be eas-
ily and naturally extended to define marginal-preserving Wasserstein barycenters of
a family of Gaussian probability distributions as follows. Let M ∈ N∗, let λ :=
(λ1, . . . , λM ) ∈ ΛM , S := (S1, . . . , SM ) ∈ (Sn

+,∗)
M and µ := (µ1, . . . , µM ) ∈ (Rn)M .

For all 1 ≤ m ≤ M , we denote by ρm = N (µm, Sm) and by ρ := (ρ1, . . . , ρM ).

Then, using a slight abuse of notation, we define two marginal-preserving barycen-
ters of the family ρ with weights λ as follows:

Bλ(ρ) := N
(
µ,Bλ(S)

)
and Bλ(ρ) := N

(
µ,Bλ(S)

)
,

where

µ :=

M∑
m=1

λmµm.
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This amounts to remark that the centers of the Gaussian distributions do not play a
role in the marginal-preservation of the barycenters.

6. Modified marginal-preserving barycenters for Gaussian mixtures.
The aim of this section is to propose a method to define a marginal-preserving
Wasserstein-like barycenter for a family of mixtures of Gaussian distributions. In
Section 6.1, we recall the definition and main properties of the Gaussian mixture
Wasserstein metric proposed in [11, 8]. In Section 6.2, we introduce the proposed
marginal-preserving mixture barycenter based on a marginal-constrained barycenter
formulation for Gaussian mixtures.

6.1. Some fundamental results on Gaussian mixtures. In this section, we
recall some classical results from [11] on mixture Wasserstein distance and barycenters
for Gaussian mixtures. We say that a probability measure ρ ∈ P2(Rn) is a finite
Gaussian mixture if and only if there exists K ∈ N∗, π = (π1, . . . , πK) ∈ ΛK , µ =
(µ1, . . . , µK) ∈ (Rn)K and S = (S1, . . . , SK) ∈ (Sn

+,∗)
K such that

ρ =

K∑
k=1

πkN (µk, Sk).

In [11, 8], the authors introduced a notion of Wasserstein-like barycenter, called mix-
ture Wasserstein barycenter, of a family of Gaussian mixtures which is defined as
follows. Let M ≥ 2 and for all 1 ≤ m ≤ M , let ρm be some finite Gaussian mixture
such that

ρm =

Km∑
km=1

πm
kmN (µm

km , Sm
km),

with Km ∈ N∗, πm = (πm
1 , . . . , πm

Km) ∈ ΛKm , µm = (µm
1 , . . . , µm

Km) ∈ (Rn)K
m

and
Sm = (Sm

1 , . . . , Sm
Km) ∈ (Sn

+,∗)
Km

. For all 1 ≤ m ≤ M , we make the assumption that
all pairs (µm

km , Sm
km) are distinct from one another and denote by gmkm := N (µm

km , Sm
km)

for all 1 ≤ km ≤ Km.
We first recall the definition of the mixture Wassertein distance between two

Gaussian mixtures ρ1 and ρ2. The latter is denoted by MW2(ρ
1, ρ2) and is computed

as follows:

(6.1) MW 2
2 (ρ

1, ρ2) := min
v∈Γ(π1,π2)

K1∑
k1=1

K2∑
k2=1

vk1k2W 2
2 (g

1
k1 , g2k2),

where

Γ(π1,π2) :=


v := (vk1k2)1≤k1≤K1,1≤k2≤K2 ∈ RK1×K2

+ :

∀1 ≤ k1 ≤ K1,
∑K2

k2=1 vk1k2 = π1
k1 ,

∀1 ≤ k2 ≤ K2,
∑K1

k1=1 vk1k2 = π2
k2

 .

Now, the mixture Wasserstein barycenter of the family ρ = (ρ1, . . . , ρM ) with weights
λ = (λ1, . . . , λM ) ∈ ΛM is given as follows. Let

K :=
{
k :=

(
k1, . . . , kM

)
∈ {1, . . . ,K1} × . . .× {1, . . . ,KM}

}
.

Consider the discrete optimization problem: find w∗(λ) := (w∗
k(λ))k∈K ∈ RK

+ solu-
tion to
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(6.2) min
w:=(wk)k∈K∈Γ(π1,...,πM )

∑
k:=(k1,...,kM )∈K

wk mmW 2
2 (g

1
k1 , . . . , gMkM ;λ),

where mmW2 is defined in (2.2), and

Γ(π1, . . . ,πM ) :={
w = (wk)k∈K ∈ (R+)

K : ∀1 ≤ m ≤ M, ∀1 ≤ ℓm ≤ Km,
∑

k∈K:km=ℓm

wk = πm
ℓm

}
.

The mixture Wasserstein barycenter of the family ρ with weights λ is then defined
as

(6.3) BarλMW2
(ρ) :=

∑
k∈K

w∗
k(λ) Bar

λ
W2

(g1k1 , . . . , gMkM ).

It is then proved in [11] that BarλMW2
(ρ) is indeed the barycenter of the family

of finite Gaussian mixtures ρ with weights λ with respect to the mixture Wasserstein
distance. In particular, BarλMW2

(ρ) is itself a Gaussian mixture.

6.2. Modified marginal-preserving Wasserstein barycenters for Gauss-
ian mixtures. The aim of this section is to detail the proposed definition of modified
marginal-preserving Gaussian mixture Wasserstein barycenters, using the notation in-
troduced in the previous section. First, since the exact mixture Wasserstein barycenter
BarλMW2

(ρ) is a Gaussian mixture, it can be written as follows

(6.4) BarλMW2
(ρ) =

I∑
i=1

πiN
(
νi, T i

)
,

for some I ∈ N∗, π = (πi)1≤i≤I ∈ ΛI , and for all 1 ≤ i ≤ I, νi ∈ Rnx+ny and

T i :=

(
T i
x T i

xy

(T i
xy)

⊺ T i
y

)
∈ S

nx+ny

+,∗ ,

with T i
x ∈ Snx

+,∗, T i
y ∈ Sny

+,∗ and T i
xy ∈ Rnx×ny . For z = x, y, we denote by ρz :=

(ρ1z, . . . , ρ
M
z ) where for all 1 ≤ m ≤ M , ρmz = margz(ρ

m). Similarly, we can write
BarλMW2

(ρx) and BarλMW2
(ρy) under the form

BarλMW2
(ρx) =

K∑
k=1

αk
xN (µk

x, S
k
x), BarλMW2

(ρy) =

L∑
ℓ=1

βℓ
yN (µℓ

y, S
ℓ
y),

for some K,L ∈ N∗, αx := (αk
x)1≤k≤K ∈ ΛK , βy := (βℓ

y)1≤ℓ≤L ∈ ΛL. In addition,
for all 1 ≤ k ≤ K, µk

x ∈ Rnx and Sk
x ∈ Snx

+,∗, and for all 1 ≤ ℓ ≤ L, µℓ
y ∈ Rny and

Sℓ
y ∈ Sny

+,∗.
Further it is easy to see that the set of Gaussian mixtures ρ satisfying the following

marginal constraints

margx(ρ) = BarλMW2
(ρx), margy(ρ) = BarλMW2

(ρy),
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is equal to the set B defined as

B :=

{
ρ :=

K∑
k=1

L∑
ℓ=1

J(k,ℓ)∑
j=1

γkℓjN
((

µk
x

µℓ
y

)
,

(
Sk
x Zkℓj

(Zkℓj)
⊺ Sℓ

y

))
:

∀k = 1, . . . ,K, ∀ℓ = 1, . . . , L, J(k, ℓ) ∈ N∗,

∀j = 1, . . . , J(k, ℓ), Zkℓj ∈ CSk
x ,S

ℓ
y
, γkℓj ≥ 0,

L∑
ℓ=1

J(k,ℓ)∑
j=1

γkℓj = αk
x,

K∑
k=1

J(k,ℓ)∑
j=1

γkℓj = βℓ
y

}
.

where for any Tx ∈ Snx
+,∗ and Ty ∈ Sny

+,∗, the set CTx,Ty
is defined in (3.3). Now, for all

J ∈ N∗, we introduce the set BJ ⊂ B as

BJ :=

{
ρ :=

K∑
k=1

L∑
ℓ=1

J∑
j=1

γkℓjN
((

µk
x

µℓ
y

)
,

(
Sk
x Zkℓj

(Zkℓj)
⊺ Sℓ

y

))
:

∀k = 1, . . . ,K, ∀ℓ = 1, . . . , L, ∀j = 1, . . . , J,

Zkℓj ∈ CSk
x ,S

ℓ
y
, γkℓj ≥ 0,

L∑
ℓ=1

J∑
j=1

γkℓj = αk
x,

K∑
k=1

J∑
j=1

γkℓj = βℓ
y

}
.

Our approach is motivated as follows: it would be natural to look for a modified
marginal-preserving Wasserstein barycenter by considering the following constrained
optimization problem, which amounts to minimizing the mixture Wasserstein distance
between the exact barycenter and the marginal-preserving barycenter

inf
ρ∈B

MW 2
2 (Bar

λ
MW2

(ρ), ρ).

Unfortunately this yields to a very complex optimization problem, even restricting it
to the smaller set BJ for some J ∈ N∗. Indeed, in both cases, solving this problem
requires to optimize upon matrices Zkℓj ∈ CSk

x ,S
ℓ
y

and weights γkℓj ≥ 0 for 1 ≤ k ≤ K,
1 ≤ ℓ ≤ L and 1 ≤ j ≤ J , which is a very costly and high-dimensional nonlinear
optimization problem.

We therefore simplify the optimization problem one step further, building on the
results obtained in the previous section. We choose J = I and, for all 1 ≤ k ≤ K,
1 ≤ ℓ ≤ L and 1 ≤ j ≤ I, inspired by the result of Lemma 3.3, we fix the values of
the matrices Zkℓj to be equal to

Zkℓj := ((T j
x)

−1
#Sk

x)T
j
xy((T

j
y )

−1
#Sℓ

y).

This amounts to choosing the modified optimization set

B̃I :=

{
ρ :=

K∑
k=1

L∑
ℓ=1

I∑
j=1

γkℓjN
((

µk
x

µℓ
y

)
,

(
Sk
x Zkℓj

(Zkℓj)
⊺ Sℓ

y

))
,(6.5)

∀k = 1, . . . ,K, ∀ℓ = 1, . . . , L, ∀j = 1, . . . , I,

Zkℓj = ((T j
x)

−1
#Sk

x)T
j
xy((T

j
y )

−1
#Sℓ

y), γkℓj ≥ 0,

L∑
ℓ=1

J∑
j=1

γkℓj = αk
x,

K∑
k=1

J∑
j=1

γkℓj = βℓ
y

}
.
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We thus consider the following now linear optimization problem

min
ρ∈B̃I

MW 2
2 (Bar

λ
MW2

(ρ), ρ).

Using (6.4) and the definition of the mixture distance (6.1), this problem can be
written as

min
γ∈RK×L×I

+∑L
ℓ=1

∑J
j=1 γkℓj=αk

x,∑K
k=1

∑J
j=1 γkℓj=βℓ

y

min
w∈RK×L×I×I

+∑
kℓj wkℓji=πi∑
i wkℓji=γkℓj

∑
kℓji

wkℓjiW
2
2

(
N
((

µk
x

µℓ
y

)
,

(
Sk
x Zkℓj

Z⊺
kℓj Sℓ

y

))
,N
(
νi, T i

))
,

that we recast as

(6.6) min
w∈RK×L×I×I

+∑
kℓj wkℓji=πi∑
iℓj wkℓji=αk

x∑
ikj wkℓji=βℓ

y

∑
kℓij

wkℓjiW
2
2

(
N
((

µk
x

µℓ
y

)
,

(
Sk
x Zkℓj

(Zkℓj)
⊺ Sℓ

y

))
,N
(
νi, T i

))
,

and set

γkℓj :=

I∑
i=1

wkℓji.

The proposed marginal-preserving modified Wasserstein barycenter Bλ(ρ) is finally
defined for Gaussian mixtures as

(6.7) Bλ(ρ) :=

K∑
k=1

L∑
ℓ=1

I∑
j=1

γkℓjN
((

µk
x

µℓ
y

)
,

(
Sk
x Zkℓj

(Zkℓj)
⊺ Sℓ

y

))
.

This barycenter is therefore computed as a post-processing of the true mixture Wasser-
stein barycenter of a family of Gaussian mixtures. It requires the resolution of an
additional linear programming problem of size KLI2. This procedure gives satisfying
numerical results, as we will present in Section 7.

7. Numerical results. In this section, we provide a few numerical results il-
lustrating the findings of the previous sections. The code generating the figures of
this articles can be found on the Github repository https://github.com/mdalery/
PreservingMarginals.

7.1. Marginals of Wasserstein barycenters. We start by providing in Fig-
ure 1 an example of discrepancy between the marginals of the Wasserstein barycenters
and the Wasserstein barycenters of the marginals. More precisely, we plot on the top
line the Wasserstein barycenters between two two-dimensional Gaussian distributions
g ∼ N (0, S) and h ∼ N (0, T ) with

S =

(
0.3 0.15
0.15 0.15

)
, T =

(
0.1 −0.1
−0.1 0.2

)
.

On the second line (respectively on the bottom line), we plot the marginals with
respect to the x variable (resp. y) of the barycenter together with the barycenters of
the marginals which correspond to gx ∼ N (0, Sx) with Sx = (0.3) and hx ∼ N (0, Tx)
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Fig. 1. Up: contour plot of the Wasserstein barycenter Bar
(1−λ,λ)
W2

(g, h) for λ ∈
{0.1, 0.3, 0.5, 0.7, 0.9} from left to right. Middle: plot of marginals with respect to x variable,
margx

(
Bar

(1−λ,λ)
W2

(g, h)
)

in solid blue and Bar
(1−λ,λ)
W2

(gx, hx) in dash orange. Bottom: plot of

marginals with respect to y variable, margy

(
Bar

(1−λ,λ)
W2

(g, h)
)

in solid blue and Bar
(1−λ,λ)
W2

(gy , hy)

in dash orange.

with Tx = (0.1) (resp. gy ∼ N (0, Sy) with Sy = (0.15) and hy ∼ N (0, Ty) with
Ty = (0.2)). We indeed observe that the marginals do not match in general.

We emphasize the difference by plotting in Figure 2 the values of the covariance
matrices corresponding to the marginals of the Wasserstein barycenter between S and
T together with the Wasserstein between the marginals of S and T .

Fig. 2. Left: plot of λ 7→ Mx

(
Bar

(1−λ,λ)
W2

(S, T )
)

in solid blue and λ 7→

Bar
(1−λ,λ)
W2

(Sx, Tx) in dash orange. Right: plot of λ 7→ My

(
Bar

(1−λ,λ)
W2

(S, T )
)

in solid blue

and λ 7→ Bar
(1−λ,λ)
W2

(Sy, Ty) in dash orange.

7.2. Comparison of modified Wasserstein barycenters. We now compare
the true Wasserstein barycenter with the two different modified Wasserstein barycen-
ters introduced respectively in Sections 5.1 and 5.2. More precisely, we compare these
three barycenters in two examples, first in Figure 3 between two Gaussian distribu-
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tions g1 ∼ N (0, S1) and g2 ∼ N (0, S2) with

S1 =

(
1 0.999

0.999 1

)
, S2 =

(
1 −0.999

√
2

−0.999
√
2 2

)
,

and second on Figure 4 between g3 ∼ N (0, S3) and g4 ∼ N (0, S4) with

S3 =

(
1 0
0 1

)
, S4 =

(
2 1
1 1

)
.

On Figure 3 (resp. Figure 4) , we present a contour plot of the true Wasserstein
barycenter BarλW2

(g1, g2) (resp. BarλW2
(g3, g4)) on the top line, a contour plot of the

modified Wasserstein barycenter Bλ(g1, g2) (resp. Bλ(g3, g4)) defined in Section 5.1
in the middle line, a contour plot of the modified Wasserstein barycenter Bλ(g1, g2)
(resp. Bλ(g3, g4)) defined in Section 5.2 on the bottom line.

We observe on Figure 3 that for g1 and g2, the modified marginal-preserving
barycenters are very different from the true Wasserstein barycenters Moreover, we
also observe a clear difference between the two modified Wasserstein barycenters, il-
lustrating that the two alternative definitions in Sections 5.1 and 5.2 lead to different
results. We emphasize this difference on Figure 5, where we plot the off-diagonal
coefficient of the covariance matrices for the two marginal-preserving barycenters be-
tween the two Gaussians of Figure 3. We also observe on Figure 4 that for some
Gaussian distributions, the modified Wasserstein barycenters are very close to the
true Wasserstein barycenters.

Numerically speaking, computing the solution to problem (5.1) is easy as the
solution to this problem is explicit and given in Theorem 5.1 while the solution to
problem (5.2) is not explicit and requires in practice to solve an optimization problem.
In our numerical simulations, we computed the solution to (5.2) using nonlinear convex
optimization algorithms from the Julia packages JuMP and Ipopt.

Fig. 3. Top: contour plots of true Wasserstein barycenters BarλW2
(g1, g2), middle: contour

plots of modified Wasserstein barycenters Bλ(g1, g2), bottom: contour plots of modified Wasserstein
barycenters Bλ(g1, g2). Left to right: weights (1− λ, λ) for λ = 0, 0.25, 0.5, 0.75, 1.

7.3. Modified mixture barycenters. We finally provide an example of a
marginal-preserving barycenter between four shapes fitted as mixtures of Gaussian
distributions. The fit with respect to the shapes is performed using Python module

20



Fig. 4. Top: contour plots of true Wasserstein barycenters BarλW2
(g3, g4), middle: contour

plots of modified Wasserstein barycenters Bλ(g3, g4), bottom: contour plots of modified Wasserstein
barycenters Bλ(g3, g4). Left to right: weights (1− λ, λ) for λ = 0, 0.25, 0.5, 0.75, 1.

Fig. 5. Comparison of the off-diagonal terms of the two marginal-preserving barycenters in an
extreme case. Plot of λ 7→ (Bλ(S1, S2))xy in solid blue and λ 7→ (Bλ(S1, S2))xy in dash orange.

scikit-learn. Twenty Gaussians are used for fitting each image. We use bilinear
weights with respect to the four corners of the square to compute the barycenters. We
plot on Figure 6 the modified marginal-preserving barycenters defined in (6.7) while
we plot on Figure 7 the mixture Wasserstein barycenters defined in (6.3). We observe
a visible difference between the two barycenters but which does not seem to affect the
quality of the barycentric images. Therefore, the definition of the marginal-preserving
barycenters for Gaussian mixtures seems very satisfying.

8. Conclusion. The aim of this paper is to propose marginal-preserving Wasser-
stein-like barycenters. After presenting some theoretical results on the necessary
conditions to preserve marginal consistency in Wasserstein barycenters for Gaussian
distributions, we introduce modified Wasserstein barycenter that indeed preserve the
marginals for Gaussian distributions as well as for mixture of Gaussian distributions.
This opens the way to very interesting applications, e.g. in quantum chemistry for
the fitting of pair densities preserving the electronic density, which is the marginal of
the pair density. Other applications include population dynamics, crowd modeling,
as well as fitting of distributions arising from kinetic partial differential equations. A
natural follow-up question is whether these modified barycenters arise from a modified
Wasserstein distance, which would lead to a natural extension of this work to generic
probability measures. This is subject to future work.
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Fig. 6. Marginal-preserving modified Wasserstein barycenters between 4 mixtures of 20 Gauss-
ian components.
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