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Abstract

Instabilities and failure in ductile non associated materials have been widely investigated
during last decades especially in the case of geomaterials. It has been experimentally proved
that collapse of some sample can occur strictly within the ultimate plasticity limit as char-
acterized experimentally. From a theoretical point of view such instability problems are well
described using the so called second order work criterion derived from the Hill’s stability
analysis Hill (1958). Hence a question arises as to the experimental characterisation of the
ultimate plasticity limit and its uniqueness with respect to the choice of stress paths. After
a few reminders on Hill’s theory, we prove in a general framework that the drained triaxial
paths allow to determine with certainty this ultimate plasticity limit without any risk of pre-
liminary bifurcation whatever the elasto-plastic material considered. We also conclude that
this plasticity limit can be considered as unique because it depends mainly on the initial ref-
erence configuration of the material and not so much on the texture anisotropy that develops
during the loading path. Furthermore, we define the limit of the bifurcation domain as the
surface drawn in the 6-dimensional stress space that delimits the unconditionally stable space
from the one where instabilities and failures can occur within the plasticity limit. We show,
however, that this last limit is itself very sensitive to the evolution of this texture anisotropy
and evolves continuously with the loading path. Thus it can be not considered as unique.

Keywords: geomaterials, stability, plasticity limit characterization, bifurcation

1 Introduction

The behavior of geomaterials is complex, and it is now well known that loss of stability and failures
can arise strictly within their plasticity limit Nova (1991); Lade (1992); Darve and Vardoulakis
(2004). From a theoretical point of view, the plasticity limit is the surface plotted in the 6D stress
space which bounds the admissible stress states of the material. For geomaterials, this limit is
generally characterized with triaxial tests or direct shear tests. For soils with a low permeability,
undrained triaxial tests are likely to be performed. On this particular stress path, normally consol-
idated materials exhibit a peak in the (q − p′) plane before reaching the plasticity limit obtained
in drained conditions. In the rest of the paper we consider the axis 1 to be the major principal
stress and the axis 3 to be the minor principal stress. We denote in a standard way q = σ1 − σ3
and p = tr (σ) /3. It has been shown that from this peak the material is in an unstable state Darve
and Chau (1987); Nova (1991); Lade (1992); Nova (1994, 2004); Darve and Vardoulakis (2004).
Indeed, we will see in section 3 that a collapse can be triggered if the test is stress driven. The
Figure 1 shows a sketch of the responses of a soil sample according to an undrained triaxial test
in an over consolidated state and in a normally consolidated state. Based on this simple fact the
following question arise:

Q1 How to characterize properly the ultimate plasticity limit from an experimental point of
view? In other words, how to define a proper loading path where the failure is reached on
the plasticity limit without a previous loss of stability?

To answer these questions, we first recall some general properties of rate independent materials and
qualitatively describe the Octolinear model of Darve Darve et al. (1995) which is used in this work
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Figure 1: Sketch of the responses of a normally consolidated and an over consolidated soils samples
according to an undrained triaxial compression.

for illustrative purposes in section 2. Next, we recall the current knowledge on stability analysis of
geomaterials using the second order work criterion in section 3. In section 4 we provide an answer
to the question listed above. Before closing the discussion of this paper, we provide in section
5 a description of the shape of the instability cones lying on the plasticity limit. As recalled in
the section 3, an instability cone is the set of loading directions that leads the material into an
unstable state even inside the plasticity limit. Finally, we propose a discussion about the (non)
uniqueness of what we called the limit of the bifurcation domain (see section 3) in section 6. It is
the surface drawn in the 6D loading space that delimits the space where instability cones exist. It
is shown that this limit is very sensitive to any evolution of the internal variables of the model and
consequently to any evolution of the micro structure of the granular sample. This limit is then
considered as ”non unique”, whereas the plasticity limit is much less sensitive to these evolutions
and can be considered as unique starting from a initial reference configuration.

2 Short description of the elasto-plastic model used for the
illustrations of the paper

This model is not based on the classical assumption of decomposition of the strain in an elastic
plus a plastic part. It is instead, built from the general expression of rate independent models:

dεα = Nαβ (dσγ) dσβ (1)

α, β, γ are indices ∈ [1...6] when writing second order tensors σ and ε under a six columns vec-
tor form. The Einstein convention is used for repeated indices like β. From a general point of
view, the 6 functions Nαβdσβ respect the three mathematical properties to properly describe rate
independent behaviors Darve and Labanieh (1982), Darve et al. (1995):

1. they are homogeneous function of first order:

∀λ ∈ R+ Nαβ (λdσβ) = λNαβdσβ (2)

This ensure that the response of the material is independent of the rate of the solicitation.

2. they are non linear since Nαβ depend on uγ = dσγ/∥dσ∥. This ensures the non reversibility
of the response of the material
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3. they are anisotropic

Furthermore, the operator N depends on the previous loading history through memory parameters
h. A development in series limited to the second order of N gives the general expression of
incrementally non linear models of second order:

dεα = N1
αβdσβ +

1

∥dσ∥
N2
αβγdσβdσγ with (α, β, γ = 1, ..., 6) (3)

Darve’s constitutive model is obtained with three more assumptions :

• N is orhtotropic

• dσβdσγ = 0 for β ̸= γ

• Shear moduli are incrementally linear (their expression not used in the present paper is
described in Darve et al. (1995))

This leads to the incrementally non linear model of Darve expressed in identical principal axes:dε1dε2
dε3

 =
1

2

[
N+ +N−] dσ1dσ2

dσ3

+
1

2∥dσ∥
[
N+ −N−] dσ

2
1

dσ2
2

dσ2
3

 (4)

with

N± =


1
E±

1

−ν1±
2

E±
2

−ν1±
3

E±
3

−ν2±
1

E±
1

1
E±

2

−ν2±
3

E±
3

−ν3±
1

E±
1

−ν3±
2

E±
2

1
E±

3

 (5)

Fonctions E+
i and νj+i are defined on generalized triaxial loading paths when dσi > 0 and dσj =

dσk = 0. Respectively E−
i and νj−i are defined on generalized triaxial loading paths when dσi < 0

and dσj = dσk = 0. For dσi = 0, it can be verified that the relation is continuous Gudehus (1979).
This latest model is not used in this document in order to keep analytical developments in relation
with the illustrations. We can then remark that in one dimension, this relation is incrementally
piecewise linear (one modulus for loading and another one for unloading):

dε =
1

2

(
1

E+
+

1

E−

)
dσ +

1

2

(
1

E+
− 1

E−

)
|dσ| (6)

By extrapolation, Darve defined the octolinear relation (eight tensorial zones) which is incremen-
tally piecewise linear. A tensorial zone is a part of the incremental loading space where the
constitutive model is linear. Using prior notations, the octolinear model is written as follows:dε1dε2

dε3

 =
1

2

[
N+ +N−] dσ1dσ2

dσ3

+
1

2

[
N+ −N−] |dσ1|

|dσ2|
|dσ3|

 (7)

In this expression, the eight tensorial zones are explicit, and the relationship 7 is identical to the
following eight linear relations:

dε = (Ni)i=1,8 dσ (8)

with (Ni)i=1,8 the matrix N where indices (+) are affected to the column (j) if dσj > 0, and (−)
if dσj < 0 (j ∈ {1; 2; 3}). For exemple, if dσ1 > 0, dσ2 < 0, dσ3 > 0 we have:

N2 =


1
E+

1

−ν1−
2

E−
2

−ν1+
3

E+
3

−ν2+
1

E+
1

1
E−

2

− ν+
3

E+
3

−ν3+
1

E+
1

−ν3−
2

E−
2

1
E+

3

 (9)

In the next sections, this relation 8 will be used for analytical computations.
Finally, the empirical evolution of the various memory variables is not presented in this work, but
the model tends asymptotically towards the Mohr-Coulomb failure criterion and describes a non
associated flow rule.
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3 Background on the stability of non associated elasto-plastic
materials

Failure in solid materials can be seen as a loss of the stability of the equilibrium state. The material
is known as stable if a bounded load leads to a bounded response of the material, while at a failure
state this response can be unbounded Lyapunov (1907). The most general criterion to describe
such phenomena in elasto-plastic materials has been proposed by Hill (1958) and leads to the so
called second order work criterion under small strains assumption and for homogeneous problems.

∀ (dσ, dε) |dσ = M (dε) , w2 = dσ : dε > 0 ⇒ stability (10)

with M (dε) denoting the constitutive relationship linking dσ to dε. The condition 10 provides a
sufficient condition of stability for the material. We will now analyse the condition.

w2 = 0 (11)

Using N the directional tangent operator Gateaux (1913) such that:

dε = Ndσ (12)

we get:
w2 = 0 ⇔ dσ : dε = dσNdσ = dσNsdσ = 0 (13)

⇔ dσ2
1

E1
+

dσ2
2

E2
+

dσ2
3

E3
−
(
ν2
1

E1
+

ν1
2

E2

)
dσ1dσ2

−
(
ν3
1

E1
+

ν1
3

E3

)
dσ1dσ3 −

(
ν2
3

E3
+

ν3
2

E2

)
dσ3dσ2 = 0

(14)

with Ns the symmetrical part of N . Equation 14 is the general equation of an elliptical cone
in the incremental principal stress space Prunier et al. (2009c). If we assume that at the virgin
isotropic state all the eigenvalues of Ns are positive and they are then evolving continuously with
the loading parameters, the following results hold:

• during the first loading steps all 3 eigenvalues are positive. Equation 14 has no solutions.
The material is unconditionally stable.

• a first eigenvalues vanishes. Solution of Equation 14 is reduced to a single direction. If the
loading path follows this particular direction the material is in an unstable state. The set of
stress points such that the instability cone is reduced to a single direction define what we call
the limit of the bifurcation domain Darve et al. (2004); Darve and Vardoulakis (2004). It is
a surface plotted in the 6D stress space strictly included inside the plasticity limit for non
associated materials (Ns ̸= N). An illustration of such limit in the principal stress space is
displayed on Figure 3.

• the lowest eigenvalue is negative and the two others are positive. Solution of Equation 14
is an elliptical cone. An illustration of such cones is presented on Figure 4. Due to the
existence of tensorial zones for any rate independent material, these elliptical cones have to
be truncated inside their own tensorial zone. If the loading path follows one of the particular
directions include inside the cone (boundary included) the material is in an unstable state.
The stress point is strictly inside the bifurcation domain.

• the second eigenvalue vanishes (2 eigenvalues with opposite sign and one equal to zero).
Solution of Equation 14 is the intersection of two planes. This last mathematical solution
will be discussed later in the paper in relation with the plasticity limit.

An illustration of such mathematical solutions is given in figure 2. Let us note that, the bifurcation
domain and the instability cones can be also presented in the strain space Prunier et al. (2009c).
Indeed, denoting

M = N−1 (15)

and Ms its symmetric part, we get

w2 = 0 ⇔ dεMdε = dεMsdε = 0 (16)

As a consequence it can be proved that the lowest eigen value of Ns vanishes at the same time
than the one of Ms Prunier et al. (2009a).
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Figure 2: Shape of the solutions of equation 14 as a function of the sign of the eigenvalues.
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a dense sand.Prunier et al. (2009c,b,a)
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Figure 4: Some cones of unstable loading directions obtained with the Darve’s model calibrated on
a dense sand.Prunier et al. (2009c,b,a). The first one is reduced to single direction and corresponds
to a stress state on the bifurcation limit. The second one corresponds to a stress state within the
bifurcation domain and strictly inside the plasticity limit.

It is worth noting that any loading direction corresponds to a particular loading path. In
geotechnical applications, the most famous loading path which can lead to a failure inside the
plasticity limit is the undrained triaxial path. This loading path is defined by the following rela-
tionships: {

dε1 = cst > 0
dε1 + 2dε3 = 0

(17)

Index 1 stands for axial direction and index 3 for radial direction. Along this loading path, the
second order work can be rewritten with the conjugated variables of the test :

w2 = dσ : dε = dq dε1 + dσ3 dεv (18)

Due to the condition 17:
w2 = dq dε1 (19)

Thus, loose or normally consolidated soils are in unstable state when dq ≤ 0 for this particular
loading path. At the peak of q a generalized flow rule can be defined Darve et al. (2004); Prunier
et al. (2009c,b,a). In fact, for such loading path, the incremental constitutive relationship can be
written as follows :

S

{
dε1
dσ3

}
=

{
dq
dεv

}
(20)

with

S =

[
E1 2

ν1
3

E3
E1 − 1

1− 2ν31
2
E3

(
1− ν3 − 2ν13ν

3
1

)] (21)

The analytical expression of S is developed in appendix A. Hence when dq = 0, due to the
relationship 17, we get :

S

{
dε1
dσ3

}
=

{
0
0

}
(22)

which defines what we call a generalized flow rule with the mixed variables

{
dε1
dσ3

}
and the operator

S.

∃
{
dε1
dσ3

}
̸=
{
0
0

}
| S
{
dε1
dσ3

}
=

{
0
0

}
(23)

As a consequence an effective failure occurs strictly inside the plasticity limit.
A second interesting particular loading path to be analysed is the q constant stress path. After
a first loading path that provides a non zero deviatoric stress to the soil sample (like a drained
triaxial path), a decrease of the mean stress is followed at constant deviator stress. An illustration
of this stress path and a possible response of the material to this path is presented in Figure 5.
Such stress path can be qualitatively typical of a rising water table, or of excavating works. In
fact, for such applications some soil points are subjected to an unloading where the mean pressure
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Figure 5: Sketch of the unloading path at q = cst and typical response of some geomaterials to
this path.

decreases more quickly than the deviatoric one. To illustrate this purpose, we present some results
of the simulation of a tunnel excavation in Appendix B.
This unloading at constant deviatoric stress can be defined with the following relationships:{

dσ′
1 = cst < 0

dq = 0
(24)

because
dq = 0 ⇔ dσ′

1 = dσ′
3 = dp′ (25)

Along this stress path, the second order work can be rewritten with the conjugated variables of
the test :

w2 = dσ : dε = dσ′
1 dεv − 2dε3 dq (26)

Due to the condition 24:
w2 = dσ′

1 dεv (27)

Along this stress path, the incremental constitutive relationship can be written as follows :

T

{
dσ′

1

−2dε3

}
=

{
dεv
dq

}
(28)

with

T =

[
1−4ν3

1

E1
+

2ν3
1ν

1
3

E1(1−ν3) 2
1−ν3−ν1

3

1−ν3

1 + E3

E1

ν3
1

1−ν3 − E3

2(1−ν3)

]
(29)

The expression of matrix T is developed in Appendix A. Hence when dεv = 0, due to the relation-
ship 24, we get :

T

{
dσ′

1

−2dε3

}
=

{
0
0

}
(30)

A generalized flow rule is defined with the mixed variables

{
dσ′

1

−2dε3

}
and the operator T

∃
{

dσ′
1

−2dε3

}
̸=
{
0
0

}
| T
{

dσ′
1

−2dε3

}
=

{
0
0

}
(31)

Thus an effective failure occurs strictly inside the plasticity limit, but it is triggered with a strain
component (extremum of εv) instead of a stress component.

In a more general framework, it is always possible to define a set of linear combinations of dσ
and dε as follows:

dσlc = Cσdσ (32)

and
dεlc = Cεdε (33)
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such that :
w2 = dσ : dε = dσlc : dεlc (34)

The condition to get the effective failure inside the plasticity limit is that the test is driven with
mixed parameters as follows :

F

[
dεalc
dσblc

]
=

[
dσalc
dεblc

]
(35)

with :

dσlc =

[
dσalc
dσblc

]
(36)

and

dεlc =

[
dεalc
dεblc

]
(37)

In fact, when :

F

[
dεalc
dσblc

]
=

[
0
0

]
(38)

along the loading path, w2 = 0, a generalized flow rule is defined and an effective failure occurs.
To conclude with this section, the conditions that enable failures strictly inside the plasticity limit
are presented below.

1. the stress point should be included inside the bifurcation domain

2. the loading path should be inside (boundary included) the direction of one of the cones of
unstable loading directions. These first two conditions are sufficient to get the loss of stability
of the sample.

3. the condition to get an effective failure is that conditions 1 and 2 are fulfilled and further
more that the test is driven with mixed parameters.

4 A theoretical proper way to characterize the plasticity
limit

In the framework of the elasto-plasticity theory recalled in section 3, the ultimate plasticity limit
is defined with

det (M) = 0 (39)

with M the tangent operator such that :

dσ = Mdε (40)

while a failure that occurs inside this plasticity limit is defined with:

det (F ) = 0 (41)

with F defined in a similar fashion than in equation 35. Furthermore some algebra allows to prove
that Prunier et al. (2009c,b,a):

det (F ) ≤ det (M) (42)

But from a practical point of view, constitutive relationships are characterized by analyzing some
experimental tests. On these tests, the failure state has to be properly characterized, and we have
to know if this failure state corresponds to an ultimate failure state lying on the plasticity limit or
is a failure state that occurs inside the bifurcation domain.
In order to give practical answers to this problem, we propose to exploit the fact that for the
associated materials the bifurcation domain limit and the plasticity limit coincide. Indeed in this
last case we have det (M) = det (Ms) = 0 on the limit. To do so, we will answer to the following
questions :

1. Is it possible to define some loading path whose the part of the response of the material that
provides the value of w2 is independent of its associativity? In the exemple of the undrained
triaxial loading path, only the response in term of dq gives the value of w2, since w2 = dqdε1
in this case (see equation 19). The response in term of dσ3 does not affect w2 since dεv = 0 by
definition of the loading path. Nevertheless, w2 depends on the associativity of the material
along this loading path since w2 never vanishes before the plasticity limit for dense sands
and vanishes before for loose sands.
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2. When the existence of such loading paths is proved, can they scan every direction of the
stress space to delineate experimentally the plasticity limit?

From a mathematical point of view a non associated material is characterized by the loss of its
major symmetry on its tangent operator M . Hence loading paths that answer question 1 are
loading path whose the part of the response of the material which affect w2 is independent of the
symmetry of its tangent operator. From an obvious manner, a part of the set of these loading
paths are any 1D loading path according the second order work. We can quote :

• simple compression / traction tests : w2 = dσ1dε1+2dσ3dε3 = dσ1dε1 because σ3 = dσ3 = 0.
What is essential in this particular case is that w2 = dσ2

1/E1 which is independent of the
associativity of the material. But these tests are useless for cohesionless geomaterials.

• drained triaxial tests : w2 = dqdε1 + dσ3dεv = dσ1dε1, because dσ3 = 0. And we also have
w2 = dσ2

1/E1 which is independent of the associativity of the material.

As a consequence, the q peak on a drained triaxial test characterizes properly an ultimate failure
lying on the plasticity limit. In fact along such loading path, the response of the material in the
plane (q − ε1) is independent of the associativity of the material. In other word, if it was possible
to build two materials purely subjected to a Mohr-Coulomb model with the first one be associated
(φ = ψ) and the second one be non associated (φ ̸= ψ), their response in the (q, ε1) will be strictly
identical.
Standards axisymmetric tests do not allow to delineate the totality of the plasticity limit, but true
3D triaxial tests Lanier, J. et al. (1989) defined by :

dε1 = cst > 0
dσ2 = 0
dσ3 = 0
σ0
2 ̸= σ0

3

(43)

allow such a characterization. Starting from the virgin isotropic state, a first drained triaxial path
can be followed along the direction 2 or 3 to get σ0

2 ̸= σ0
3 and the drained triaxial path can be then

completed along the direction 1. As this loading program is not straightforward, loading paths at
constant Lode’s angle are generally preferred to characterize the 3D failure surface.
We are now interested in knowing if other loading paths defined experimentally provide values of
w2 which are independent of the associativity of the material. To do so, we introduce an avatar
material such that :

νjai
Ei

=
νiaj
Ej

∀(i, j) ∈ [1, 3] (44)

and
νjai
Ei

̸= 1

2

(
νji
Ei

+
νij
Ej

)
(45)

We are looking for particular loading directions in the 3D space of incremental principal stress
such that :

w2 = wa2 (46)

with wa2 the value of the second order work of the avatar associated material as defined above.

For the sake of clarity we adopt a stepwise approach and first develop this idea for axisymmetric
conditions. Let us introduce the stress proportional loading path : dσ1 = cte ̸= 0

dσ2 = dσ3
dσ3 +Rdσ1 = 0

(47)

Due to the relationship 47, the second order works is written :

w2 = dσ1 (dε1 − 2Rdε3) (48)

Injecting the constitutive relationship 85 plus the fact that dσ3 = −Rdσ1 we get :

w2 =

(
2 (1− ν3)

E3
R2 + 2

(
ν31
E1

+
ν13
E3

)
R+

1

E1

)
dσ2

1 (49)

9



In the same manner we find for the avatar associated material :

wa2 =

(
2 (1− ν3)

E3
R2 +

4ν3a1
E1

R+
1

E1

)
dσ2

1 (50)

Making w2 − wa2 = 0, we look for R such that:

R

(
ν31
E3

+
ν13
E1

)
= 2R

ν1a3
E1

(51)

We can then easily conclude that under axisymetric conditions only the value of R = 0 (that is
too say the drained triaxial path) provides a loading path whose evolution of the second order
work quantity is independent of the associativity of the material. Nevertheless this last condition
is very strong. This means that without any knowledge of the material, it can be stated that no
bifurcation can occur before reaching the plasticity limit during the test if the sample remains ho-
mogeneous. In fact, strain localisation can be observed for some materials just before reaching the
maximum deviatoric stress for drained triaxial path. In the latter case, the material is no longer
homogeneous and the stress-strain response at the boundary is not characteristic of the material
behaviour. Furthermore, it can be proven that w2 = 0 in a localized band when it appears (see
Appendix C after Nicot and Darve (2011), Wan et al. (2017)). Questions of strain localization are
not the purpose of this paper and will not be developed further in this work.

We will know investigate 3D conditions in the principal stress space: dσ1 = cte ̸= 0
dσ2 +R1dσ1 = 0
dσ3 +Rdσ1 = 0

(52)

For these stress paths, the expression of the second order work is:

w2 = dσ1 (dε1 −R1dε2 −Rdε3) + (dσ2 +R1dσ1) dε2 + (dσ3 +Rdσ1) dε3 (53)

Injecting the constitutive relationship 84 plus the fact that dσ2 = −R1dσ1 and dσ3 = −Rdσ1 we
get :

w2 =

(
1

E1
+
R2

1

E2
+
R2

E3
−
(
ν23
E3

+
ν32
E2

)
R1R+

(
ν12
E2

+
ν21
E1

)
R1 +

(
ν13
E3

+
ν31
E1

)
R

)
dσ2

1 (54)

In the same manner we have for the avatar associated material :

wa2 =

(
1

E1
+
R2

1

E2
+
R2

E3
− 2ν2a3

E3
R1R+

2ν2a1
E1

R1 +
2ν3a1
E1

R

)
dσ2

1 (55)

Making w2 − wa2 = 0, we look for R and R1 such that:

Φ (R,R1) =

(
2
ν2a3
E3

− ν23
E3

− ν32
E2

)
RR1 −

(
2
ν3a1
E1

− ν13
E3

− ν31
E1

)
R−

(
2
ν2a1
E1

− ν12
E2

− ν21
E1

)
R1 = 0

(56)
The trivial solution is given for R = R1 = 0 which corresponds to the 3D drained triaxial path.

Else the reduction of the conic Φ (R,R1) under its canonical form prove that general solutions are
of hyperbolic shape. But these hyperbolic solutions depend on the directional tangent Young’s
moduli Ei and of directional tangent Poisson’s ratio νji which are not known a priori when per-
forming an experimental test. Hence the detailed analysis of these hyperbolic solutions are useless
in practice.

Nevertheless, it is possible in practice to know if an imposed loading path at the laboratory
is going outside every instability cone. For the case of the paths defined by relationships 52, it
is sufficient to plot the response of the material in term of (ε1 −R1ε2 −Rε3) and to look if this
variable is going through an extremum during the test (see expression of w2 in equation 53). If
not, w2 remains strictly positive during the test and vanishes only on the plasticity limit because
of the existence of the flow rule. Indeed, the flow rule states:

∃dε ̸= 0, M · dε = 0 (57)
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Figure 6: response of the octo-linear model calibrated on a loose Hostun sand to radial loading
paths in the deviatoric plane

as a consequence, w2 = 0 for any loading direction toward the plasticity limit. We can then state
that, the failure is reached on the plasticity limit without a previous bifurcation if the sample
remain homogeneous. To illustrate this purpose we present the simulation of radial stress paths in
the deviatioric plane to characterize experimentally the 3D Mohr-Coulomb envelop. These paths
are at constant mean stress and constant Lode’s angle θ. They can be defined with the following
relationships : 

dσ1 = cst
√

2
3 cos θ

dσ2 = −cst
(

1√
6
cos θ +

√
2
2 sin θ

)
cst > 0

dσ3 = −cst
(

1√
6
cos θ −

√
2
2 sin θ

) (58)

with cst a constant parameter. It is worth noting that these paths are particular ones of 52 with:{
R1 = 1

2 +
√
3
2 tan θ

R = 1
2 −

√
3
2 tan θ

(59)

Since the Mohr-Coulomb failure criterion is isotropic (i.e. its expression is invariant to any change
of reference frame), a series of simulations with θ ∈ [0, 60◦] is sufficient to characterize the plasticity
limit. On the figure 6 we present the response of 60 simulations using the octolinear model of Darve
Darve and Labanieh (1982), Darve et al. (1995) calibrated on a loose Hostun sand, for illustrative
purposes only without attempting to demonstrate general results. If these curves were derived
from laboratory tests, we could conclude that the maximum value reached by σ1 characterises the
failure state at the ultimate plastic limit, because the response in terms of (ε1 −R1ε2 −Rε3) does
not show an extremum.

In conclusion, only drained triaxial tests can unequivocally characterize the plastic limit. Sec-
ondly, proportional stress tests can also be used if we ensure that no bifurcation has occurred
beforehand by checking that (ε1 −R1ε2 −Rε3) has not passed through an extremum. For propor-
tional strain tests, such as the undrained test, this becomes complicated because :

1. the maximum stress (σ1 −R1σ2 −Rσ3) can be reached before the plastic limit (q pic for the
undrained axisymmetric test: R1 = R = 0.5)

2. the path generally tends to tangent the plasticity limit, which makes its characterization
much less precise.

However, we agree that for materials with low permeability, the undrained triaxial test remains
the simplest and most effective test to carry out to characterize the behavior of the material.

5 Discussion about the shape of instability cones lying on
the plasticity limit

In former works, the shape of instability cones lying on the plasticity limit was not investigated.
Moreover, the analytical solution of the equation 14 consisting of two intersecting planes has only

11



been considered as an infinite elliptical cone and as a physically impossible limit state. That’s why
we follow the investigations in this work. In this section we also adopt a progressive approach by
starting the investigation in axisymmetric conditions and then developing the idea in 3D conditions.

5.1 axi symmetric conditions

In axisymmetric conditions the tangent constitutive relationship reads:{
dε1√
2dε3

}
=

[
1
E1

−
√
2
ν1
3

E3

−
√
2
ν3
1

E1

1−ν3
E3

]{
dσ1√
2dσ3

}
(60)

Hence the equation of the instability cones gives:

w2 =
dσ2

1

E1
+ 2

(1− ν3)

E3
dσ2

3 − 2

(
ν31
E1

+
ν13
E3

)
dσ1dσ3 ≤ 0 (61)

⇔ dσ2
1 + 2

(1− ν3)E1

E3
dσ2

3 − 2

(
ν31 +

ν13E1

E3

)
dσ1dσ3 ≤ 0 (62)

On the plasticity limit one Young’s modulus vanishes since:

det (M) =
E1E3

1− ν3 − 2ν31ν
1
3

(63)

Let us assume that:
E1 = 0 (64)

we get :

dσ2
1 − 2ν31dσ1dσ3 ≤ 0 (65)

⇔ dσ1
(
dσ1 − 2ν31dσ3

)
≤ 0 (66)

This domain is then bounded by the two lines:

dσ1 = 0 (67)

and
dσ1 − 2ν31dσ3 = 0 (68)

Let us now detail this domain:

dσ1 − 2ν31dσ3 ≤ 0 (69)

⇔ dσ1
dσ3

≤ 2ν31 if dσ3 > 0 (70)

⇔ dσ1
dσ3

≥ 2ν31 if dσ3 < 0 (71)

When the plasticity limit is reached after a drained triaxial path, we have:

ν31 = −
(
dε3
dε1

)
dσ3=0

= −dε3
dε1

(72)

For models based on the Mohr-Coulomb limit the ratio dε3/dε1 at failure allows to define the
dilatancy angle ψ. The flow surface is simply defined by:

g : σ1 −
1 + sinψ

1− sinψ
σ3 = 0 | σ1 > σ2 > σ3 (73)

and its normal

n⃗ =


1
0

− 1+sinψ
1−sinψ

 | σ1 > σ2 > σ3 (74)

allows to define the ratio dε3/dε1 at failure as a function of sinψ for σ1 > σ2 > σ3. For axisymmetric
conditions, σ2 = σ3 and we assume:

n⃗ =
1

2


1
0

− 1+sinψ
1−sinψ

+
1

2


1

− 1+sinψ
1−sinψ

0

 (75)
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Figure 7: instability secant planes (degenerated cones with an infinite wider axis) for a stress state
lying on the plasticity limit. Sum up of equations 66 to 77. 0, 2ν3±1 and 1+sinψ

1−sinψ are the slope of
the instability secants planes.

Figure 8: instability secant planes (degenerated cones with an infinite wider axis) for a stress
state lying on the plasticity limit. Sum up of equations 66 to 77 and merging the plasticity limit
condition. 0, 2ν3±1 and 1+sinψ

1−sinψ are the slope of the instability secants planes. 1+sinφ
1−sinφ is the slope

of the Mohr-Coulomb plane.

which is the bisector line of the normals of the two secant planes for the Lode’s angle θ = 0. This
provides the following relationship for the flow direction:(

dε3
dε1

)
failure

= −1

2

1 + sinψ

1− sinψ
(76)

Combining equations 70, 72 and 76, we get the upper limit of the cone for a drained triaxial path :

dσ1
dσ3

≤ 1 + sinψ

1− sinψ
for (dσ1, dσ3) ∈ R2

+ (77)

We sum up the results between equation 66 and equation 77 on the figure 7. Nevertheless, the
direction given by 2ν31 does not necessarily matches the direction given by the plasticity limit itself.
In fact for all directions crossing the plasticity limit we have w2 = 0 since Mdε = 0. Hence the
tangent to the plasticity limit surface is a cone of unstable loading directions open at 180◦. As we
assume here that the stress point is lying on the plasticity limit, only neutral loading directions
are authorized ultimately. For a Mohr-Coulomb criterion this neutral direction is given by:

dσ1
dσ3

=
1 + sinφ

1− sinφ
(78)

As a consequence we also have to merge the solutions of the instability cones shown in figure 7
with the tangent plane of the plasticity limit. Such final solution is given in figure 8.
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Figure 9: 3D instability cone get with the octolinear model of Darve for a stress point in the
vicinity of the Mohr-Coulomb envelop. On th right figure we only kept the cone for the tensorial
zone (dσ1 > 0, dσ2 > 0, dσ3 > 0) and added the tangent plane to the Mohr-Coulomb envelop in
dashed line.

5.2 3D conditions

Starting from equation 14 which is the general equation of an elliptic cone, we know that this shape
can degenerate to the one of the intersection of two planes when the maximum and the minimum
eigenvalues are of opposite sign and when the intermediate one is zero. This is what happens for
a stress state lying on the plasticity limit due to the fact that one Young’s modulus vanishes. In
fact we have:

det (M) =
E1E2E3

1− ν21ν
1
2 − ν31ν

1
3 − ν32ν

2
3 − ν21ν

3
2ν

1
3 − ν31ν

2
3ν

1
2

(79)

Let us assume that E1 = 0 and introduce this condition directly inside the equation 14 by multi-
plying each term by E1 we directly get the equations of these two secant planes:

dσ2
1 − ν21dσ1dσ2 − ν31dσ1dσ3 = 0 (80)

⇔ dσ1
(
dσ1 − ν21dσ2 − ν31dσ3

)
= 0 (81)

the first plane is then the horizontal plane given by the cartesian equation :

dσ1 = 0 (82)

and the second one is the one given by the cartesian equation :

dσ1 − ν21dσ2 − ν31dσ3 = 0 (83)

We have to notice that this two secant planes corresponds to the limit case of the elliptic cone with
an infinite wider axis of the ellipse. As for the axisymmetric case this last plane does not necessarily
matches the tangent plane of the plasticity limit, and the set of unstable loading directions have
to be merged with the ones normal to the tangent plane of the plasticity limit. On figure 9 we
present cones of unstable loading directions in the vicinity of the plasticity limit obtained with the
octolinear model of Darve. In fact the plasticity limit is reached asymptotically with this model.
Thus cones in each tensorial zone has been plotted using equation 14. On the right figure 9, we have
kept only the cone in the tensorial zone (dσ1 > 0, dσ2 > 0, dσ3 > 0). We can see that the elliptical
cone is almost an intersection of two planes as shown from a mathematical point of view. We also
added in dashed line the tangent plane corresponding to the plasticity limit. As in axisymmetric
condition we can see that it is not coincident with the upper plane given by the equation 14.
In conclusion of this discussion, we can quote that the tangent plane to the plasticity limit can be
viewed as an instability ”cone” that opens suddenly at 180◦ in both tangential directions. In this
sense it is distinct from the other instability cones that open continuously inside the bifurcation
domain until to be opened in the form of two secant planes when reaching the plasticity limit.
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Figure 10: Response of the Octolinear model calibrated on a dense Hostun sand to an alternated
drained triaxial path

6 Discussion about the uniqueness of the limit of the bifur-
cation domain

In the previous section 4, we have proved that the ultimate plasticity limit surface can be consid-
ered as unique and have discussed the practical conditions that allow its proper characterization.
Indeed, from a initial reference configuration of the soil sample, a particular point on the plasticity
limit is characteristic of a failure state after any loading paths that avoid every direction inside
an instability cone. Now, we are interested in knowing if the limit of the bifurcation domain pre-
sented in figure 3 and characterized with a classical drained triaxial path can be also considered
as a unique surface whatever the conditions and the loading followed. From an analytical point of
view it is not obvious when looking at the equation 14. In fact eigenvalues of Ns depends on the

evolutions of Ei and ν
j
i

(
(i, j) ∈ [1, 3]

2
)
. Thus, the first unstable loading direction that appears

may be strongly subject not only to the initial state of the material but also of the previous loading
path. To investigate this point we have simulated a drained triaxial loading path stopped before
reaching the plasticity limit in compression (ε1 ≈ 2%) and we then imposed an unloading until the
plasticity limit in extension. In figure 10, we have reported the response of the materials which is
representative of a dense sand. The red crosses delimit the bifurcation domain in the compression
phase while the yellow circles delimit the bifurcation domain in the unloading phase. Starting
from the initial isotropic state, a first unstable direction appears at point A (see figure 12. Then
instability cones grows and develop until point B. At this point we start the unloading. Instability
cones shrink and reduce to a single direction in point C. Between points C and D we are in a fully
stable domain: no instability cones exist. Finally a first unstable direction appears in point D
which is in the vicinity of the hydrostatic stress lane. If this stress state was reached from a virgin
initial hydrostatic state it would have been in a fully stable domain. This proves that the limit of
the bifurcation domain is moving and deform with the evolution of the internal state of the material
(which is characterized by the evolution of internal variables of elasto-plastic models). From point
D instability cones are growing and developing until point E. Both bifurcation domains obtained
from the initial isotropic state and the one obtained after the unloading are presented as function
of the ratio q/p on the figure 11. The instability cones obtained at the points A,B,C,D,E are
reported in figure 12. In appendix D, we present a similar simulation carried out with the same
model calibrated on soft sand. The conclusions on the evolution of the bifurcation domain remain
similar. Nevertheless, the response of such a material in the plane (εv − ε1) is very different since
a strong induced anisotropy develops as soon as the range 0% ≤ ε1 ≤ 2% (see figure 16).

These initial simulation results modestly show that for a model developed to describe the cyclic
behaviour of granular materials such as sand, the limit of the bifurcation domain evolves continu-
ously with the loading path. In particular, an hydrostatic stress state is found in the bifurcation
domain after a single unloading cycle with this model. This should be validated experimentally,
but this would be very complicated to do because of the directional research required. Failing that,
future work will be carried out with different discrete element models in order to validate these
two observations:
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Figure 11: Evolution of the bifurcation domain for a dense sand. At the top, the bifurcation
domain obtained starting from the initial isotropic state. At the bottom, the one obtained during
the unloading.

1. the evolution of the bifurcation domain limit with the loading path

2. some particular granular assembly could be potentially unstable under an hydrostatic (or
nearly hydrostatic) stress state

Despite the lack of validation of these results, we can make some remarks on writing constitutives
models for soils. The simplest models are based on a yield surface with an isotropic strain harden-
ing. For these models, when starting from an isotropic virgin state, the initial bifurcation domain
limit can be close to the initial yield limit without being confused with it. Then once the initial
bifurcation domain limit is passed, this boundary is always confused with the current yield limit.
In fact, the bifurcation domain becomes smaller as the strain hardening proceeds and ultimately
merges with the plastic limit even if an unloading is subsequently performed. Consequently, it
would be better to avoid using such models for any problem where some points may be unloaded
with respect to the yield surface considered.

As a consequence, elasto-plastic models based on a kinematic strain hardening or hypo plasticity
concept are better. But we understand that future work will have to be able to determine whether
a non-infinitesimal radius of the elastic domain can be relevant from a physical point of view.
We denote here BDL0 the initial bifurcation domain limit when it is reached from an initial
isotropic virgin state. When the elastic radius is not zero any loading within the elastic radius
is unconditionally stable since BDL0 was first violated, if hyper-elasticity is assumed. This loss
of continuity of the evolution of the bifurcation domain limit with the loading parameters seems
questionable.
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Figure 12: Development of instability cones along the stress path for the dense sand.
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7 Conclusion

In this paper we investigate the stability and failure of non-associated elasto-plastic materials such
as geomaterials. We have recalled that in such materials effective instabilities and failures can de-
velop strictly within the plasticity limit defined as the ultimate Mohr-Coulomb plasticity surface.
Based on this observation, the question of the experimental characterisation of such an ultimate
limit is addressed. We have proven in section 4 that true triaxial tests (with σ0

2 ̸= σ0
3) allow the

full characterisation of the Mohr-Coulomb surface with certainty. For non triaxial loading paths at
constant mean stress and constant Lode’s angle, it must be verified that no bifurcation occurred
during the test as presented in section 4 in figure 6. Therefore we can say that the plasticity limit
is unique. Indeed, starting from a given initial state this ultimate limit (mainly dependent of the
initial configuration of the geomaterials) does not depend on the subsequent loading path. From a
mathematical point of view it is characterised by the cancellation of one tangent Young’s modulus
of the tangent constitutive matrix. And the evolution of the tangent moduli along a loading path
does not affect the non-associated character of the material. However, we have shown in section
6 that the Darve’s octo-linear model can describe a strong evolution of the bifurcation domain
limit with the loading path. In particular we have seen that this model predict that some material
are inside the bifurcation domain under an isotropic stress state after a small loading-unloading
drained triaxial path. It is worth noting that the existence of this bifurcation domain is conditioned
by the induced anisotropy which develops in a non associated way (νji /Ei ≠ νij/Ej) as it is the
case for geomaterials. In this sense, this boundary cannot be considered as unique.

We have recalled in section 5 that the instability cones develop continuously in the bifurca-
tion domain. From this we have shown that their elliptical structure in the bifurcation domain
degenerates into the intersection of two intersecting planes when the plasticity limit is reached.
We have seen that one of this plane is the horizontal plane in the space (dσ1, dσ2, dσ3) when σ1 is
the highest principal stress. The second plane is between the tangent plane of the plasticity limit
whose the direction is expressed in term of the friction angle φ and the horizontal plane. When
the plasticity limit is reached after a triaxial path at (dσ2 = dσ3 = 0) the direction of the second
instability plane is defined with the dilatancy angle ψ. As a consequence, opening the instability
cones during the loading path can never include a direction crossing or tangent to the plasticity
limit.

A Appendix 1

For homogeneous laboratory tests where principal stress and principal strain axes coincide, the
directional tangent constitutive relationship writes:

dε1dε2
dε3

 =


1
E1

− ν1
2

E2
− ν1

3

E3

− ν2
1

E1

1
E2

− ν2
3

E3

− ν3
1

E1
− ν3

2

E2

1
E3


dσ1dσ2
dσ3

 (84)

As a consequence, for axisymmetric conditions with 2 ≡ 3 we get:{
dε1√
2dε3

}
=

[
1
E1

−
√
2
ν1
3

E3

−
√
2
ν3
1

E1

1−ν3
E3

]{
dσ1√
2dσ3

}
(85)

We are looking for the expression of the matrix S such that:

S

{
dε1
dσ3

}
=

{
dq
dεv

}
(86)

using relation 85 we get:

dε1 =
1

E1
dσ1 − 2

ν13
E3

dσ3 (87)

and

dεv =
1− 2ν31
E1

dσ1 + 2
1− ν3 − ν13

E3
dσ3 (88)
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Using expressions 87 and 88 we can built matrices α and β such that:{
dε1
dσ3

}
= α

{
dσ1
dσ3

}
=

[
1
E1

−2
ν1
3

E3

0 1

]{
dσ1
dσ3

}
(89)

and {
dq
dεv

}
= β

{
dσ1
dσ3

}
=

[
1 −1

1−2ν3
1

E1
2
1−ν3−ν1

3

E3

]{
dσ1
dσ3

}
(90)

Hence relationship 86 reads:

Sα

{
dσ1
dσ3

}
= β

{
dσ1
dσ3

}
(91)

and
S = βα−1 (92)

with

α−1 =

{
E1 2E1

E3
ν13

0 1

}
(93)

which finally gives :

S = βα−1 =

[
E1 2

ν1
3

E3
E1 − 1

1− 2ν31
2
E3

(
1− ν3 − 2ν13ν

3
1

)] (94)

In the same way we can provide the expression of the matrix T such that:

T

{
dσ′

1

−2dε3

}
=

{
dεv
dq

}
(95)

we build the matrix αT :{
dσ1

−2dε3

}
= αT

{
dσ1
dσ3

}
=

[
1 0

2
ν3
1

E1
2 1−ν3
E3

]{
dσ1
dσ3

}
(96)

and the matrix βT : {
dεv
dq

}
= βT

{
dσ1
dσ3

}
=

[
1−2ν3

1

E1
2
1−ν3−ν1

3

E3

1 −1

]{
dσ1
dσ3

}
(97)

and we finally get :

T = βTα
−1
T =

[
1−4ν3

1

E1
+

2ν3
1ν

1
3

E1(1−ν3) 2
1−ν3−ν1

3

1−ν3

1 + E3

E1

ν3
1

1−ν3 − E3

2(1−ν3)

]
(98)

with

α−1
T =

{
1 0

−E3

E1

ν3
1

1−ν3
E3

2(1−ν3)

}
(99)

B Appendix 2

We present here a finite element simulation of the excavation of a tunnel, using a usual elasto-
plastic model based on a Mohr-Coulomb like yield criterion with an isotropic hardening and a
non associative flow rule (the Plasol Model Barnichon (1998)). The principle of the simulation is
basic: a first step is done to initialize stresses by gravity loading, then in a second step we remove
element of soils that are excavated and decrease progressively reactions forces at the boundary of
the created cavity. In the figure B the meshes at th beginning and at the end of this second phase
are shown. In figure B we present the maps of the mobilized friction angle divided by the friction
angle at failure as well as a map of the local normalized seance order work criterion. Finally we
present the stress path of one point at the vicinity of the cavity during the excavation phase (see
figure B) to illustrate the fact that the loading direction is not so far from the unloading at constant
deviatoric stress analysed in section 3.
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Figure 13: Initial mesh at the beginning of the excavation phase in blue, and deformed mesh (x10)
at the end of the excavation phase in red

Figure 14: Mobilized friction angle divided by the friction angle at failure (left). Local normalized
second order work (right).

Figure 15: Loading path of point A during the excavation phase.
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C Appendix 3

Proof of w2 = 0 inside a localized band.
The Rice Rice (1976) localization criterion reads :

det (ni Mijkl nl) = 0, with n⃗ ̸= 0⃗ (100)

with n⃗ the normal vector to the localized band. This last condition is equivalent to : ∃g⃗ ̸= 0⃗, ( niMijklnl) gk = 0
=⇒

gj (ni Mijkl nl) gk = 0
(101)

In addition, we have :

gj (ni Mijkl nl) gk = 1/2 ( ni gj Mijkl gk nl) + 1/2 ( ni gj Mjikl gk nl) (102)

due to the minor symmetry of the constitutive matrix. Hence :{
gj (ni Mijkl nl) gk = 1/2 (ni gj Mijkl gk nl) + 1/2 (gi nj Mijkl gk nl)

= 1/2 (ni gj + gi nj)Mijkl gk nl
(103)

Furthermore, if we state :

dε =
1

2
(n⃗⊗ g⃗ + g⃗ ⊗ n⃗) (104)

dε is a symmetric tensor as well as different from 0 by construction, and :

gj (ni Mijkl nl) gk = dεij Mijkl gk nl (105)

doing the same for the last two terms on the right, we finally get :

det (ni Mijkl nl) = 0 ⇒ dεij Mijkl dεkl = dεij dσij = 0 (106)

inside the localized band.

D Appendix 4

In this appendix we present the results of the simulation presented in section 6, but using the
Octolinear model calibrated on a loose sand.
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Figure 16: Response of the Octolinear model calibrated on a loose Hostun sand to an alternated
drained triaxial path
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Figure 17: Evolution of the bifurcation domain for a loose sand. At the top, the bifurcation
domain obtained starting from the initial isotropic state. At the bottom, the one obtained during
the unloading.
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Figure 18: Development of instability cones along the stress path for the loose sand.
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