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Optimal Cosserat-based deformation control for
robotic manipulation of linear objects

Azad Artinian, Quentin Huet, Faı̈z Ben Amar, Véronique Perdereau

Abstract—Deformable object manipulation is a challenging
research subject that draws a growing interest in the robotic field
as new methods to tackle this problem have emerged. So far, most
of the proposed approaches in the literature focused solely on
shape control. The strain applied to the object is disregarded, thus
excluding a large part of industrial applications where fragile
products are manipulated, like the demolding of rubber and
plastic objects, or the handling of food. These applications require
a tradeoff between accuracy and careful manipulation in order
to preserve the manipulated object. In this article, we propose
an approach to optimally control the deformation of linear and
planar deformable objects while also minimizing the deformation
energy of the object. First, we modify the framework initially
developed for linear soft robot control in order to adapt it to
deformable object robotic manipulation. To do so, we reformulate
the problem as an optimization problem where the whole shape
of the object is taken into account instead of solely focusing on
the tip of the object’s position and orientation. We then include
an energy term in the cost function to find the solution that
minimizes the potential elastic energy in the manipulated object
while reaching the desired shape. Solutions to problems with
high non-linearities are notoriously difficult to find and sensitive
to local minima. We define intermediate optimal steps connecting
the known initial and final configurations of the object and
sequentially solve the problem, thus enhancing the robustness
of the algorithm and ensuring the optimality of the solution. The
intermediate optimal configurations are then used to define an
end-effector trajectory for the robot to deform the object from
an initial to the desired configuration.

Index Terms—Deformable object manipulation, Robotics,
Shape control, Optimization, Trajectory generation

I. INTRODUCTION

Robotic manipulation of deformable objects has a wide
range of applications, from food handling [1] to cable manip-
ulation [2], [3] in order to automate the production of motors
[4], [5], garment manipulation [6] or robotic surgery [7], [8].
Deformable objects are everywhere in our daily lives and the
industry. However, the study of deformable objects has not
received as much attention in the research community as rigid
object manipulation. This is mainly due to the challenging
problems manipulating these objects raise. Deformable objects
have very high degrees of freedom which not only make
the classic rigid object manipulation techniques impossible to
apply [9] but also very hard to model accurately. Recent ad-
vances in computer graphics, machine learning, and hardware
development have resulted in new modeling and simulation
tools and techniques that allow overcoming some of the
classical issues raised when manipulating these objects [10].
As a result, the demand for robotic solutions to manipulate
deformable objects has emerged [11]. To manipulate these
objects successfully, creating a connection between the actions

performed by the robot and the behavior of the manipulated
object is necessary. Among the many recent articles in the
literature attempting to handle this difficult issue, two classes
of methods emerge: data-driven and model-based approaches.

To address the high dimensionality of deformable objects
and the modeling difficulties that derive from it, data-driven
approaches have been used to solve deformable object ma-
nipulation tasks, especially garments and planar objects [6],
[12]. These methods are usually formulated as a supervised
learning problem where the robot must replicate a desired
behavior. The training data typically originate from human
demonstration [12]. These approaches have the advantage of
not relying on a specific model but they are often hard to
generalize from a small amount of training data [13], [14].
Other methods use data from robotic exploration, and although
an exhaustive exploration is rarely used, reinforcement learn-
ing approaches are often initialized with human demonstration
[15]. The improvement in simulators opened the possibility to
learn politics in simulated environments [6], [16]. However,
the policies learned in simulation often face a sim-to-real
gap, especially for deformable objects which are difficult to
represent accurately in a simulator.

Model-based methods rely on a model of the object to
predict the deformations. There is a wide range of models
with different properties. Less physically realistic models like
mass-spring systems [17] and position-based dynamics [18]
tend to be computationally effective but can sometimes lack
precision, especially for larger deformations for mass-spring
systems while position-based dynamics does not accurately
model force effect. Although most models are determined be-
forehand, approaches relying on visual information to estimate
a model online have also been proposed [19], [20], [21], [22].

Recently, physically realistic continuum models such as
Finite elements [23] have been used to model deformable ob-
jects for robotic applications despite their high computational
cost. In [24], the authors, based on the framework proposed
in [25], [26] for soft robot real-time control, proposed an
inversion method of the finite element model of a deformable
object. The inverse FEM model is then used to determine in
real-time the controls to apply at the fingertips of a robotic
hand to deform the object towards a desired shape [27].
With a similar approach, Cosserat theory has been used to
successfully model, control [28], [29] and estimate [30] the
state of linear deformable robots. The Cosserat theory provides
one of the most accurate mechanical model while still being
computationally efficient. The authors in [31] proposed a real-
time closed-loop control strategy courant synonymesof a soft



linear robot using the Cosserat rod model. It is especially
suited to beam-like and linear objects which makes this model
adequate for cables, ropes, and linear robot control [32]. The
formulation of the problem of shape control is very similar
to the underactuated soft robot control problem. There is an
analogy between the actuators in soft robot control and contact
points in deformable object manipulations [24].

In this article, we propose a method to generate optimal
robot end-effector trajectories to solve constrained deformable
object manipulation problems in industrial environments. We
achieve this by adapting the framework originally developed
for soft robot control in [28], [29], [31] to deformable linear
object manipulation and by combining the Cosserat rod model
used to represent the object with an optimization approach. We
then define intermediate optimal steps in order to generate the
optimal robot trajectory to solve the problem with respect to
its specificities.

The paper is organized as follows. First, we introduce
the general framework for the Cosserat rod model and how
the constitutive equations are derived. Then we present our
approach to adapt the problem from soft robot control to
deformable object manipulation and how we formulate and
solve the optimization problem, resulting in an end-effector
trajectory to reach the desired deformed shape. Lastly, we
illustrate this approach with a manipulation application where
we control the shape of a linear clamped object with a robotic
arm.

II. CLASSICAL STATIC COSSERAT ROD MODEL

To define the shape of a linear deformable object, we have to
consider the rod kinematics that provides the position of the
curve in R3 and its orientation. The rod is spatially discretized
so that the model constitutive equations are derived from the
static equilibrium at any point of the rod. These equations give
a relation between the forces and moments applied on the rod
and its position and orientation. Therefore, the position and
orientation of every section of the rod are entirely defined by
the external loads, initial conditions, and material properties. In
the following section we will rely on the methods developed by
Antman in [33] and later applied to soft robotic manipulators
in [34], [35], [28], [29]. Although these works focus on soft
robotic manipulators, the geometric framework and formalism
used to define the shape of a linear object can be used for
robotic manipulation.

A. Kinematics

We consider a linear Cosserat rod of length L defined by
the position p(s) ∈ R3 and orientation R(s) ∈ SO(3) of
every point of the reference parameter s ∈ [0, L] of the rod.
Therefore, p(s1) gives the position in R3 of the point s1 m
from the origin of the undeformed rod while R(s1) is the
orientation in the global frame attached to the point s1. As
presented in [29], we can use the homogeneous rigid-body
transformation g(s) ∈ SE(3) to describe the configuration of
any point s of the rod:

g(s) =

[
R(s) p(s)
0 1

]
v(s) and u(s) represent the local changes in translation and

rotation of an infinitesimally small section of the Cosserat rod
with respect to s. They indicate the evolution of g(s) along s:

ṗ(s) = R(s)v(s),

Ṙ(s) = R(s)û(s)
(1)

Here, the hatˆrepresents the bijective mapping from a vector
to a skew-symmetric matrix while the dot indicates the spatial
derivative along s.

B. Static equilibrium

Consider an arbitrary segment of the rod from a point s1 to
a point s2 with s1 < s2 and (s1, s2) ∈ [0, L]2. The static
equilibrium equation on this segment gives:

n(s2)− n(s1) +

∫ s2

s1

f(σ)dσ = 0, (2)

m(s2) + p(s2)× n(s2)−m(s1)− p(s1)× n(s1)

+

∫ s2

s1

(p(σ)× f(σ) + l(σ))dσ = 0,
(3)

Where n(s2), m(s2) are respectively the internal forces and
moments applied by the [s1, s2] segment to the next segment
of the rod (]s2, L]) while n(s1), m(s1) are respectively the
internal forces and moments applied by this segment to the
previous segment of the rod (]0, s1[). f and l are the force
and moment distributions applied along the segment and the
terms

∫ s2
s1

f(σ)dσ and
∫ s2
s1

(p(σ)× f(σ) + l(σ))dσ, therefore,
represent the external loads applied to the whole segment as
shown in Figure 1 for a section from 0 to L. By taking the
partial derivative form with respect to s the equations 2 and
3 become the constitutive equations for internal force and
moment:

ṅ(s) + f(s) = 0,

ṁ(s) + ṗ(s)× n(s) + l(s) = 0
(4)

C. Constitutive Equations

In this section, we use the formulation developed by Rucker in
a series of works ([28], [29], [36]. The constitutive equations
relate the deformation of the rod to the internal forces and
moments and external loads applied on the rod. The rod
is made of a linear elastic material that respects Hooke’s
law: F = k∆x. The notation ∼ refers to the undeformed
configuration of the rod. Therefore p̃(s), R̃(s), ṽ(s) and ũ(s)
refer to the initial rest position, orientation and local changes
in translation and rotation of the reference rod.

The stiffness matrices, for shear and extension Ktra and for
bending and torsion Krot are defined as:



s = L

s = 0

n(L), m(L)

f(s), l(s)

n(0), m(0)

Fig. 1: Section from 0 to L of a Cosserat rod, deformed under
the action of external forces f and moments l. Internal forces
n and moments m are also represented at s = 0 and s = L.

Ktra =

A(s)G 0 0
0 A(s)G 0
0 0 A(s)E


Krot =

Ix(s)E 0 0
0 Iy(s)E 0
0 0 J(s)G

 (5)

Where Ix and Iy are the second moments of area of the rod
cross-section, J is the polar moment of inertia of the cross-
section (J = Ix + Iy). E and G are the Young’s and shear
moduli. From the linear constitutive laws are then derived the
following relations between internal forces and moments and
local changes v(s) and u(s), expressed in the local coordinate
frame:

n(s) = R(s)Ktra(s)(v(s)− ṽ(s)),

m(s) = R(s)Krot(s)(u(s)− ũ(s))
(6)

From 6 it is possible to obtain an expression of v and u
with respect to s:

v(s) = K−1
traR

T (s)n(s) + ṽ(s),

u(s) = K−1
rotR

T (s)m(s) + ũ(s)
(7)

Equations 1, 4 and 8 then constitute the following system
of differential equations:

ṗ = Rv, v = K−1
traR

Tn+ ṽ,

Ṙ = Rû, u = K−1
rotR

Tm+ ũ,

ṅ = −f,

ṁ = −ṗ× n− l

(8)

III. MODEL-BASED OPTIMIZATION UNDER CONSTRAINTS

A. Shape Control Approach

In soft robot control applications [28], [36], [31], the emphasis
is put on the actuation of the tip of the robot. In these works,
the authors find the solution to the non-linear equations 8 that
respect the desired position and orientation of the tip of the
robot. While this approach is efficient when controlling the
position of a single point and in general for soft robot actua-
tion, it is not adapted for general linear object manipulation as
it struggles to achieve complex object shapes. To accurately
control the shape of a deformable object with a robotic arm,
it is needed to solve an underactuated problem with limited
grasping points to deform an object with a large number of
degrees of freedom.

We consider the configuration of the rod defined by the
configuration of every point of the rod (ie. position p, orien-
tation O, internal forces n, and moments m of every point
of the rod). In order to adapt the approach to deformable
object manipulation, we define a low-level representation
consisting of a set of k objective points carefully selected
such that their position represents the desired shape of the
manipulated object. See Figure 2 where the objective points
(red) represent the desired shape. The objective is to deform
the manipulated object in order to match the shape defined
by the set of objective points. In [23], [24], the authors
minimize the position (and orientation) error between a set
of desired positions and a set of pre-defined control points
on the object. This approach works best when the number
of pre-defined points whose positions are controlled is equal
to the number of actuated points, hence why it is used in
soft robot actuation. However, for shape control applications
it is needed to control multiple points with partially coupled
positions. These coupling constraints considerably limit the
set of feasible solutions even though a solution that produces
the desired shape exists when picking different control points
with different couplings. Figure 2 illustrates this issue. It is
impossible for the control points (blue) to match the position
of the objective points (red) because it would require the rod to
both stretch and compress at different locations, which would
require at least three grasping points, although a solution exists
when selecting other control points.

We propose instead to consider the curve Γ formed by the
linear object in the 3D space and to minimize the distance
error between the set of k objective points and Γ. Thereby we
do not control the position of a few control points and instead
control the shape of the object so that the distance between Γ
and the objective positions is minimal. The result is a curve Γ
that passes through every desired point but without additional
constraints on the positions of specific control points. The
number of objective points k is defined arbitrarily but the
higher k is, the more important the constraints on the desired
configuration are and the harder it is to find a solution. We
then approximate the target shape with B-splines to ensure its
feasibility.
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Fig. 2: Representation of the issue with the classic control
points (blue) - objective points (red). We propose instead to
minimize the distances d1, d2, d3

B. Deformation Energy

While this approach is more effective in finding solutions that
respect a desired shape, it has the disadvantage of generating
multiple solutions. To rank these solutions, we introduce the
deformation energy E as a secondary objective. In [23], the
authors compute the FEM energy to determine a stable robot
pose. In our case, we search the solution that minimizes E,
which ensures the internal strains in the object are minimal.
This is especially useful for industrial applications where
objects must be handled with care. We suppose the system
is quasi-static and the gravity negligible:

E =

∫ L

0

e(s)ds,

=

∫ L

0

1

2
(v(s)− ṽ(s))T (s)Ktra(s)(v(s)− ṽ(s))

+
1

2
(u(s)− ũ(s))TKrot(s)(u(s)− ũ(s))ds

(9)

Since integrating the Cosserat equations provides the full
configuration of the rod, the only unknowns are the initial
conditions that correspond to the configuration of the first point
of the rod. The solution are the initial conditions p(0), O(0)
n(0), m(0) that lead to an optimal configuration of the rod.
The boundary conditions depend on the type of grasping at the
limits of the object, for realistic grasping situations, additional
constraints must be set to reflect the grasping uncertainty (ie.
nx = 0 or mx = 0 if the grasp does not enable forces or
moments along the x axis). For a linear object of length L,
clamped at one extremity and grasped by a robotic arm at the
other, the objective function is defined as:

min
n(0),m(0)

F =
W1

2L

∫ L

0

(v(s)− ṽ(s))TKtra(s)

(v(s)− ṽ(s)) + (u(s)− ũ(s))TKrot(s)

(u(s)− ũ(s))ds+W2

k∑
i=1

dist(Γ, pobj(si),

(10)

subject to: 

p(s = L) ⊂ Ws,

ṗ = Rv,

Ṙ = Rû,

ṅ = −f,

ṁ = −ṗ× n− l

We have a weighted (W1,W2) objective function where
pobj(si=1..k) are the objective points positions and Ws is the
operational workspace of the robot’s end-effector (see Figure
3).

Deformable 
Object

Robot Workspace 
Ws

End-effector

End-effector

Fig. 3: schematic representation of a robotic end-effector’s
operational workspace Ws

C. Numerical resolution

The Cosserat forward kinematic model is useful to predict
the deformations of the object but for a motion planning
application, we need to be able to generate the command
to send to the robot in order to control the shape of the
manipulated object. However, the Cosserat forward kinematic
model cannot be easily inverted so we cannot use an analytical
solution. Instead, we numerically solve the problem with an
algorithm based on the shooting method which is a classical
approach for solving boundary value problems. The Cosserat
equations are integrated along the rod until boundary condi-
tions that satisfy the constraints are found. On top of this,
there is another optimization loop that ensures the optimality
of the solution where the optimization variables are the unset
initial conditions of the problem. When integrating the model
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Fig. 4: Optimization process

equation with the optimized variables, we obtain an optimal
configuration of the rod with respect to the cost function (see
Figure 4).

D. Optimal trajectory generation

Interior-point methods are used for the optimization therefore
we need to provide the algorithm an initial guess ”close
enough” to the solution to start the optimization. Since this
problem is a highly nonlinear boundary value problem, pro-
viding a good initial guess is a key problem as the algorithm
can fail to avoid local minima or to find a solution otherwise.

To ensure the algorithm does not fall in local minima, we
introduce ninter intermediate object configurations between
the initial known and final configurations. To do this, we
define pinit as the projection of pobj on the initial shape and
discretize the positions between pobj and pinit into ninter sets
of intermediate objective points configurations. We then iterate
and solve the optimization problem at each step by providing
the results from the previous step as the initial guess for the
next step.

As a by-product, we also obtain a set of intermediate opti-
mal configurations that serve as a trajectory for the object to
deform from its initial to the desired configuration. In [31], the
trajectory is defined by discretizing the end-effector’s position
between the initial and final configurations but the state of
the object is not known during the trajectory, the feasibility
of the path is therefore not guaranteed. Another advantage is
that for real applications the viscosity of the object is often
not negligible, each configuration hence depends on the path
taken and there is benefit in defining the intermediate steps and
controlling the shape of the object during the manipulation.
The intermediate set of objective positions is defined as:

step i

step i-1

step i+1

final step

initial step

pobj

pinit

Fig. 5: Set of ninter successive optimal configurations from
which the end-effector trajectory is derived

pi = pinit + (i− 1)
pobj − pinit

ninter
(11)

Where i = 1...ninter, see Figure 5 for an illustration.
We suppose that the contact between the robot and the

object remains steady during the manipulation, therefore the
configuration of the end-effector corresponds to the configu-
ration of the contact point. From the output of the algorithm,
we can subsequently deduce the position and orientation
of the end effector to deform the object into this optimal
configuration.

Since we use a static Cosserat model, the end-effector
velocity has to be low enough to limit the dynamic effects.

The process can be summarized as (see Figure 6):
• Define pobj ;
• Input pobj and pinit;
• Define the intermediate objectives between pobj and pinit;
• Solve the optimization process at each step, providing the

input for the next step;
• Determine the end-effector commands from the interme-

diate and final configurations of the object.

IV. EXPERIMENTAL VALIDATION

1) Experimental Setup: To validate the described approach,
we propose the following experiment: a robotic arm deforms
a linear deformable object, clamped at one end and grasped
by the robot at the other end, towards a desired 3D shape.
We compare each object pose during the trajectory to the
model and then also compare it to a reference trajectory. Let
us consider the rubber band (see table I) clamped so that
the initial position p(0) and orientation O(0) are fixed. We
define pobj =

[
pobj1 pobj2 pobj3 ...pobjn

]T
the objective points that

represent the desired shape in R3. The trajectory is generated
by discretizing the position of the objective points between the
desired and initial configurations into ninter = 7 intermediate
steps.

For the experimental setup, we use a Franka Emika Panda
seven degrees of freedom arm (see Figure 7). The robot is
controlled with Moveit and ROS using Franka Emika FCI,
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Objective points pobj
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Initial Configuration
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Desired object 
configuration

Final Configuration

Fig. 7: Experimental setup at the initial and final configura-
tions.

Parameter Value
E 3.2e6 N/m2

ν 0.5
G = E

2(1+ν)
1.06e6 N/m2

EIx 0.04 N.m2

EIy 0.04 N.m2

GJ 0.028 N.m2

ρ 1392 kg/m3

L 0.29 m
h 0.02 m
b 0.02 m
g 9.81 m/s2

TABLE I: Parameters

developed for research applications. The rubber band (see table
I) is clamped at one end and fixed to the robot thanks to a 3D
printed handle that maintains steady the rubber band so that
the orientation and position of the end effector correspond to
the position and orientation of the extremity of the rubber band
(see Figure 7). The setup also includes a 3D Kinect V2 that

tracks the position of 10 markers evenly distributed on the
rubber band.

2) Results: To validate the approach, we compare the
object’s configuration to pobj and plot the error over time
to show the convergence of the algorithm. The error is the
average distance between the measured configuration of the
object and each objective point of pobj . The robot’s end-
effector velocity is defined beforehand and is not a source
of error as long as the model hypotheses are fulfilled, ie.
the object’s dynamic effects are negligible. To highlight the
efficiency of the method over different objects and shapes, we
propose five experiments each with different pobj or objects
and plot the error over time during the manipulation in Figure
9. The corresponding experiments are depicted in Figure 8, the
upper picture is a photo of the system once the objective is
reached and the lower graph represents a comparison between
the objective points pobj , the model’s shape prediction, and the
measured state of the object at the final state of the trajectory
for the corresponding experiment. The final step 3D error
distribution for the experiments is shown in Figure 10 and
ranges from 1.6mm to 3.6mm. At this scale, the camera error
is not negligible, especially for the depth measurements that
are less precise with the Kinect V2 than in the other directions.
We therefore also show the errors in the 2D plane in Figure
10 and 9b. Here we used two different objects, a beam of
square section and an elastic band. Any object can be used as
long as the Cosserat model’s hypotheses are fulfilled. Since the
velocity is constant across all experiments, the robot’s travel
time is only determined by the path taken.

To show that our approach is general and that the final
error is stable over multiple pobj], we compare the error
distribution obtained in Figure 10a to the error distribution
obtained when repeating the same experiment 8 times with the
same inputs (see Figure 10b). Repeatability is never ensured
when manipulating deformable objects, multiple hypotheses
like the elastic behavior and the negligible viscosity of the
object are not verified in reality. Hence, the shape of the object
depends on the path taken unless the manipulation speed is
slow enough to entirely nullify the viscous effects, which is
not suited for robotic applications. Also, flaws in the object
and errors in the estimation of elastic parameters often lead
to unexpected behaviors and biases. These factors can hinder
the repeatability of the experiment hence why we repeated the
same experiment multiple times to estimate the error variance.
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Fig. 8: Experimental results for multiple objectives and object shapes

(a) 3D Error convergence over time
for the five experiments

(b) 2D Error convergence over time
for the five experiments

Fig. 9

(a) Final error variance across multi-
ple experiments with different pobj

(b) Final error variance across the
same experiment repeated multiple
times

Fig. 10

We can see that the distribution for the repeated experiment
lies in a similar range as the one with different experiments,
which shows the consistency as well as the repeatability to
some degree of the method. This must however be confirmed
with further experimentation as the sample size is low for both
cases.

V. DISCUSSION AND FUTURE WORK

In this article, we proposed an approach based on the Cosserat
theory to control the shape of linear and planar objects
that respect the Cosserat hypothesis. We used the framework
previously developed for deformable linear robot control and
adapted it to deformable object manipulation. We proposed to

reformulate the problem as an optimization problem where
the distance between a set of objective points and the 3D
curve formed by the object and the elastic energy in the object
are minimized. To improve the robustness of the algorithm
and control the trajectory connecting the initial and final
configurations of the object, we discretized the objective points
into intermediate objectives in order to define intermediate
configurations. From these previous configurations, we de-
ducted the end-effector positions to deform the object toward
the desired shape. To further improve the results and the final
distance error, the next step is to close the loop and add vision
and force feedback. There is a trade-off between execution
time and algorithm precision and multiple parameters can
be influenced in order to reduce it, among them are the
number of objective points, the complexity of the desired
shape, the number of intermediate objectives, object rigidity,
and discretization fineness, weights in the cost function. So far
these parameters are tuned towards high precision but adding
sensor feedback can help counterbalance the precision loss.
Additionally, a spline or curvature-based representation of the
object can be used to estimate the load [37] at the limits of
the objects.

Two main challenges in this field are handling contacts with
the manipulated object as well as manipulating an object with
a complex shape. If the contact forces are known (ie. a clip on
the object of a known punctual force), then both problems can
be solved by having multiple integration sections with different
boundary conditions and shapes. The problem is much more
difficult however for contacts that are difficult to model (ie.
velcro, contact with other soft objects).
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