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Closed-loop shape control of deformable linear
objects based on Cosserat model

Azad Artinian!, Faiz Ben Amar!, and Véronique Perdereau

Abstract—The robotic shape control of deformable linear
objects has garnered increasing interest within the robotics
community. Despite recent progress, the majority of shape control
approaches can be classified into two main groups: open-loop
control, which relies on physically realistic models to represent
the object, and closed-loop control, which employs less precise
models alongside visual data to compute commands. In this
work, we present a novel 3D shape control approach that
includes the physically realistic Cosserat model into a closed-
loop control framework, using vision feedback to rectify errors
in real-time. This approach capitalizes on the advantages of both
groups: the realism and precision provided by physics-based
models, and the rapid computation, therefore enabling real-time
correction of model errors, and robustness to elastic parameter
estimation inherent in vision-based approaches. This is achieved
by computing a deformation Jacobian derived from both the
Cosserat model and visual data. To demonstrate the effectiveness
of the method, we conduct a series of shape control experiments
where robots are tasked with deforming linear objects towards
a desired shape.

Index Terms—Dual Arm Manipulation, Materials Handling,
Modeling, Control, and Learning for Soft Robots, Sensor-based
Control.

I. INTRODUCTION

Robotic manipulation of deformable objects, and specifically
the shape control of deformable objects is a growing subject
in the research community. Its potential applications are as
diverse as common since deformable objects are everywhere,
from food manipulation [1] to robotic surgery [2] and gar-
ments folding [3]. One particularly important object type is
Deformable Linear Objects (DLO), such as cables and beams,
which are prevalent across various manufacturing sectors and
have received significant attention from the community in
recent years [4], [5].

Multiple methods in the literature have been used to solve
shape control tasks, either for deformable robots or objects.
Mechanical models such as finite elements method (FEM) [6],
[4] or Cosserat-based models [7] are powerful tools to achieve
such goals. They allow the creation of a direct relationship
between the inputs of the robots and the resulting object
shape. However, despite being among the most precise models
available, they are highly sensitive to the estimation of elastic
parameters and are computationally expensive. The stiffness
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matrices, which are derived from these elastic parameters,
require precise estimation, which can be difficult. Addition-
ally, due to the high computational costs, most controllers
using these models are open-loop [6], [8]. The authors in
[7] achieved a closed-loop approach to control a deformable
linear robot (DLR), but DLR control focuses more on the
displacement of the tip than on the full shape of the robot and
this approach can hardly be transposed to object manipulation.
In [4], the authors proposed a closed-loop controller coupled
with a reduced FEM model to control a clamped DLO.

To avoid the high computational costs and achieve closed-
loop control, other approaches have focused on geometrical
models or model-free methods. Usually, a local deformation
Jacobian is computed to create a connection between the
robot’s action and the object’s shape. In a series of work, the
authors in [9], [10], in [11] and [5] applied visual-servoing
approaches to robotic deformable object manipulation. The
local deformation Jacobian matrix is initialized and then
updated at each iteration. This Jacobian matrix represents the
connection between the command sent to the actuators and
a low-level representation of the shape of the manipulated
object. This representation can either be the 2D contour [10],
[11] or the positions of a set of control points on the object
[12], [13]. The Jacobian matrix is updated based on the
comparison between the visual data and the commands sent on
a previous time window. It therefore depends on the anterior
motions of the robot. Potential motions can therefore remain
unexplored or be outdated if these degrees of freedom have
not been used recently. This is especially problematic for more
rigid deformable objects whose dynamics depend heavily on
their current pose. To ensure every possible motion is taken
into account when computing a solution, the authors in [14]
introduced an ARAP model in the controller. The visual data
are used to update the model which, in turn, is used to predict
the next potential motions and compute the Jacobian. This
approach has then been extended with an optimal controller
in [15]. However, non-physics-based geometrical models can
provide unfeasible or unrealistic shapes and can sometimes
lack precision, especially for large deformations where more
complex modes of deformation (Legendre polynomials) are
difficult to capture with such models.

In this article, we propose a novel closed-loop approach
to control the shape of DLOs. The goal is to preserve the
realism of mechanical models while having none of their usual
drawbacks. Our approach, based on Cosserat theory, provides
an efficient and precise shape controller for DLOs, even for
tasks involving complex desired shapes and deformations.
The main advantages of our approach are its accuracy and
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repeatability, without requiring prior precise knowledge of the
manipulated object, as well as its generality since it handles
complex objects made with non-isotropic, non-homogeneous
composite materials. Additionally, by integrating the Cosserat
equations at every iteration, we ensure that the generated shape
is feasible and physically realistic.

The paper is organized as follows. First, we present the
Cosserat framework from which are derived the constitutive
ordinary differential equations (ODE) that govern the shape of
the object. Then, we propose to formulate the shape control
problem as a global boundary value problem (BVP) where
the manipulated object is held at both limits by the robot. We
then include the Cosserat ODE in our control scheme that aims
at solving an initial value problem (IVP) at each iteration to
solve the BVP globally. Finally, we test our approach on our
experimental setup consisting of two robotic arms and several
objects with different properties.

II. COSSERAT ROD MODEL

The Cosserat rod model is one of the most accurate mechanical
models for DLOs. It has been used extensively in the soft
robotics community to model [16], [17], control [18], [19], [7]
and estimate [20] the shape and the dynamics of DLRs. In this
work, we will apply the framework introduced by the authors
in [21] and developed in [22], [18], [19]. It has the advantage
of formulating the problem as an initial value problem.

As seen in chapter eight of [21], the Cosserat constitutive
equations can be derived by applying static equilibrium on a
section of the DLO:

p=Rv v=K;'RTn+%

R=Ri u=K*R'm+a

. (D
n=—f

m=-pxn-—1I1

The Cosserat ODE govern the state T' = [p, R,n,m|T of
the object i.e. the position p, orientation R, internal forces
n, and moments m at every point of the object. f and p are
the external forces and moments, K; and K, the translational
and rotational stiffness matrices, v and w« the linear and
angular rates of change, " and ~ refer respectively to the
bijective mapping from R? to s0(3) and the undeformed rest
configuration of the object.

We consider the reference length parameter s € [0, L] for
a rod of length L. If we know the vector of initial values
g = I'(s = 0) = [po, Ro,n0,mo)’, we solve the IVP by
spatially integrating equations (1) with respect to s, and thus
obtain the full state I' at every point of the rod.

In other words, the full state I' of the object can be very
easily deduced if we know the initial values I'yg at s = 0.
The forward Cosserat model is well-posed [19], we have 12
equations (see equation 1) as well as 12 unknowns in I' at
every point of the rod. Therefore, the solution obtained by
solving the IVP is unique.

III. PROBLEM FORMULATION

We use the classical problem formulation based on control and
objective points. This formulation has been used extensively

in the literature [6], [14], [4]. It has the advantage of being
fast to compute and easy to set up.

We define two sets of points:

« The first set of objective points which position p?, ;> With
i € [1,n.), represent the target shape of the object.

« The second set of control points, selected on the object,
which positions p, with i € [1,n,.], are controlled.

Each objective point is associated with a single control
point and the goal of the algorithm is to minimize the
position error between each objective-control point couple:

_ 1 _ 1 noo_ n T _ 1 nT
€p = [Hpobj pc||2 ”pobj chQ] - [Ep Ep] .
Figure 1 illustrates a schematic representation of the problem.

pg bj : Objective shape
3 : Manipulated object
1o Poyj P )
2
5 v Pobj 4
et Pob;j
p 3 )"

Fig. 1: Problem formulation: minimize ¢,

We then include the Cosserat equations that model the
object to define the following BVP: find the initial values
T’y that, when integrated, provide a state of the object I' that
minimizes .

While solving the IVP is fast and efficient and only re-
quires a spatial integration if we know the type of boundary
conditions (i.e. clamped, free at the limits, etc.), solving the
BVP, i.e. finding the initial values Iy that respect the boundary
conditions is much more difficult. Previous approaches have
relied on optimization methods to find a numerical solution
[19], [17], [23], but the computational cost of these algorithms
makes them difficult to include in a closed-loop control
scheme.

Our proposed approach is designed to preserve the precision
of the Cosserat model while also making it less computation-
ally expensive to include it in our closed-loop control scheme.
Instead of directly solving the costly BVP, we propose to start
from a known initial state that corresponds to the shape of the
manipulated object at £ = 0. At each iteration we estimate,
using sensor data, the initial values I'y that correspond to
the current shape of the object. Then, we compute a local
Jacobian matrix from both the sensor data and the Cosserat
equations. We use this Jacobian to update I'y and solve the
new IVP to obtain the updated state I'. From this updated
state, we deduce the command to send to the robots to update
the shape of the actual object. The successive computed initial
values I'y converge toward the global solution of the BVP, and
therefore the shape of the manipulated object converges toward
the desired shape.
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IV. CLOSED-LOOP SCHEME
A. Deformation Jacobian based on Cosserat Model

The deformation Jacobian matrix .J; is a linear approximation
of the Cosserat model locally. In most applications [7], [14],
the authors compute the Jacobian by introducing a simulated
disturbance in the input of the robots and observing the
resulting simulated position of the control points. Instead, we
introduce a disturbance directly in the initial configurations I'y
of the Cosserat IVP representing the object in its current shape.
This allows us to update, at each iteration, I'y and then solve
the Cosserat IVP, thus ensuring the feasibility and physical
realism of the resulting shape.

Jq creates a coupling between the variations of I'g and the
variations of the positions of the control points p. To ensure
the local approximation is correct, we compute a new Jacobian
at every time step instead of updating an existing one.

Computing Jy only requires to know the initial values I'g
corresponding to the current state of the object. For each
component of I'y, we successively introduce a disturbance A,
with j € [1,m;] and m, the number of components of I'y. We
then integrate the Cosserat equations from the disturbed initial
conditions. Once we obtain the disturbed shape of the object,
we compare the disturbed and current position of the control
points and compute, with finite differences the column of J;
corresponding to the disturbed component of I'y. By repeating
this process m; times, we then obtain the full deformation
Jacobian J; which provides a coupling between the variation
of each dimension of I'y and their effect on the position of
the control point p’.

The type of robotic grip on the object directly affects the
Jacobian matrices and the type of boundary conditions. For a
DLO grasped and controlled at both ends, we have m; = 12,
and the size of I'y is necessarily 12, 3 for the position, 3 for
the orientation, and 6 for the internal forces and moments.

However for more realistic cases, it is often difficult to
respect the clamped boundary conditions at the grasping points
between the robot and the object, there can be for example
friction or slippage along certain DOFs. Therefore, m; < 12
and the perturbations A’, must be set to zero for those
uncontrollable DOFs which produces a column of zeros in
Ji. Following the Cosserat theory, if the gripper cannot apply
forces and moments along specific directions at the limits,
the internal forces and moments are constant along these
directions all across the rod.

For a real-world application, the vector of initial values I'y
that corresponds to the current shape of the object is unknown.
Therefore we have to estimate it at each iteration from the
sensor data. In the following, we call this estimation fo.

B. Control law

Once J; is obtained, we use it to compute the new initial
values I'gp 141 that will be used to update the shape of the
object. We directly use the pseudo-inverse of J; as well as
the error €, at step k to compute the new initial values I'g 541
at step k + 1:

Poky1 = Tox + KJ,IGp ()

where f‘o,k is the estimation of the initial values vector,
K is a parameter that affects the convergence rate toward the
objective as well as the precision of the algorithm and J; is the
Moore-Penrose inverse of the Jacobian. The smaller K is the
smaller the steps between each new 'y are. The algorithm will
therefore require more iterations to converge toward the global
solution but will also be more precise. Since the Jacobian is a
local approximation of the Cosserat model, it is therefore more
accurate when computing solutions close to the I'g where J;
was computed.

Once the desired initial conditions I'g ;41 are computed,
we solve the initial value problem to acquire I'y4;. From
this full state, we then deduce the desired robotic end-effector
position and orientation, and then derive a proportional control
law to control the end effector’s velocity and angular velocity
and drive it toward the desired position and orientation, see
equation 3:

v = —Kiey

3)

Vg = —Kgeq

where v, and v, are the end-effector’s velocity and angular
velocity, K; and K, the associated gains, and e; and e,
the position and orientation errors between the current end
effector’s pose and the new pose deduced from I'y, ;. We use
the same control law for both arms.

Pobj €p — - r().k—H Sove L[é] [’7::1]
= o il
pimes Poet1=Tox + KJgep 4‘{ Cosserat IVP H Control law ’—
-

Ja
Compute
Jacobian
Tox  [7 = -
3 Tox =Lor1+ K ’](;.l.'—l(l' Perception ‘

Fig. 2: Bloc diagram representing the control loop

C. Perception feedback

To compute J;, we need to know the initial values I'y =
[po, Ro, o, mo)T that correspond to the current state of the
manipulated object. It is important to have an accurate esti-
mation of I'g since it is the reference point from which J;
is computed. While the initial position py and orientation R
are easily deduced from either the robot at the gripping point
or the type of boundary conditions, the main challenge is to
accurately estimate the initial internal forces ng and moments
myg. Two approaches could be used to estimate I'y, one based
on force sensors and the other one based on vision:

o Force sensor based: The most straightforward approach.
If the robot is equipped at its tip with force sensors
we can simply read the force and moment values at the
limits and subtract external forces and moments to obtain
no and mg. The main drawback of this approach, apart
from requiring two force-torque sensors, is that these
measurements need to be filtered to suppress noise. This
adds a delay in the loop as small noises can be amplified
and generate non-negligible errors. pg and Ry are then
directly obtained from the robot’s end-effector feedback
to obtain I'y.
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o Vision based: This approach requires more steps but is
more robust to noise or if feedback from the robot is not
available. From the current error measurements of the
control points €,, we use the initial conditions and the
Jacobian computed at the previous step to estimate I'( at
the current step, see equation 4.

fo,k = fo,k—l + KJJz,kAGP 4)

While the visual approach is both much easier to set up and
more robust to noise, it requires precise estimation of I'y at
the first step as well as longer computation time and is also
sensible to occlusions. We represent the control loop on the
figure 2 and on the algorithm 1.

Algorithm 1 Control loop at step t

Ja,k—1 /I Jacobian computed at step k — 1
ng,x—1 // internal forces computed at step k — 1
mo,;—1 // internal moments computed at step k — 1

while 1=1 do
pes = get fromuvision()
mes

€p = Dobj — D¢

fo,k = fo,k_l + K JdT) 4_1€p // estimate current initial
conditions

Ja,. = ComputeJacobian(Ty 1)

Lot = Lo+ KJ) e

[er, ea]T = SolveCosseratIVP(Tg +1) // EE posi-
tion and orientation error

[vt,v,] = Control Law(es, e,) // EE velocities
end while

D. Well-posed problem and stability

The Cosserat IVP is well-posed [21]. For each vector of
initial values I', there exists a unique solution I' obtained
by integrating the Cosserat equations (equation 1) from T'y.
Furthermore, the solution I' changes continuously with I'y.
Thus, the well-posedness of the Cosserat problem guarantees
a unique solution as long as the material’s elastic behavior
assumptions are satisfied.

Furthermore, if I'y is updated continuously during the
manipulation, then the shape of the object also varies con-
tinuously. The stability conditions can therefore be reduced
to the classic visual-servoing conditions discussed in [24], i.e.
we can show local stability around the equilibrium points. We
define our stability conditions in a similar way as presented by
the authors in [25] for deformable robot control, more recently
used in [7]. From J; in s = 0, we extract the submatrix related
to the variation of internal forces and moments and define our
effective rigidity matrix:

M =Ji(:,6:12) 5)

Contrary to the previous works on deformable robots, we
define the rigidity matrix at s = 0 since it is where 'y is
defined. We use a SVD to extract the singular values of M:

M =vxiuT (6)

Where V and U are the orthonormal matrices obtained from
SVD and:

Omy

T = diag(
o2, +

01
AR ) @)

O1,...,0m, are the singular values of J4(:,6 : 12). They
must remain positive during the manipulation to avoid instabil-
ity. €4 represents the damping term introduced in the Jacobian
to avoid singular values. This implies that the forces and
moments applied by the manipulators counteract the elastic
restoring forces applied by the object in s = 0, thus ensuring
the local stability around the equilibrium point where J;
was computed. We therefore define the stable neighborhood
Q: {Tok+1 € R | min([oy,...,00,]) > 0} in which each
new ['g must be computed.

V. EXPERIMENTAL VALIDATION
A. Experimental Setup

To validate our approach, we used two Franka Emika 7 DOF
robots to manipulate various DLOs with different properties:

e Object 1: A squared section DLO made of rubber with
homogeneous and isotropic properties and high flexibility.

o Object 2: A braided steel cable with a circular section and
very low flexibility. The material is neither homogeneous
nor isotropic.

o Object 3: A braided steel sheathed cable with a circular
section and a smaller radius giving it higher flexibility.
The cable is made of composite materials, not homoge-
neous nor isotropic either.

= e

Fig. 3: Different objects used through the experiments

Fig. 4: Fixation of the cable before (left) and after the
manipulation (right)



ARTINIAN et al.: CLOSED-LOOP SHAPE CONTROL OF DEFORMABLE LINEAR OBJECTS BASED ON COSSERAT MODEL 5

Set desired

shape Set initial shape

Shooting method:
Estimate Initial
Values at s = 0 and
t=0

‘ Perception }
Sffline
Begin algorithm

Compute desired
Compute Jacobian |— initial Values ats = 0
-> Robot commands

Update Object shape E
'

Estimate Initial
Values ats =0

online 1

Fig. 5: Experimental protocol

The three manipulated objects can be seen in figure 3.
For the vision feedback, we use a set of calibrated Optitrack
cameras to track markers placed on the object’s control points.
The approach is modulable, any vision approach can be used.
The control points must effectively capture the primary defor-
mation modes of the object, meaning their number depends
on the object’s rigidity and length. For the elastic band, we
use three markers, while for the longer cables, we use four.
Their exact positions are not critical and vary during our
tests, provided they are distributed across the entire object.
We decided to use the Optitrack system both for its accuracy
and robustness to occlusions.

We use a computer with an Intel Xeon Silver 4214R CPU
and the standard chipset GPU. We use ROS to communicate
with the robot and the algorithm seamlessly operates at a
frequency of 10 Hz, where 90 percent of the computational
workload is due to the vision component. We also designed
two grippers to comply with the clamped assumptions at
the boundaries, i.e. no relative displacement at the contact
points. While the conditions are respected for objects 1 and
3, there is slippage with object 2. Its effects are however
compensated by the controller as the relative positions of
the control points remains consistent. The slippage during
the experiments ranged between 1 to 2 centimeters along
the object’s axis, and up to 7/2 around the axis (see figure
4). If the slippage were more significant, we could track
the end-effector’s position during manipulation and estimate
the slippage amplitude by comparing the measured relative
positions of the control points and the end-effector with their
predicted positions. Once estimated, the slippage amplitude
can be used to adjust both the boundary values of the problem
and the object’s length in real time.

B. Protocol and initial object configuration

To evaluate the efficacy of our controller, we conducted
three experiments, all involving three-dimensional shape con-
trol tasks. The first experiment focuses on bi-arm three-

dimensional shape control of a DLO. We established an
objective shape for the object and tasked the controller with
achieving it from the initial configuration of the object. The
second experiment assessed the repeatability of the approach
by deforming the object towards a single predefined shape
across five consecutive trials, each with a subtly varied initial
object configuration. The final experiment resembles the first
one, but with altered boundary conditions. In this case, the
manipulated DLO is clamped at one end and held by the robot
at the other end.

We propose the following protocol, represented in figure
5. First, we define the set of objective points pf)bj, which
represent the desired shape of the object. Next, we set the
robot’s end-effectors at a random initial location, activate the
controller, and record the position error ¢, over time. The
initial position of the end-effectors determines the starting
configuration of the manipulated object. The algorithm can
begin from any initial object configuration, utilizing any
method that estimates or measures the initial values I'g at¢ = 0
corresponding to the object’s initial shape. For each test, we
manually set the initial position of the end-effectors using the
guiding mode of the Franka Emikas. Subsequently, we use
an algorithm based on the shooting method to estimate the
object’s configuration. Typically, the estimation process using
the shooting method takes between one and two seconds. As
a result, each initial configuration varies slightly from test to
test. Almost all cases of failure come from a poor estimation
of I'g at t = 0, since the shooting method provides accurate
estimations for the position and orientation, but is way less
accurate when it comes to internal forces and moments.

C. First experiment: bi-arm shape control

We tested our protocol on the three objects (see figure 3)
with different objective shapes. A comparison between the
initial shape, final shape, and desired shape as well as the
error €, over time is displayed in figure 6 for a sample of all
the tests. The error over time curves all have an exponential
profile where most of the deformation happens in the first
seconds.

The elastic parameters have been estimated for object 1
(Young modulus ' = 3.2M Pa and Poisson ratio v = 0.5).
The steel modulus for the second and third objects are E =
180G Pa and Poisson ratio v = 0.303. However, deriving the
stiffness matrices analytically for the cables proves challenging
due to their mechanical characteristics. Therefore, we pre-
estimate these matrices by comparing the actual deformation
with predictions from the model. As a result, the obtained
matrices are somewhat approximate and depend on the object’s
configuration.

The requirement for precise estimation of stiffness pa-
rameters is a primary limitation in physics-based models.
Our approach effectively addresses this issue by maintaining
consistent precision, regardless of the exactness of these pa-
rameters. The majority of errors stemming from inaccuracies
in stiffness parameters nullify each other during Jacobian
calculation using finite differences. The remaining residual
error solely reflects the modeling inaccuracies introduced by
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Fig. 6: Comparison between the initial, final and desired shapes. All desired shapes are set in three dimensions. The error over
time is displayed in the left column and converges under one mm.

Video link: https://www.youtube.com/watch?v=UtURz1ssXO0&

the disturbance A{l which is negligible. We conducted a total
of 35 tests with different desired and initial shapes. The final
errors €,, obtained after convergence when the algorithm is
stopped, are displayed in figure 7. Out of our 35 tests, only
6 converge with a final error €, larger than 1 mm. We also
had 4 cases of failure. We considered a test failed when the
final error was larger than 3 mm. The causes for these cases
of failure were either a poor estimation of I'y at £ = 0 or an
unattainable objective shape.

D. Second experiment: repeatability

To test the repeatability of our approach, we defined a target
shape and attempted to reach it in five consecutive tests. Since
the initial shape of the object is set by hand, it is slightly

different every time and the error €, at t = O varies between
90 and 160mm among the successive tests. The final shape, as
well as the error ¢, for these five repeated tests are represented
in figure 8. The profile of the error curves and the final shapes
are very similar for each test. Except for the 4th test, the object
converges toward the desired shape with a sub-millimeter error
at every test, regardless of the initial shape of the object.

E. Third experiment: different boundary conditions

We followed the same protocol as proposed in experiment
1, however in this case we only had one arm manipulating the
object, which is clamped at the other limit. This changes the
boundary conditions of the problem, thus adding additional
constraints on the position and orientation of the object at
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Fig. 8: Repeatability: Final shapes and error over time of five
successive tests

s = 0. The disturbance A{l introduced along these dimensions
in 'y will therefore be equal to zero when computing the
Jacobian. To avoid computing the pseudo-inverse of sparse
matrices, we reduce the dimension of the problem to the sole
variation of ng and mg in I'g. This effectively reduces the
number of variables by half. The comparison between the
initial, final, and desired shapes is represented in figure 9.

F. Comparison with the state of the art and Discussion

A comparison of the most promising approaches includ-
ing open-loop Cosserat for robotic shape control of linear
deformable objects is displayed on table I. We evaluate several
factors: from the physical realism of the obtained shape (which
ensures feasibility) to the shape complexity corresponding to
the highest order of the Legendre polynomial that approxi-
mates the proposed shapes. The only area where our algorithm
falls behind is the loop frequency which can be easily sped
up by changing the optitrack system with another vision-based
approach (for reference the loop frequency without the vision
is 100 Hz). On the other side, our approach is the only one that
consistently reaches sub-millimeter precision for such a range
of complex desired shapes, even when manipulating objects
with complex compositions and unknown properties.

The closest method in term of performance is the ARAP-
SS algorithm proposed in [14]. To further enhance the com-
parison, we introduce the same normalized metric based on
cosine similarity between the measured positions of the control
points and their predicted positions. This metric represents the
alignment between the predicted and measured vectors. The

nearer the value is to 1, the more accurately the deformation
Jacobian reflects the behavior of the manipulated object. The
mean between the cosine similarities of each tests as well as
the inter-test standard deviation is exposed on table II.

Our approach shows higher mean cosine similarity for all
objects than the ARAP-SS method. The standard deviation
can directly be tied to the robustness of the approach as it
shows a regularity of the metric across different tests. The
difference in mean and standard deviation between the first
object and the others reflects the imprecision on the stiffness
parameters. Nevertheless, we can conclude that the Jacobian
accurately represents the behavior of the manipulated object
in all scenarios. The Jacobian primarily captures the direction
of deformations, which necessitates precise modeling. On
the other side, the stiffness parameters mainly influence the
amplitude of said deformations, which can be readily adjusted
through closed-loop control. This explains the robustness of
the approach to stiffness estimation.

However, the method has limitations. Firstly, although it is
general amond DLOs, the Cosserat rod model used in this arti-
cle is specifically designed for one-dimensional objects and is
therefore not suitable for modeling 2D or 3D shapes. Secondly,
the method does not accommodate unforeseen contacts that
have not been predefined in the model. Managing unexpected
contacts remains an open challenge in the field of deformable
object manipulation.

VI. CONCLUSION

We have presented in this article our method to control the
shape of DLOs in real-time. By defining our global BVP
and iteratively solving an IVP, we included the Cosserat rod
model in our closed-loop controller. Thus enhancing the preci-
sion compared to regular open-loop physics-based approaches
while also demonstrating robustness to stiffness estimation.
We then conducted three different experiments, showcasing the
precision and repeatability of the approach for various desired
shapes. The approach consistently achieved sub-millimeter
precision during shape control tests on various objects with
anisotropic and heterogeneous properties. An interesting per-
spective would be to replace the perception module with more
advanced methods to detect and estimate contacts accurately.
The contact forces could then be included in the model to
allow the approach to handle unexpected contacts. Finally,
the approach can be generalized to other applications such as
deformable linear robots control. The problem’s formulation
varies depending on the type of actuation used. However, it
is generally simpler because the position and orientation are
fixed at the robot’s base. Consequently, the main challenge is
accurately defining the relationship between the variation of
internal forces and moments at s = 0 and the actuation.
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