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SUMMARY

In context of cancer diagnosis-based mass spectrometry (MS), the classification
model created is crucial. Moreover, exploration of immune cell infiltration in tissues
canoffer insightswithin the tumormicroenvironment.Here,wepresent aprotocol to
analyze 1D and 2D MS data from glioblastoma tissues for cancer diagnosis and im-
mune cells identification. We describe steps for training the most optimal model
and cross-validating it, for discovering robust biomarkers and obtaining their corre-
sponding boxplots as well as creating an immunoscore based on MS-imaging data.
For complete details on the use and execution of this protocol, please refer to
Zirem et al.1

BEFORE YOU BEGIN

In the realm of cancer diagnosis using mass spectrometry (MS), supervised machine learning (ML)

algorithms serve as pivotal tools for building precise classification models based on labeled data-

sets.2,3 The selection and optimization of an appropriate classification model can significantly influ-

ence result accuracy.4 Additionally, the integration of non-supervised ML approaches for cross-

analysis and the interpretability of outcomes are crucial considerations.5 Therefore, we have created

an artificial intelligence (AI) framework aimed at achieving the utmost accuracy and reliability in clas-

sification models for each specific dataset, while also identifying robust biomarkers through the use

of both supervised and unsupervised methodologies. This pipeline was tailored by leveraging mo-

lecular fingerprints from glioblastoma tissues, enabling the development of a 1D classification

model capable of distinguishing between benign, necrotic, and tumor tissues. Furthermore, a com-

plementary pipeline, referred to as the 2D pipeline, was established to estimate the relative pres-

ence of immune cells in tissues analyzed via mass spectrometry imaging (MSI). Indeed, the compo-

sition of the tumor microenvironment (TME) is widely known to significantly influence cancer

aggressiveness, type, and patient prognosis.6–9 While these two pipelines were initially developed

using SpiderMass MS and MSI data, they can be readily applied to various types of mass spectrom-

etry data. The only prerequisite is adherence to the prescribed data matrix format outlined below.

Description of datasets

The train dataset required for the 1D pipeline should consist of a CSV file structured such that the

initial column ("Class") denotes the label for each analyzed sample, while subsequent columns

STAR Protocols 5, 103285, September 20, 2024 ª 2024 The Authors. Published by Elsevier Inc.
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represent the features, specifically the m/z variables in our case. Each row of this dataset stores the

relative intensities of each sample for every m/z feature (refer to Figure 1).

For the blind validation set, the dataset must mirror the train dataset, with samples not used in the

train dataset.

Regarding the 2D pipeline, the dataset requirement involves an MSI dataset converted into imzML

format using imzML converter.10

Example files, i.e., two csv files (training and testing datasets), a pre-trained model and an imzML

MSI file, are available, in GitHub, for easy code testing.

The dataset may have undergone pre-processing before being used throughout this protocol. In our

case, binning (0.1) and TIC normalization were performed beforehand. However, this is not manda-

tory, it’s essential that MS and MSI data undergo the same pre-processing steps.

Python and package installation

Timing: 1 h

1. Visit the Anaconda website at https://www.anaconda.com/download, obtain the suitable Anaconda

installer according to your computer’s specifications, and proceed with the installation process.

2. Open the Anaconda-Navigator and launch the Jupyter Notebook.

3. In the Jupyter Notebook interface, run the following codes to import required packages (numpy,

pandas, scikit-learn, matplotlib, scipy, seaborn, statannot, lazypredict, joblib, eli5, plotly,

pyimzml and lightgbm) in their proper version.

Figure 1. An example of the required format for the train dataset (Tumor, Necrosis and Benign classes) used in the 1D pipeline
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KEY RESOURCES TABLE

STEP-BY-STEP METHOD DETAILS

In-house modules download

Timing: 5 min

To use the code contained in this protocol, three in-house python modules need to be download. In

fact, 3 Python modules are available on the corresponding GitHub (see KRT), containing all the func-

tions required to run the code below.

The 3 modules are as follows:

Supervised.py: Contains functions for supervised learning for the 1D pipeline.

Unsupervised.py: Contains functions for unsupervised learning for the 1D pipeline.

MSI_immunoscoring.py: Contains functions for the 2D pipeline for immunoscoring using MS-

imaging data.

Data importation and management

Timing: 15 min

This step involves importing the CSV file and visualizing the spectra contained within the dataset.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

All the original code and files example
have been deposited on GitHub.

Our recent paper1 https://github.com/yanisZirem/Protocol-to-analyse-1D-and-2D-
mass-spec-data-for-cancer-diagnosis-and-immunecell-identification

MSI imzML example file has been
deposited on Harvard Dataverse.

Our recent paper1 https://doi.org/10.7910/DVN/PRXHIJ

Software and algorithms

Python Python v3.11.4 RRID:SCR_008394; https://www.python.org

Anaconda Anaconda RRID:SCR_018317; https://www.anaconda.com/download

Jupyter Notebook Jupyter Notebook v6.5.4 RRID:SCR_018315; https://jupyter.org

NumPy NumPy v1.24.3 RRID: SCR_008633; https://numpy.org/

Pandas Pandas v2.0.3 RRID:SCR_018214; https://pandas.pydata.org

scikit-learn scikit-learn v1.2.2 RRID:SCR_002577; https://scikit-learn.org/stable/

Matplotlib Matplotlib v3.7.2 RRID:SCR_008624; https://matplotlib.org/

SciPy SciPy v1.11.1 RRID:SCR_008058; https://scipy.org/

Seaborn Seaborn v0.12.2 RRID:SCR_018132; https://seaborn.pydata.org/

statannot statannot v0.2.3 https://pypi.org/project/statannot/

lazypredict lazypredict v0.2.12 https://pypi.org/project/lazypredict/

joblib joblib v1.3.1 https://pypi.org/project/joblib/

Eli5 Eli5 v0.13.0 https://pypi.org/project/eli5/

PyimzML PyimzML v1.5.3 https://pypi.org/project/pyimzML/

plotly plotly v5.17.0 RRID:SCR_013991; https://pypi.org/project/plotly/

> pip install numpy==1.24.3 pandas==2.0.3 scikit-learn==1.2.2 matplotlib==3.7.2 scipy==1.11.1

seaborn==0.12.2 statannot==0.2.3 lazypredict==0.2.12 joblib==1.3.1 eli5==0.13.0 pyimzml==

1.5.3 plotly==5.17.0 lightgbm
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1. Import the CSV file (yourfile.csv) into Jupyter Notebook under the dataframe named ’data’. Addi-

tionally, it will print out the labels for each class along with their respective number of samples.

Note: The data matrix will also be displayed. Verify that the structure contains only the column

named ‘Class’ with each labeled sample, and them/z features with their corresponding inten-

sities in rows.

2. Display either the average spectra for each labeled class or the spectra of an individual sample.

a. Choose the colors corresponding to each class.

Note: The ’custom_colors’ dictionary can be customized according to specific preferences,

based on the class number and the desired color scheme. The placeholders ’Class 1’ and

’Class 2’ should be replaced with the actual names of each class present in the dataset.

b. Import the ’plot_average_spectra’ function from Supervised.py module to showcase the

average spectra for each labeled class.

Note: The ’plot_average_spectra’ function is imported from the Supervised.py module

located in the PRISM_Lib folder. The folder name can be changed as required.

c. If needed, it is also possible to display each individual spectrum from each sample of the

dataset.

Note: The index number of the sample (in this case, sample 122 is used) from which the

spectra will be displayed should be adjusted according to preferences. Additionally, the color

can be customized as desired (here, green was chosen) (see Figure 2A).

Obtainment of the optimal model

Timing: 40 min

3. Evaluate 26 machine learning algorithms from Lazypredict (https://lazypredict.readthedocs.io/

en/latest/), depending of scikit-learn, to determine the most suitable model for the dataset.

> custom_colors = {’Class1’: ’green’, ’Class2’: ’pink’} #Custom colors for the classes

> from PRISM_Lib.Supervised import plot_average_spectra

> plot_average_spectra(data, class_column=’Class’, colors=custom_colors) #Plot the average

spectra

> import pandas as pd

> data = pd.read_csv(’yourfile.csv’) #Import the CSV file

> print("Labels :",data.Class.unique()) #Print name of the classes

> print("Number of samples: ",data.Class.value_counts()) #Print number of samples per class

> data

> from PRISM_Lib.Supervised import plot_sample_spectrum

> plot_sample_spectrum(data, 122, color=’green’) #Plot the spectrum of the sample at the

desired index 122
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a. Train the 26 algorithms and calculates the accuracy of each classifier for the dataset. The ac-

curacy is calculated by performing a 20% validation split. Indeed, the training dataset is split

into two sets: a train set (80%) and a test set (20%).

Note: The outcome will be a table with the 26 classifiers that were tested (Figure 2B), along with

their respective accuracy, balanced accuracy, F1-score and the time taken for each evaluation.

4. Find and build the optimal model based on the F1-score.

Note: Furthermore, note that if desired, a particular algorithm can be specified instead of

selecting the best one by replacing ’None’ for ’specific_model’ with the name (in strings) of

the desired algorithm.

Note: Various evaluation parameters are obtained for each model, such as recall, accuracy,

precision and F1-score. Selection of the optimal model is based on the F1-score. This

Figure 2. Obtainment of the optimal classification model specific of each dataset

(A) Example of a spectra from one sample.

(B) Example of a table of 26 classifiers that were trained and evaluated, showing their accuracies, balanced accuracy, ROC AUC, F1 Score and time taken.

(C and D) Example of classification report and confusion matrix of the optimal algorithm with the 20% out set and after 20-fold cross-validation, obtained

for the classification model that distinguish benign, necrotic and tumor tissues.

> from PRISM_Lib.Supervised import Train_models

>models,predictions=Train_models(data,target_column=’Class’, test_size=0.2, random_state=1)

#Train different ML models (26 algorithms)

> models

> from PRISM_Lib.Supervised import Find_and_build_best_model

> best_model_name, best_model_pipeline = Find_and_build_best_model(data, models, specific_

model=None)
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combines precision and recall and is known as the harmonic mean. This score provides a more

balanced measure of performance across classes.

5. Obtain the corresponding confusion matrix and classification report (Figure 2C).

a. Use the ’confusion_matrix_scores_classification_report’ function to present the confusion

matrix and classification report of the optimal classification model constructed.

Note: The ‘ConfusionMatrixDisplay.from_estimator’ is a pre-existing function within the

sklearn package’s metrics module designed to exhibit the confusion matrix for a split train/

test set.

b. Perform the k-fold cross validation of the model to assess his robustness and display the cor-

responding confusion matric and classification report (Figure 2D).

Note: Please note that the number of iterations can be specified in ’n_splits’ (in Supervised.py

module); here, a 20-fold cross-validation was employed to thoroughly evaluate the robustness

and generalization capabilities of the constructed classification model. Furthermore, each ac-

curacy is presented alongside themean and standard deviation values obtained for a compre-

hensive understanding of the performance variability across the folds.

6. Save the classification model as a .pkl file for possible future use.

Note: If used without any changes, the classification model will be created as a name_

model.pkl file.

Blind predictions

Timing: 20 min

Blind predictions are obtained using samples not included in the creation of the previous optimal

classification model. This blind test set is crucial for evaluating the model’s robustness. During the

blind validation step, a dataset similar to the training set (but with new samples) is employed.

7. Upload the blind validation dataset as a CSV file (validation_blind.csv) under the dataframe

named ’val’.

> from PRISM_Lib.Supervised import confusion_matrix_scores_classification_report

> confusion_matrix_scores_classification_report (best_model_pipeline, data) #Display confu-

sion matrix and classification report for validation data

> from PRISM_Lib.Supervised import cross_validate_and_report

> cross_validate_and_report(best_model_pipeline, data) #Perform cross-validation and

report results

> import joblib

> joblib.dump(best_model_pipeline, "name_model.pkl") #Save the trained optimal model

> val = pd.read_csv("validation_blind.csv") #Load unknown data for blind predictions

> val_id = val

> val = val.drop(["Class"], axis=1)
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8. Make the blind predictions.

9. Create a dataframe to compare both predicted labels (from validation) and true labels (specified

by the "Class" column in the dataset) (Figure 3A).

10. Display the classification report to obtain the accuracy, which represents the correct prediction rate

of the classification model, in addition to the corresponding confusion matrix (Figures 3B and 3C).

> validation = best_model_pipeline.predict(val) #Validate the model on unknown data

> validation

Figure 3. Example of outcomes of blind predictions obtained by the classification model

(A) Overview table providing a comparison between the predicted and true labels.

(B and C) Classification report and confusion matrix displaying various metrics, including accuracy, for the blind predictions conducted on tissue not

used in the creation of classification model.

> df = pd.DataFrame(validation)

> df["True Labels"] = val_id["Class"]

> df = df.rename(columns={0 : "Predicted Labels"})

> df #Display a DataFrame that compare predicted and true labels
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Supervised model explicability

Timing: 15 min

Supervised explicability of the classification model is achieved through the use of the LIME

algorithm.11

11. Use the ’eli5_feature_importance’ function using eli5 package (https://eli5.readthedocs.io/en/

latest/overview.html) to identify them/z features that contribute positively or negatively to pre-

dicting each class in the classification model (Figure 4A).

Note: Here, it will enable to obtain the top contributing 40 contributingm/z features for each

class, although this number can be specified as desired.

> from sklearn.metrics import classification_report, confusion_matrix, ConfusionMatrix

Display

> ConfusionMatrixDisplay.from_estimator(best_model_pipeline, val, val_id["Class"])

> print(classification_report(validation, val_id["Class"])) #Display the classification

report and the confusion matrix for the validation set

> from PRISM_Lib.Supervised import eli5_feature_importance

> sample_contribution = eli5_feature_importance(best_model_pipeline, data, top_fea-

tures=40) #Get feature importance thanks to LIME algorithm

Figure 4. Example of the supervised and unsupervised marker discovery result

(A) Display of the top 120 m/z features contributing positively (in green) or negatively (in red) to the classification of each class in the model.

(B) Heatmap representing picked peaks for three distinct classes. The heatmap illustrates the intensity of each ion, with red denoting overexpression

and green indicating under-expression.
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12. Save the contributions of all m/z features for predicting each class, rather than only the top 40

m/z variables, as a CSV file (’LIME_mz_features.csv’).

Unsupervised markers discovery

Timing: 30 min

13. Generate the heatmap corresponding to the dataset.

a. Perform peak picking, with a signal-to-noise ratio (S/N) of 10, on the entire dataset to isolate

m/z features corresponding to real peaks, filtering out instrument noise.

Note: The S/N threshold can be specified as desired.

b. Use the ’create_heatmap’ function to visualize the heatmap, depicting the under or over-

expressed m/z features identified through peak picking for each (Figure 4B).

Note: The ’cmap’ dictionary can be customized according to specific preferences, based on

the desired color scheme, depending of the seaborn library (https://seaborn.pydata.org/

tutorial/color_palettes.html) (here, the RdYlGn_r is used).

Note: The clustering heatmap can also be obtain on the original data by replacing ’data_

peak_picked’ by ’data’.

14. Identify the significantm/z features thanks to an automated Kruskal-Wallis statistic test for iden-

tifying m/z features that are significantly present or absent in each class.

a. Use the ’significant_features’ function to retrieve not only the count of significant variables

but also the list of significant m/z features.

> from PRISM_Lib.Supervised import save_contributions

> save_contributions("LIME_mz_features.csv", best_model_pipeline, data)

> from PRISM_Lib.Supervised import peak_picking

> data_peak_picked = peak_picking(data, min_sn=10) #Peak picking with S/N > 10 and return the

peak in Dataframe

> data_peak_picked

> from PRISM_Lib.Supervised import create_heatmap

> create_heatmap(data_peak_picked,cmap=’RdYlGn_r’,distance_metric=’cosine’, z_score=0)

#Plot the clustering_heatmap based on the peak picking data

> from PRISM_Lib.Unsupervised import significant_features

> significant_mz_values = significant_features(data_peak_picked, alpha=0.05)

> print("There are", len(significant_mz_values), "significants features") #Print the number

of significant m/z values found

> print("list of Significant_mzs :", significant_mz_values)significant_mz_values #Display the

list of significant m/z values.
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Note: The Kruskal-Wallis test is conducted on the ions identified through peak picking (’data_

peak_picked’). It can of course be replaced by ‘‘data’’ to allow the automated Kruskal_Wallis

test to be performed on the entire data set.

Note: This function will allow identification of only m/z features with a p-value lower than or

equal to 0.05. Of course, this threshold can be specified as desired through change of the

alpha value in the ’significant_features’ argument. In addition, the Bonferroni correction is em-

ployed to maintain the statistical integrity of analyses across a multitude of tests, thereby

ensuring the reliability of conclusions and reducing the likelihood of false discoveries.

b. Save the list of significant m/z variables in a CSV file.

Robust biomarkers discovery

Timing: 1 h

This part is carried out manually since, as of our current knowledge, automation is not feasible.

15. Refine the significantm/z features list by filtering out isotopes to isolate real peaks. This step involves

manual inspection across all obtainedMS spectra. Indeed, in the context of significantm/z features, a

‘‘real peak’’ means that the peak corresponding to them/z ions is not an isotope of another ion and is

not part of the instrument’s noise; in conclusion, this peak really corresponds to a molecule.

16. Integrate results from both unsupervised and supervised approaches. Indeed, for a potential

biomarker to become a robust biomarker, it must show a positive contribution in cases of

over-expression and a negative contribution in case of under-expression, consistently across

the same tissue type.

17. Modify and save all the real robust biomarkers in the previous created CSV file (’Signifi-

cant_mzs.csv’), for generating their respective statistical plots.

Statistical plots display

Timing: 30 min

This step involves generating statistical plots corresponding to all robust biomarkers stored in a CSV

file in the previous step (’Significant_mzs.csv’).

18. Upload the CSV file containing the robust biomarkers as a ’robust_biomarkers’ dataframe.

19. Transform this dataframe into a list named ’liste_mz_robust’.

> pd.DataFrame(significant_mz_values, columns=[’Significant_mzs’]).to_csv(’Significant_mzs.

csv’, index=False)

> robust_biomarkers = pd.read_csv(’significant_mz_values.csv’) #Upload the CSV file containing

all the robust biomarkers

> robust_biomarkers

> liste_mz_robust = []

> for i in robust_biomarkers["Column_name"]:

liste_mz_robust.append(i)

> liste_mz_robust
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Note: The placeholder ’Column_name’ in the code needs to be replaced with the actual name

of the column in the CSV file.

20. Visualize the corresponding boxplots by using the ’boxplot_significant_features’ function.

Note: The colors assigned to each class match those selected for the spectra visualization, us-

ing the ’custom_colors’ dictionary.

Note: The p-value annotation legend is as follow:

*p < 0.05.

**p < 0.01.

***p < 0.001.

****p < 0.0001.

21. Visualize the corresponding violin plots by using the ’violinplot_significant_features’ function

(Figure 5).

Figure 5. Specific boxplots of 4 confident lipid biomarkers obtained for benign and tumor tissue

* < 0.05; ** < 0.01; *** < 0.001; **** < 0.0001.

> from PRISM_Lib.Unsupervised import boxplot_significant_features

> boxplot_significant_features(data, liste_mz_robust, class_colors=custom_colors, show_

scatter=False)

> from PRISM_Lib.Unsupervised import violinplot_significant_features

> violinplot_significant_features(data, liste_mz_robust, class_colors=custom_colors, show_

scatter=False)
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Note: The ’violinplot_significant_features’ function mirrors the ’boxplot_significant_features’

function, differing solely in the substitution of ’sns.boxplot’ with ’sns.violinplot’.

22. Moreover, if desired, it is possible to display boxplot and violin plot one by one for each signif-

icant m/z feature.

Note: The mass of the significant ions is specified in the ’mz’ variable (e.g., 701.55) and can be

modified as needed.

Note: It is also possible to visualize the violin plot one by one by simply switching from the

previous function ’sns.boxplot’ to ’sns.violinplot’.

23. It is also possible to display these boxplots or violin plots as scatter plots.

To display boxplots or violin plots as scatter plots, simply change False to True in the param-

eters ’show_scatter’.

Two-dimensional analysis pipeline

Timing: 1 h

This step involves using a pre-existing model to determine the relative presence of each class in a

tissue image obtained through mass spectrometry imaging (MSI). In our scenario, the model was

employed to generate immunoscores, using a classification model built on MS fingerprints of im-

mune cells such as M1- and M2-like macrophages, lymphocytes, and glioblastoma cancerous cell

line (NCH82). Note that this code can be used for all classification models based on various classes

of tissues/cells to ascertain the distribution or localization of each within an MSI tissue.

24. Use the ’generate_tic_map’ function to upload the .imzML file (MSI dataset) and to display the

corresponding total ion count (TIC) map.

Note: The modifiable parameters correspond to the enhance of resolution for ’new_resolu-

tion’ and to a smoothing for ’sigma’, by changing, as needed, ’mass range’, ’sigma’ and ’new_

resolution’ parameters (Figure 6A).

Note: The corresponding .ibd file need to be in the same folder than the .imzML file. In addi-

tion, the colorbar used can be changed (here, jet was used) by replacing ’jet’ in the ’cmap’

parameter in MSI_immunoScoring.py module.

25. Upload a pre-existing classification model ’name_model.pkl’ and generate label maps for each

class contained in the classification model (Figure 6B) by using the ’generate_label_maps’

function.

> from PRISM_Lib.Unsupervised import one_box_plot

> mz = ’701.55’ #specify m/z feature (ion)

> one_box_plot(data, mz, class_colors = custom_colors, show_scatter=False) #Plot boxplot of

a specific feature

> from PRISM_Lib.MSI_immunoScoring import generate_tic_map

> imzml_file = "yourfile.imzML" #the .ibd file should be located in the same folder as imzML file

> generate_tic_map(imzml_file, mzs_range=(600, 1000), sigma=0.5, new_resolution=3)
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Note: At this stage, binning is performed by determining the desired number of peaks within

the specified mass range. For example, a mass range of 600–1000 with 4000 features (max_

intensity_size) corresponds to a bin size of 0.1.

Note: Select identical parameters (sigma, new resolution, binning) as those used for gener-

ating the TIC map and model upload. In addition, at this step, an intensity threshold is

used in order to obtain predictions of cell presence only in the tissue and not on the slide

around it (this threshold is chosen based on the TIC map, here 25000 is used).

Note: The colorbar can be customized using the ’cmap’ parameters in the ’generate_label_

maps’ function, in this case, ’inferno’ was chosen.

26. Calculate the ratio of each class in the tissue (Figure 6C) by using the ’calculate_label_ratios’ function.

EXPECTED OUTCOMES

The protocol for 1D MS data provides an effective method for producing accurate classification

models to enhance cancer diagnosis using mass spectrometry technology. Additionally, this proto-

col facilitates the identification of robust biomarkers through both supervised and unsupervised

methods, which can be further used for discovering potential therapies. The pipeline is designed

to improve the interpretability and reliability of results in cancer research.

The protocol focused on 2DMS data demonstrates the potential of mass spectrometry to detect and

localize specific cells in imaged tissue, including cancerous, healthy, and immune cells, as exempli-

fied in our paper.1

Both 1D and 2D protocols offer a straightforward and user-friendly approach, using Python scripts to

generate comprehensive visualizations of large amounts of mass spectrometry data, focusing on

lipids, metabolites, or proteins.

Figure 6. Determining the relative presence of each class within a tissue image acquired through mass spectrometry imaging

(A) Total Ion Count (TIC) map generated for one glioblastoma tissue to visualize the intensity of detected peaks across the tissue.

(B) Representative labelmaps generated for each classwithin the classificationmodel (including here cancer cells, lymphocytes, andM1- andM2-likemacrophages).

(C) Percentage ratios depicting the distribution of each cell type across the entire tissue sample.

> from PRISM_Lib.MSI_immunoScoring import generate_label_maps

> model_file = "name_model.pkl"

> generate_label_maps(imzml_file,model_file,mass_range=(600, 1000), max_intensity_size=4000,

sigma=0.5, new_resolution=3, real_pixel_threshold=25000)model = joblib.load(’name_model.

pkl’)

> from PRISM_Lib.MSI_immunoScoring import calculate_label_ratios

> df_ratios = calculate_label_ratios(imzml_file, model_file)

> df_ratios
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LIMITATIONS

Variability in MS data quality can affect the reliability of the protocol. Careful inspection of manual

steps in the biomarker discovery process is mandatory. Furthermore, adapting the protocol to

different types of MS data may require additional optimization to ensure consistent and accurate

results.

TROUBLESHOOTING

It is essential to consider the important statements and notes that accompany each step described in

the method details.

Problem 1

The attempt to evaluate 26 machine learning algorithms to develop the optimal classification model

was unsuccessful because the script failed to recognize the input CSV file (related to step 2–1).

Potential solution

Ensure the CSV file structure matches the required format.

Problem 2

Obtainment of a classification model with poor performance (related to step 2–4).

Potential solution

Experiment with additional machine learning algorithms beyond the 26 available in the scikit-learn

library, and adjust the parameter settings.

Problem 3

Training a classification model that achieves high accuracy but produces inconsistent results in blind

predictions (related to step 3).

Potential solution

Verify MS data quality and consider the input of additional preprocessing steps.

Problem 4

Inconsistency between biomarkers obtained in a supervised way with LIME and those obtained in an

unsupervised manner with Kruskall-Wallis (related to step 6).

Potential solution

It is then possible to use other techniques such as Shapley value or the permutation algorithm.

Furthermore, it is important to remember that the effectiveness of the LIME algorithm relies on the

accuracy of the underlying classification model. If the model’s accuracy is low, the reliability of the

biomarkers decreases. To improve this, consider fine-tuning the model to boost its accuracy or

explore only unsupervised learning methods via Kruskall-Wallis method.

Problem 5

Variation between 1D data (used to create the classification model) and 2D data (used for

localization).

Potential solution

1D and 2D data must undergo the same pre-processing steps no matter which.

Cell localization results can be validated by immunohistochemistry.
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead con-
tact, Isabelle Fournier (isabelle.fournier@univ-lille.fr).

Technical contact

Questions about the technical specifics of performing the protocol should be directed to and will be answered by the
technical contact, Yanis Zirem (yanis.zirem@univ-lille.fr).

Materials availability

This study did not generate new unique reagents.

Data and code availability

All original code has been deposited at GitHub ( (https://github.com/yanisZirem/Protocol-to-analyse-1D-and-2D-
mass-spec-data-for-cancer-diagnosis-and-immunecell-identification) in addition to files examples (csv files and imzmL
file). The DOIs are available in the key resources table. If you have any questions or feedback, please contact yanis.
zirem2016@gmail.com.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon
request.
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