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mpany/research/datasets/mvtec-loco

Keywords:

Unsupervised defect detection
Assembly lines

Machine learning

Visual inspection

Industry 4.0

The methods for unsupervised visual inspection use algorithms that are developed, trained and evaluated on
publicly available datasets. However, these datasets do not reflect genuine industrial conditions, and thus
current methods are not evaluated in real-world industrial production contexts. To answer this shortcoming,
we introduce AutoVI, an industrial dataset of visual defects that can be encountered on automotive assembly
lines. This dataset, comprising six inspection tasks, was designed as a benchmark to assess the performance of
defect detection methods under realistic acquisition conditions. We analyze the performance of current state-
of-the-art methods and discuss the difficulties specifically encountered in the industrial context. Our results
show that current methods leave considerable room for improvement. We make AutoVI publicly available to
develop unsupervised detection methods that will be better suited to real industrial tasks.

1. Introduction

Research in the area of defect detection and visual inspection has
garnered very significant interest in recent times (Gao et al., 2021;
Lindemann et al., 2021; Pang et al., 2021; Zeiser et al., 2023). Vi-
sual anomalies can be described in terms of structural and logical
defects (Bergmann et al., 2022). Structural defects are found in the
local visual structure of an object or texture, such as scratches, burns,
impacts, or spots. Logical defects refer to problems stemming from the
incorrect visual arrangement of correct objects, such as cables that are
connected to the wrong clamps.

The vast majority of algorithms used today for visual inspection
are based on data-driven deep learning algorithms. Deep learning
algorithms usually require large amounts of training data to work, but
offer much better performance than traditional algorithms (Krizhevsky
et al., 2017). Applying these methods for visual inspection in the man-
ufacturing industry leads to a major drawback: the need to constitute
expensive datasets to train and evaluate the models. Such datasets
are especially costly to make: a significant number of images must be
taken of both defective and non-defective items. Labeling the data is
a time-consuming task that requires a field expert. Besides, collecting
defective items is tedious as most industrial production systems yield
an extremely low rate of defects.

* Corresponding author.

That being said, new research interests lie in the development
of unsupervised methods. These methods are able to identify defects
while having only used defect-free images for training. These methods
carry several powerful advantages compared to methods that require
defective items for training, known as supervised methods.

» They are able to train using only non-defective items, enabling
them to be implemented without collecting defective items, which
can be difficult to acquire as they have a much lower prevalence
than non-defective items;

» They can be more easily implemented in a new production line
as there are only relatively few non-defective items to collect for
training;

» They can be used to detect all kinds of defects, not only those that
are collected in the defect library.

Nonetheless, these deep learning methods still require training
and testing data to be developed and compared. Currently available
datasets do not necessarily represent genuine industrial production
conditions (Bozi¢ et al., 2021; Defard et al., 2021; Roth et al., 2022;
Zavrtanik et al., 2021a, 2022; Zhang et al.,, 2023). Hence, newly
developed algorithms are designed and evaluated for their ability to
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Table 1
Summary of the main features of the described datasets.

Computers in Industry 163 (2024) 104151

Dataset N. images N. defects N. classes Shooting conditions Logical defects
DAGM (Wieler et al., 2007) 16100 2100 10  Artificial N
NEU (Song and Yan, 2013) 1800 1800 6  Laboratory N
Severstal Steel (Severstal, 2019) 12572  Not given 1 Industrial (steel) N
MVTec AD (Bergmann et al., 2019) 5354 1258 15 Laboratory Y?
KolektorSDD (Tabernik et al., 2020) 399 52 1 Industrial (plastic) N
KolektorSDD2 (Bozi¢ et al., 2021) 3335 356 1 Industrial (unspecified) N
MVTec LOCO (Bergmann et al., 2022) 3644 993 5 Laboratory Y
VisA (Zou et al., 2022) 10821 1200 12  Laboratory N
AutoVI (Ours) 3950 887 6  Industrial (assembly) Y

2 Bergmann et al. (2022) indicate the presence of logical defects in MVTec AD that were not discussed in Bergmann et al.

(2019, 2021).

improve performance on datasets that do not represent real-world
production contexts. This poses two problems. Firstly, we have no
public datasets available for reproducible evaluation of algorithms in
real industrial contexts. Secondly, the development and publication of
new algorithms is biased by the datasets publicly available, in that they
favor methods that are adapted to these datasets but not necessarily
to real production environments. Therefore, a new public, real-world,
industrial dataset would provide:

+ a reproducible benchmark of state-of-the-art algorithms on pub-
licly available genuine industrial data;

+ a challenging and genuine dataset that promotes the develop-
ment of more powerful machine learning methods that can be
successfully applied in an industrial setting.

In this paper, we propose a detailed benchmark of several state-
of-the-art methods on a new public dataset, the Automotive Visual
Inspection Dataset (AutoVI). This dataset has been built on the assem-
bly lines of a major automotive group. It contains images of several
inspection tasks, ranging from part inspection to cable connection
checking, with both non-defective and defective items, specifically
created on the assembly line to evaluate visual inspection algorithms.
Our contributions are as follows:

+ We survey existing unsupervised defect detection methods for
anomaly detection and existing datasets for industrial visual in-
spection;

We propose a new publicly available dataset, the Automotive
Visual Inspection Dataset (AutoVI), as a genuine industrial dataset
to be used as a reference for benchmarking and developing future
unsupervised defect detection methods;

We test on this dataset the state-of-the-art methods for detection
and segmentation of anomalies;

We analyze the performance of these methods and provide rec-
ommendations for their usage and improvement.

2. Related works

We start by discussing existing public datasets related to visual
defect detection in production line environments. We expand our anal-
ysis to include datasets related to general manufacturing processes. We
show that there are no existing datasets which are captured in a genuine
industrial environment, thus motivating the release of AutoVI.

We follow by discussing the characteristics of existing unsupervised
defect detection methods for defect detection in order to select a
representative subset of algorithms to be benchmarked on AutoVI. We
exclusively focus on public datasets and methods that were openly
published and tested on publicly accessible datasets.

2.1. Datasets
Since 2007, a number of datasets have been published with the

aim to mimic to some extent the visual characteristics of industrial
defect detection problems. We list datasets that correspond to industrial

production scenarios, i.e. textures, objects produced industrially. Fig. 1
shows representative samples of all mentioned datasets, while Table 1
shows the main characteristics of each dataset: the number of images,
defects and classes, the shooting conditions (artificial, laboratory or
industrial), and the presence of logical defects. We list here these
datasets in chronological order of publication.

The DAGM dataset. This dataset (see Fig. 1(a)) was published in
2007 (Wieler et al., 2007) as a competition organized by the German
Association for Pattern Recognition (Deutsche Arbeitsgemeinschaft fiir
Mustererkennung e.V.) It contains 10 texture categories and a total
of 16100 images including 2100 images of defective items. Of the
10 categories, 6 each contain 1000 defect-free images and 150 defect
images, and the remaining 4 categories each contain 2000 defect-
free images and 300 defect images. This dataset has been extensively
used for the development of defect detection algorithms (Carvalho
et al., 2022; Racki et al., 2018; Wang et al., 2018; Weimer et al.,
2016). However, this dataset now features two significative limitations.
Firstly, the images were artificially generated, whereas datasets made
of real images are now publicly available. Secondly, the difficulty of the
problem no longer presents a challenge, as Bozi¢ et al. (2021) correctly
classifies all images using a mixed-supervision algorithm.

The NEU defect database. This dataset (see Fig. 1(b)), published in
2013, shows defective steel sheets (Song and Yan, 2013). It consists
of six categories of 300 images each, each category showing a dif-
ferent kind of defect (crazing, pitting, scratches, etc.) for a total of
1800 images. This dataset, which is among the first public datasets
showing real-world defects in a simulated manufacturing environment,
was used as a benchmark in some publications (Bozi¢ et al., 2021;
Cohn and Holm, 2021). However, this dataset only features defective
items, and thus does not make it readily usable for unsupervised visual
anomaly detection. Furthermore, it has not been created in a genuine
manufacturing environment, and does not feature logical defects.

The severstal steel defect dataset. This dataset (see Fig. 1(c)) was pub-
lished in 2018 as a Kaggle challenge (Severstal, 2019). It contains
12572 images of defective steel sheets and grids, which makes it
the largest real-world manufacturing dataset to this day. As for the
NEU defect dataset, it was used for some benchmarks (Bozi¢ et al.,
2021) although little is known about the production context of the
dataset (Carvalho et al., 2023). While this dataset has been created in a
real-world production line, it does not feature logical defects, and only
features steel sheets and grids, arranged into a single category.

The MVTec anomaly detection dataset (MVTec AD). This dataset (see
Fig. 1(d)), published in 2019, shows 15 diverse categories of items
(Bergmann et al., 2019, 2021). This is the first dataset that shows dif-
ferent categories of items and textures that mimics a realistic industrial
inspection scenario. It contains 5354 images of industrially produced
objects, such as screws, cables, bottles or pills, as well as images of
items rarely found on industrial production lines, such as hazelnuts.
It also includes textures, such as wood, metal, or cloth. Furthermore,
this dataset encourages usage of unsupervised methods for training, as
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(a) DAGM

(c) Severstal

(g) MVTec LOCO

(b) NEU

(d) MVTec AD

(f) KolektorSDD2

B
s
LY
V.

(h) VisA

Fig. 1. Sample images from surveyed datasets.

it only includes defect images in the test set. This dataset has been
extensively used as a benchmark (Batzner et al., 2024; Defard et al.,
2021; Roth et al., 2022; Shi et al., 2023; Zavrtanik et al., 2022; Zhang
et al., 2023). Although this dataset shows logical defects (Bergmann
et al., 2022), they are not considered as a specific category in the
dataset.

The KolektorSDD dataset. This dataset (see Fig. 1(e)) contains 399
images of plastic embeddings of electrical communators and was pub-
lished in 2019 (Tabernik et al., 2020). It shows 347 images without
defect and 52 images with defect. This dataset is the first to use
images captured in a controlled industrial production environment.
However, the value of this benchmark is limited by the small number
of images of a single type of object. Furthermore, this dataset does not
define a fixed train/test split, which does not restrain the use of this

dataset for unsupervised methods. Finally, this dataset only proposes
structural defects. For these reasons, this dataset has not been widely
used as a reference for experimental studies in unsupervised anomaly
detection.

The KolektorSDD2 dataset. This dataset (see Fig. 1(f)) contains 3335
images and was published in 2021 (Bozic et al., 2021). This dataset
contains 356 defective items and 2979 defect-free images. Similarly to
the KolektorSDD dataset, these images are captured in a controlled in-
dustrial production environment. This dataset is a direct improvement
over the first version, as it contains more images, RGB channels, and
a fixed train/test categorization. However, this dataset still includes
defective items in the training set, and does not include logical defects.
As for the first version, this dataset has not been extensively used as a
benchmark for unsupervised anomaly detection.
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The MVTec logical anomalies dataset (MVTec LOCO). This dataset (see
Fig. 1(g)), published in 2022, shows 5 -categories of
industrially-produced items (Bergmann et al., 2022). This dataset con-
tains 3644 images, including 1568 images for testing, of which 993
images show defective items. MVTec LOCO, similarly to MVTec AD,
simulates a real-world industrial inspection scenario in a controlled,
non-industrial environment, with diverse industrially-produced items:
breakfast boxes, pushpins, screw bags, juice bottles and splicing con-
nectors. This dataset is the very first to explicitly introduce the concept
of logical defects, compared to structural defects. While the latter refer
to defects in the local structure of an object (namely, visual texture
anomalies such as scratches, crazings, color spots, etc.), the former
refer to defects in the global structure of the object. Examples in
the bottom row of Fig. 1(g) show logical defects: from left to right,
the wrong amount of cereal in the breakfast box, two long screws
instead of one short and one long screw in the screw bag, a missing
pushpin, wrong connector lengths and incorrectly connected cable, and
wrongly labeled juice boxes. Generally, this category of defects refers to
structures that are not defective by themselves — the longer screw in the
previous example may not show any defect by itself. Rather, the defect
is characterized by the presence of structurally correct elements in the
wrong context. This dataset is the first to encourage the development
of methods able to detect logical defects, over several industrially-
produced categories of items, and including a fixed testing benchmark
with both structural and logical defects. MVTec LOCO has been used
as a benchmark in several research papers for unsupervised visual
inspection (Batzner et al., 2024; Guo et al., 2023; Yao et al., 2023;
Zhang et al., 2024).

The visual anomaly dataset (VisA). This dataset (see Fig. 1(h)) contains
industrially produced items and was published in 2022 (Zou et al.,
2022). With 10821 images, including 1200 anomalous samples, this
dataset is the second-largest dataset for industrial visual inspection.
It contains 12 categories, 4 of which showing circuit boards, the
rest showing diverse items such as macaronis, candles, chewing-gums,
cashews and fryums, a type of snack food. While the number of images
is high, the defects do not show any logical defects. Pictures are
captured in a controlled, non-industrial environment. This dataset has
been used as a benchmark in a number of publications (Batzner et al.,
2024; Jeong et al., 2023).

Summary. Existing datasets present a notable diversity of objects and
textures for anomaly detection on industrial production lines. However,
as noted in Table 1, there are very few datasets captured under gen-
uine industrial conditions; of these, all focus on texture defects. To
this day, no dataset dedicated to visual anomaly detection is made
up of images captured on industrial production lines. The shooting
conditions in these environments are very different from controlled
laboratory conditions. It is impossible to exert complete control over
environmental conditions: lighting, vibration, positioning of the object
relative to the camera. Furthermore, large variations of the surrounding
scene can be observed. We consider MVTec AD, MVTec LOCO and VisA
to be well suited to benchmarking due to the large number of classes,
representing a wide range of inspection tasks. Datasets that contain
only a single class are not sufficiently informative as a benchmark,
which needs to include a variety of different situations. Therefore, we
exclude the DAGM dataset, which is artificial and only includes texture
data, and the NEU dataset as it is not directly geared towards anomaly
detection, only containing defective items. However, all mentioned
datasets were acquired under laboratory conditions. Our dataset of
images acquired in an industrial context allows the comparison of
methods under conditions corresponding to the realities of industry.

2.2. Methods

A number of methods have been developed for visual defect detec-
tion and benchmarked on the public datasets described above. Such
methods follow different design principles, that we describe according
to the following categories: flow-based methods, reconstruction-based
methods, patch-based methods or student-teacher methods.
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Flow-based methods. Flow-based architectures rely on the concept of
normalizing flows. Normalizing flows are a series of bijective trans-
formations that are used to model a complex probability distribution
using a simpler base distribution (Kobyzev et al., 2021; Papamakarios
et al, 2021). For defect detection, normalizing flows are used to
estimate the defect density on the image. Gudovskiy et al. (2022)
introduce CFlow by using normalizing flows in a multi-scale pooling
architecture in order to transform the distribution of anomaly-free
patches into a Gaussian distribution. They generalize prior normalizing
flow architectures (Dinh et al., 2017) and give a detailed theoretical
study on the usage of normalizing flows to estimate the likelihoods of
any distribution. Rudolph et al. (2022) introduce CS-Flow by using
normalizing flows at different scales and using cross-scale flows, by
making flows of different scales interact with each other.

Reconstruction-based methods. Reconstruction-based methods
reconstruct the input image, usually using a GAN (Goodfellow et al.,
2020) or an autoencoder (Goodfellow et al., 2016, Chapter 14), and
compare the generated image to the original one in order to identify
the defective region. Schlegl et al. (2019) introduce f-AnoGAN, which
leverages the generator and discriminator from the GAN architecture
while adding an encoder. This allows f-AnoGAN to function as an
autoencoder, as it reconstructs the original image using the encoder
and generator, and as a GAN, by comparing the reconstructed image
with the original image. Akcay et al. (2019) introduce GANomaly, an
architecture comprising two encoders, a decoder and a discriminator.
Similarly to Schlegl et al. (2019), the input image is reconstructed and
compared with its reconstruction. The presence of a second encoder
is used to compare the latent spaces generated after encoding the
original image and the reconstructed image. Zavrtanik et al. (2021b)
introduce RIAD, an autoencoder-based method trained to reconstruct
input images by inpainting. Input images are divided in a grid that
is used to generate several images with randomly blackened cells. The
autoencoder reconstructs each image’s blackened areas, which are then
assembled together and compared with the input image. Zavrtanik
et al. (2021a) then propose an improvement of RIAD with DRAEM.
DRAEM generates defects on training images using Perlin noise (Perlin,
1985). An autoencoder is then trained to reconstruct the corresponding
defect-free image, while a second autoencoder is used to output a
segmentation map of the defective area in the input image using
the reconstructed image. Zavrtanik et al. (2022) also propose DSR,
which again improves on DRAEM by proposing an architecture based
on discretized latent space representations (Razavi et al., 2019). The
defects are generated using Perlin noise directly in the quantized
representations of the input image, the defective areas being replaced
by quantized representations gathered from a dictionary defined on Im-
ageNet. This algorithm leads to higher quality defects being generated,
that are harder to detect.

Patch-based methods. Patch-based methods refer to architectures that
break down the input image into smaller patches which are then used
to identify the defective regions. Usually, such methods leverage a net-
work trained on a larger dataset, such as ImageNet (Russakovsky et al.,
2015). Rippel et al. (2020) has shown that using pre-trained features
from a larger dataset increases performance for a specific anomaly
detection task on the MVTec AD dataset. Namely, Patchcore (Roth
et al., 2022) uses an architecture based on pretrained residual networks
(ResNets) (He et al.,, 2015), where input image patches are fed to
the pretrained network and intermediate activations are then used to
populate a memory bank of features. These features are then used
during inference to identify the defective patches by measuring their
distance to the recorded patches. PaDiM (Defard et al., 2021) is a
method that models each patch position by a multivariate Gaussian
distribution calculated on the network activations output by all training
patches.
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Student-teacher methods. Some architectures make use of student-
teacher methods, formed from the knowledge distillation framework
(Hinton et al., 2015; Wang and Yoon, 2022). Bergmann et al. (2020)
present Uninformed Students (US), a student-teacher model for
anomaly detection. An ensemble of student models is trained to mimic
the outputs of a single teacher model. When evaluating on potentially
defective items, the distance between the teacher’s output and the
students’ outputs is used to identify the defective items. Bergmann et al.
(2022) then introduce GCAD, a method that is specifically designed to
identify both structural and logical defects as introduced in the MVTec
LOCO dataset. GCAD uses two branches, one designed to detect local
anomalies and another for global anomalies. The local branch extracts
patch descriptors using knowledge distilled from a pretrained ResNet
on ImageNet. The global branch uses knowledge distilled from the
local model and uses an autoencoder-based architecture to detect errors
in the global structure of the image. The global branch is therefore
more suited to detect logical errors, while the local branch, which acts
both as a student and a teacher, is more suitable to detect structural
errors. Batzner et al. (2024) introduce EfficientAD, an architecture
that uses a mixture of student-teacher and autoencoder models. The
motivation is that, when trained on defect-free data, the single student
model fails to reproduce the output of the single teacher network over
defective local patterns, but is able to reproduce the global structure
of the input image, which makes it suitable to detect local, structural
errors. On the other hand, the autoencoder fails to reproduce defective
global features, making it suitable for detecting large-scale logical
errors.

Conclusion. There exists a great variety of methods for unsupervised
visual anomaly detection. The majority of these methods has been
developed for structural defect detection, except for GCAD and Efficien-
tAD. We review the performance of these methods on the MVTec AD,
MVTec LOCO and VisA datasets in Section 2.3. They were established
to be the datasets best suited for benchmarking in the conclusion of
Section 2.1, due to the diversity of available classes. We will identify
the best-performing methods on these datasets to carry out our bench-
mark as described in Section 4 by training and testing these methods
on the AutoVI dataset.

2.3. Performance of methods on mvtec AD and MVTec LOCO

We recall in Table 2 the results previously obtained by the methods
reviewed in Section 2.2. They attain very high results on MVTec
AD, with EfficientAD reaching an almost perfect Area Under the Re-
ceiver Operating Curve (AUROC) of 99.1. For MVTec LOCO, Efficien-
tAD reaches an AUROC of 90.7, showing that logical defects offer a
significant challenge for current state-of-the-art methods.

While the reported performances are impressive, they are obtained
on images of excellent quality in a controlled environment. It remains
to be seen how these methods perform under real production condi-
tions. To this end, we present in the next section the AutoVI dataset,
produced under real industrial conditions on automotive assembly
lines. We will then evaluate the best methods on these data.

3. Presentation of the automotive visual inspection dataset

The datasets that are publicly available today are benchmarks for
new defect detection methods. These datasets, most notably MVTec
AD, MVTec LOCO and VisA, show a wide range of detection tasks
on different objects and textures, and include a variety of defects for
testing. However, these datasets benefit from controlled laboratory con-
ditions. For example, Bergmann et al. (2021) have explicitly developed
MVTec LOCO as an imitation of real industrial inspection scenarios,
but the photographs are captured with complete control of the camera,
the subject and the environment. Inspection conditions on large-scale
production lines are hardly controlled, either because a closed control
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Table 2

Overview of previously reported performance, measured by average AUROC, of state-of-
the-art methods on MVTec AD, MVTec LOCO and VisA datasets. Figures are taken from
the original papers, except those marked with an asterisk (*), which are taken from the
Papers with Code benchmark (https://paperswithcode.com/sota/anomaly-detection-on-
mvtec-loco-ad and https://paperswithcode.com/sota/anomaly-detection-on-visa). Best
results are indicated in bold.

MVTec AD MVTec LOCO VisA
CFlow 98.2 - 91.5*
CS-Flow 98.7 - -
f-AnoGAN - 64.2* -
GANomaly - - -
RIAD 91.7 - -
DRAEM 98.0 73.6% -
DSR 98.2 82.6% -
Patchcore 99.0 80.3* -
PaDiM 97.9 - -
us 86.0 - -
GCAD 93.1 83.3 89.1%
EfficientAD 99.1 90.7 98.1

Table 3

Statistical overview of the AutoVI dataset with the number of training images, test
images without defects (Test OK), test images with defects (Test OK).

Category Image size Train Test OK Test OK Total
engine_wiring (400 x 400) 285 285 322 892
pipe_clip (400 x 400) 195 196 141 532
pipe_staple (400 x 400) 198 199 127 524
tank_screw (1000 x 750) 318 318 95 731
underbody. pipes (1000 x 750) 161 161 184 506
underbody_screw (1000 x 750) 373 374 18 765
Total 1530 1533 887 3950

environment is too expensive to install or the inspection task itself
cannot be carried out in a closed environment.

To the best of our knowledge, there are currently no public datasets
captured on genuine industrial production lines. We propose the Auto-
motive Visual Defect Dataset (AutoVI), a genuine industrial inspection
dataset captured on the assembly lines of a major automotive group.

3.1. Description

The AutoVI dataset consists of six classes corresponding to real
inspection scenarios on automotive assembly lines. Samples for all
categories can be viewed in Fig. 2 and the statistical overview of the
dataset is given in Table 3.

Images were taken on the assembly lines of a single factory. The
cameras were set up at varying distances from the object depending
on the object photographed and the object’s environment, so that they
could be installed without blocking the movement of operators around
the inspection area. The cameras stayed at a fixed location for the
duration of the shooting, and only the items moved on the assembly line
in front of the camera. Different lenses were used for the photographs.
All categories but engine wiring were photographed using 50 mm-long
focals, due to them showing large objects, while engine wiring was
photographed with a 25 mm focal, due to the photographed area being
smaller.

Due to the assembly line environment, it is impossible to control the
environmental conditions, such as lighting, vibration, or the movement
of the object. These conditions are interesting since they are represen-
tative of real viewing conditions on an assembly line, especially when
dealing with large products, such as automobiles. Pictures that were
overly difficult to classify — overly blurry, excessive amount of noise,
item too far away from the average position — were removed. Test
pictures always show elements that are present in the training pictures
— besides the defective part itself —, so as to ensure that there are no
false positives that correspond to new unlabeled elements only present
in the test pictures. Pictures are available in the order of shooting
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(a) engine_wiring (Wiring): the right image shows three defects (absent blue hoop, wrongly
placed blue hoop and unfastened cable)

(f) underbody_screw (U. Screw): the right image shows the missing screw

Fig. 2. Example of defective and non-defective items for each category of the AutoVI
dataset.

within a single production series, the first pictures being assigned to
the training set. This is done to better imitate the context of real-world
assembly lines, which may exhibit some variation over the course of
production.
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Original images for all categories but engine wiring have a resolution
of 2590 x 1942 pixels. For all categories but pipe clip and pipe staple,
images were resized to 1000 x 750 pixels. The categories pipe clip
and pipe staple show very small defects compared to the scale of the
surrounding environment. In order to make sure that the defects can
be identified, we used a template matching algorithm to automatically
retrieve the inspection area at a size of 400 x 400 pixels and thus
remove the rest of the scene. Images for the engine wiring category have
an original size of 640 x 480 pixels and were cropped to a size of
400 x 400 pixels.

The test images show a variety of defects depending on the cate-
gory of items. Some defects represent a missing part or a misplaced
item (tank screw, underbody pipes), while others show defective items
(pipe_clip). Some images also show operators that block the inspection
area (underbody pipes). Finally, some pictures show some clipping de-
fects and item position issues (engine wiring). A thorough description of
the classes’ characteristics is given in Table 4.

All the images of defects correspond to deliberately built anomalies
upstream on the assembly line without any modification of the actual
shooting conditions. These anomalies correspond to defects that were
recorded in the defect library. This protocol enabled us to collect a
large number of different images of defects. Naturally, these defects
were corrected after shooting.

3.2. Labeling policy

Although unsupervised methods do not require defective items,
building a benchmark like AutoVI requires collecting and labeling
defects for evaluation purposes. These defects, available only in the
test set, must be correctly categorized and segmented. We consider
that some of these defects fall under the logical defect denomination,
as used by Bergmann et al. (2021). Here, we refer to the defects in the
engine wiring category, which represent defects in the global structure
of the image (positioning of the wires and the blue hoop). We also
have a variety of defects representing absent items in the pipe staple,
tank_screw and underbody screw categories. As such, the precise identi-
fication of the defective area is not as straightforward as for structural
defects, where anomalous elements can be easily identified from their
surroundings. Bergmann et al. (2021) generally segment several areas
corresponding to a single logical defect, such as a misplaced cable and
its normal position at the same time. The anomaly mask is parameter-
ized by a saturation threshold that sets the minimal size of the defect in
the segmented area to avoid wrongly penalizing segmentation methods
for not segmenting the entire area.

For the engine wiring category, we chose to identify all possible
sources of error: namely, the correct possible locations of the blue hoop
as well as its incorrect position. We segment the incorrectly fastened
cables over a fixed square area alongside the inspection area, so that
defective cables are all segmented the same way. Items from pipe clip
are segmented both on the clip and on the rubber disk, since visually
both areas could be understood to characterize the defect. Items from
pipe_staple and tank_screw are segmented over the area where the staple,
or screw, is missing. The segmentation area corresponds to a slightly
larger area around the possible positions of the item. Items from under-
body pipes are segmented under the line corresponding to the topside of
the white platform. Items from underbody _screw are segmented over the
exact location of the missing screw, using a slightly larger segmentation
area.

For missing items (such as the missing screws), the saturation
threshold is set to .7 in order to account for the segmentation mask
being slightly larger than the smallest item of the defect-free images.
For engine wiring, the blue hoop might be misplaced: as such, we have
segmented the area where is should be present, and the area where it
is present, and set the threshold to the minimum size of a blue hoop as
seen in the defect-free images. For pipe clip, the threshold is set to half
of the pixels covering the defect area, as the defect can be successfully
segmented on one of the two segmented components.
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Table 4
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Overview of the classes’ characteristics.

Class Environmental variations Defects encountered

Wiring Fixed scene. Slight variations in lighting and orientation of the Logical defects. Unfastened cable. Incorrectly placed blue hoop.
fastening module. Apparition of contaminants.

Clip Slight variations in the position of the inspected item. Variations in Small misplaced clip in the pipe connector. Apparition of operators
the engine model (several modes of normality). Slight differences in in front of the scene.
lighting.

Staple Slight variations in the position of the inspected item. Variations in Missing large staple on the pipe connector.
the engine model (several models of normality).

T. screw Fixed scene. Variations in the tank model shown (several modes of Absence of the relatively small screw, always in the same location
normality). Moving items in the scene (red receptacle). Apparition in the image.
of items in certain images at different places (wirings; cables;
presence of nuts and bolts). The items never appear in new places
in the test set. Slight differences in the exact positioning of the
scene. Blurriness present in some pictures.

Cables Fixed scene. Largely stable item locations. Apparition of items in Presence of the cables in front of the scene. Presence of operators
certain images (shards). Minor lighting variations. in front of the scene.

U. screw Fixed scene. Major variations in lighting. Variations in the casing Absent left screw.
model (several modes of normality). Visible lens flare in some
images.

Table 5

Example confusion matrix. TP stand for True Positive, FP for False
Positive, FN for False Negative and TN for True Negative. Positives
stands for defective, and negative for non-defective.

Ground truth

Positive Negative
Prediction Positive TP FP
Negative FN TN

4. Benchmark study

In this section, we propose a thorough benchmark study over all
classes of our dataset to prove its value for overcoming current research
challenges.

4.1. Choice of methods

We have chosen six methods that are representative of the different
architecture designs reviewed in Section 2.2, and give out the highest
AUROCs on MVTec AD and MVTec LOCO as described in Section 2.3:
CFlow, DRAEM, DSR, EfficientAD, PaDiM, and Patchcore. The imple-
mentation of all methods is taken from the Anomalib library (Akcay
et al., 2022). At the time of test, CS-Flow being unavailable, we have
chosen CFlow, whose performance is close to CS-Flow. Additionally,
we use the EfficientAD-M model, which achieves better performance in
terms of AUROC on MVTec AD and MVTec LOCO, at the cost of slightly
longer evaluation time.

The methods were first tested on the MVTec dataset to ensure that
they achieve their expected performance.

4.2. Choice of metrics

We intend to propose metrics that replicate as closely as possible the
direct application of the methods to the industrial context. Concerning
image-level detection, with positives representing defective items and
negatives non-defective items, the False Positive Rate and False Negative
Rate (FPR, FNR) represent the amount of non-defective items being
flagged as defective and defective items being flagged as non-defective,
respectively. The two metrics can be directly translated to the asso-
ciated events on the assembly line, FPR represents the non-defective
items being flagged as defective, and FNR represents the defective items
that have not been flagged by the inspection system.

Using the definitions given in Table 5, we use the following equa-
tions to calculate the FPR and FNR:

FP

FPR = ———
FP+TN

(€Y

FNR = — N __ @)
FN+TP

As we are advocating for the unsupervised setting, there are no
defective items in the training set. In order to obtain the FPR and FNR
values, a threshold must be chosen. This threshold may be chosen by
maximizing the F-score over the test set for image-level (Bozi¢ et al.,
2021) and pixel-level metrics (Gudovskiy et al., 2022). Using only the
training set, we can derive specific values of FPR by setting manual
threshold values. These values can then be used to derive test results
without any prior knowledge of the test data. We have chosen the FPR
values of 0.01, 0.05, 0.10 (corresponding to True Negative Rates (TNR)
of 0.99, 0.95, 0.90).

Additionally, we also use the Area Under the Receiver Operating
Curve (AUROC) to compare performances between methods and be-
tween datasets as a threshold-agnostic metric. We also use the Average
Precision (AP), otherwise known as the Area Under the Precision-
Recall Curve (AUPR). The use of both metrics is justified by the fact
that we propose a dataset that features high class imbalance between
defective and non-defective populations, whose performance can be
more accurately assessed by AP, which equally considers the false
positive and false negative rates. However, our datasets (as well as all
datasets available in the literature) do not show a realistic proportion
of defects compared to that which is found in real-world industrial
applications. In this sense, AUROC better estimates the performance
that would be expected in a real-world system with a different defect
prior probability.

Concerning pixel-level detection, a commonly used metric is the
Area Under the Per-Region Overlap Curve (AUPRO) (Batzner et al.,
2024; Bergmann et al., 2019; Gudovskiy et al., 2022). This metric relies
on the Per-Region Overlap (PRO) metric: for m sets of connected pixels
marked as anomalous (4;),i € [1,m] in a ground truth image, and a set
P of pixels predicted as anomalous, the PRO is defined as

1 < |PnA4;
PRO(P) = -m ; AT 3)
This measure resembles the TPR at the pixel level, but weighs identi-
cally all connected components, regardless of their size. The PRO is the
basis for the Saturated Per-Region Overlap (sPRO) measure (Bergmann
et al.,, 2022). Given a set of saturation thresholds (s;),i € [1,m], the
sPRO is computed as:

m
PnNA,;
sPRO(P) = lmzmin (1, u> . )
S
i=1 i
This measure is used to consider as correctly segmented a zone
of which only a proportion s;/|4;| is detected. This is particularly
relevant for logical defects, for example misplaced items on an image.
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Table 6
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Classification results measured by AUROCs (in %). The AUROCs shown here are calculated as the means
and standard deviations of the AUROCs observed in the eight experiments. Best results are outlined in
bold. Best results differ from the others according to the Welch’s t-test at the 5% significance level.
If several good results are not significantly different, they are all considered to be the best. The mean
AUROCs from the MVTec AD, MVTec LOCO and VisA datasets are reproduced from Table 2.

CFlow DRAEM DSR Eff.AD PaDiM Patchcore
Wiring 46.1+8.6 71.8+2.3 75.9+2.4 79.7+0.8  79.2+1.3 77.2+0.3
Clip 49.3+12.7  76.6+3.6 81.1+6.8 76.8+1.2 62.6+2.0 73.3+0.9
Staple 51.2+6.7 74.2+12.1 96.2+3.1 84.3+1.5 54.6+3.0 92.3+0.6
T. screw 48.7+14.1 63.9+11.8 70.2+10.2 62.4+2.7 49.4+2.7 89.3+0.7
Pipes 64.2+19.7 89.2+5.5 56.9+8.6 91.2+1.2 98.9+0.6 99.8+0.0
U. screw 48.8+13.0 96.0+2.8 97.9+2.2 91.0+0.2 82.6+1.7 98.9+0.1
Mean 51.4+5.9 78.6+10.8 79.7+14.3 80.9+9.8 71.2+17.3  88.4+10.1
MVTec AD 98.2 98.0 98.2 99.1 97.9 99.0
MVTec LOCO - 73.6 82.6 90.7 - 80.3
VisA 91.5 - - 98.1 - -
Table 7

Classification results measured by AP (in %). The APs shown here are calculated as the means and
standard deviations of the APs observed in the eight experiments. Best results are outlined in bold.
Best results differ from the others according to the Welch’s t-test at the 5% significance level. If
several good results are not significantly different, they are all considered to be the best.

CFlow DRAEM DSR Eff.AD PaDiM Patchcore
Wiring 52.8+6.3 70.2+4.9 74.2+3.1 77.9+1.0 77.2+1.3 77.5+0.4
Clip 44.7+11.3 68.3+6.1 69.3+6.8 59.7+0.9 48.5+1.6 56.0+0.7
Staple 40.1+6.5 57.2+12.8 94.2+4.5 61.5+1.9 39.4+1.2 78.0+1.6
T. screw 25.1+7.4 37.2+14.1 34.8+8.9 26.1+1.3 23.0+0.6 57.9+2.2
Pipes 66.5+16.9 92.7+2.3 56.9+7.0 88.9+1.2 99.1+0.6 99.9+0.0
U. screw 7.2+1.0 61.1+12.1 70.0+18.7 22.5+0.5 13.9+0.9 67.7+1.7
Mean 39.4+19.0 64.4+16.6 66.6+18.0 56.1+24.8 50.2+29.7  72.8+14.8

In this case, a saturation threshold can be set to qualify the number of
pixels that must be detected to consider the region correctly segmented.
In Bergmann et al. (2022), the sPRO measure is used to calculate
the Area Under the sPRO Curve (AUsPRO), in a similar fashion to
AUPRO or AUROC. Given the fact that we also define logical defects
with corresponding saturation thresholds and that they are segmented
similarly to MVTec LOCO, we will use AUsPRO to estimate the methods’
performance for anomaly segmentation.

4.3. Benchmark procedure

We ran eight experiments for each training configuration, evalu-
ating six methods over six classes. The total number of experiments
is8x6x%x6 288. We used the hyperparameters suggested in the
corresponding original papers (Batzner et al., 2024; Defard et al., 2021;
Gudovskiy et al., 2022; Roth et al., 2022; Zavrtanik et al., 2021a, 2022).
The number of training epochs was set in such a way as to ensure that
no model underfits on our dataset. CFlow was trained for 100 epochs,
DRAEM for 700 epochs, DSR for 500 epochs, and EfficientAD for 250.
PaDiM and Patchcore only require a single training epoch.

All methods were trained and evaluated with an Nvidia V100 GPU
and 32Go of RAM.

5. Results

The results displayed in Tables 6 to 9 and Fig. 3 show that existing
methods do not attain acceptable results on all the classes of our
dataset. We give detailed results for each method below.

5.1. CFlow

CFlow (Gudovskiy et al., 2022) shows the lowest average results on
our dataset. The only category for which the AUROC is significantly

better than random (0.5) is underbody pipes. CFlow uses multi-scale en-
codings that are decoded in a normalizing flow, and uses log likelihoods
applied to the estimated distribution for multiple scales. CFlow strug-
gles to correctly encode the information, especially at the largest scale,
as its activations tend to be extremely susceptible to the variations
described in Table 4. As can be seen in Fig. 3, CFlow correctly picks
up the absent staple in the pipe staple class, showing that the method is
able to identify the anomaly, but is otherwise very susceptible to the
variations due to the inability of learning the distribution of an overly
irregular population. underbody. pipes is the category that show the least
variability and shows the best results for CFlow, as it is able to identify
the extra cables in most cases.

Furthermore, the AUROC for the underbody pipes class reaches a
maximum value of 87.8 and a minimum value of 33.1. These results
suggest that, with the right initial weights, CFlow is able to perform
on par with methods such as DSR or EfficientAD: however, our re-
sults suggest that this method is overly susceptible to initialization
conditions.

5.2. DRAEM

DRAEM (Zavrtanik et al., 2021a) shows insufficient performance
on most tasks. While DRAEM’s AUROCs show that this method is
significantly better than average, it does not show satisfactory results
in terms of AUROC, AP or TPR.

The autoencoder-based architecture of DRAEM is able to produce
very precise heatmaps. However, its sensibility to the variations (see
Fig. 3) makes the method prone to false positive activations. In most
classes, the defect is identified (missing screws in tank screw and
underbody_screw, extra pipes in underbody pipes, misaligned staple in
pipe_staple) but the surrounding noise is overly difficult to represent
in the latent space of the autoencoder. DRAEM is completely unable to
identify defects such as the misplaced blue hoop or incorrectly fastened
cable in engine wiring because it does not leverage enough large-scale
spatial information to identify such logical defects.
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DSR Eff.AD PaDiM Patchcore

Fig. 3. Example outputs of all tested methods for the categories of the AutoVI dataset, along with the ground truth mask. From left to right: original image reshaped to 256 x 256,
ground truth segmentation mask, output heatmaps of CFlow, DRAEM, DSR, EfficientAD, PaDiM and Patchcore.

5.3. DSR

DSR (Zavrtanik et al., 2022) is one of the best-performing methods
of our benchmark. DSR consistently ranks among the best methods in
terms of AUROC and AP for the pipe clip, pipe_staple and underbody._screw
categories. Namely, DSR reaches a mean TPR of 82.7% at a TNR
of 95% for the pipe staple category, largely outperforming the other
benchmarked methods. Despite these results, DSR does not achieve
good results in terms of TPR at a TNR of 99%, where DSR achieves a
mean of at most 63.9% for underbody_screw. Besides, DSR is seemingly
unable to correctly analyze the underbody pipes category, reaching the
lowest mean AUROC out of all tested methods on this category. DSR
gives among the best segmentation results of all methods in pipe clip,
pipe_staple and tank_screw.

DSR’s representation space works remarkably well to build a rea-
sonable description of the scene. This is particularly visible for the
pipe_staple class where the absence of the staple exhibits a large re-
sponse. However, this method shows extreme limitations regarding the
identification of the extra pipes in underbody pipes, where it is unable to
pick out the correctly-segmented defect from the other responses. DSR
struggles with large and complex scenes and relatively small defects
(small missing screws in tank_screw, thin pipes in underbody pipes),
where the representations of the defect, while correct, are drowned out
in the surrounding responses. The representation space struggles with
reconstructing complex assemblies and identifying the defect within,
leading to heatmaps with multiple small pulses scattered throughout
the scene.

5.4. EfficientAD

EfficientAD (Batzner et al., 2024) reaches among the highest AU-
ROC:s for pipe_clip, along with DRAEM and DSR, and engine wiring, along

with PaDiM. EfficientAD does not give satisfactory results at high TNR
thresholds, not beating 10% TPR at 99% TNR for any category.
EfficientAD is surprisingly unable to specifically identify logical
defects, namely the misplaced blue hoops in engine wiring, compared
to other methods that have not specifically been designed to identify
logical defects, namely PaDiM. Similarly to other methods, EfficientAD
shows a sensitivity to the changing environmental conditions in the
output heatmaps. These heatmaps show that EfficientAD identifies
the defect but the response is very weak, and does not stand out in
the surrounding noise. As the image resolution is decreased during
computation, the autoencoder and student-teacher may be unable to
comprehensively model the input variability and thus struggle to iden-
tify the defect. Furthermore, EfficientAD uses a normalization step for
the output responses that uses a validation defined as 5% of the training
data. The normalization is too spread out due to the variability found
in the data: for all defect types, we can see a very small response at
the actual defect locations that is drown out in the overly normalized
heatmap. We show that normalizing on the entire training dataset
increases the performance of EfficientAD on AutoVI in Section 6.4.

5.5. PaDiM

PaDiM (Defard et al., 2021) is the second best-performing method
on the engine wiring category, showing some of the most difficult in-
spection tasks of our dataset, reaching a mean AUROC of 79.2%.
Additionally, the variances are very low for all categories in terms
of AUROC, AP and TPR, the exception being the underbody pipes and
underbody_screw categories. However, except for the underbody pipes
class, PaDiM does not show especially good results, with the tank_screw
category having an AUROC at 50%.
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Classification results measured by True Positive Rates (TPR, in %) for several True Negative Rates (TNR,
in %). Best results, outlined in bold, differ from the others according to the Welch’s t-test at the 5%
significance level. If several good results are not significantly different, they are all considered to be best.

TNR CFlow DRAEM DSR Eff.AD PaDiM Patchcore
99 3.0+2.9 4.3+3.3 5.5+1.6 2.9+1.2 5.6+1.0 8.0+0.6
Wiring 95 6.4+3.0 17.8+3.3 18.5+6.3 23.1+2.6 19.8+2.7 25.5+1.7
20 10.9+4.6 27.9+3.9 28.3+8.0 43.5+3.6 36.7+5.6 34.9+1.2
99 2.6+4.7 4.1+5.6 2.4+1.4 1.0+0.3 0.5+0.3 0.7+0.0
Clip 95 8.0+10.1 25.4+11.2 18.3+7.0 3.9+0.8 5.1+2.0 4.9+0.0
20 12.0+12.8 40.9+12.0 42.5+9.4 11.2+2.9 11.3+2.8 13.1+0.8
99 2.3+3.9 5.1+11.0 56.2+22.9 1.7+0.4 1.0+0.8 3.1+0.6
Staple 95 4.3+4.5 14.6+14.7 82.7+12.2 5.3+0.8 4.0+1.5 19.245.2
920 9.9+6.2 31.5+19.4 89.5+8.0 9.6+1.1 8.5x1.0 70.6+7.9
99 1.7+3.2 4.2+7.1 1.0+0.0 0.0+0.0 1.2+0.3 3.4+1.7
T. screw 95 4.2+5.8 9.8+12.8 6.2+7.7 2.2+0.6 4.3x1.8 20.0+3.0
90 9.2+7.1 18.6+18.9 17.2+10.6 7.0+0.7 9.3+1.2 45.3+4.8
99 8.6+9.5 38.9+15.6 4.1+2.7 8.6+5.1 85.3+11.6  98.3+0.0
Pipes 95 17.2+15.6 52.4+23.1 6.9+3.9 51.7+6.4 95.0+3.5 99.5+0.0
90 23.2+20.3 66.0+19.9 10.0+6.4 72.7+8.6 97.5+1.1 99.5+0.0
99 0.0+0.0 39.6+27.1 63.9+32.9 0.0+0.0 0.0+0.0 16.6+0.0
U. screw 95 0.7+1.8 66.0+34.2 88.9+14.4 0.0+0.0 2.1+2.7 100+0.0
90 2.1+2.7 91.7+10.8 97.2+5.6 89.6+10.1 6.2+1.8 100+0.0

Table 9

Segmentation results measured by mean AUSPRO (in %), calculated on the eight experiments. The
sPRO curves were computed up to the pixel FPR threshold of 5%. Best results are outlined in bold.
Best results differ from the others according to the Welch’s t-test at the 5% significance level. If
several good results are not significantly different, they are all considered to be the best.

CFlow DRAEM DSR Eff.AD PaDiM Patchcore
Wiring 5.3+2.0 7.7£1.3 29.4+2.6 45.5+1.5 44.4+3.9 35.7+0.3
Clip 6.8+5.5 26.4+16.0 59.6+11.0 45.9+2.1 38.1+5.6 60.2+5.7
Staple 5.9+4.2 55.8+16.1 78.3+3.9 49.1+25.6 19.1+£5.6 60.3+5.2
T. screw 4.3+16.1 91.1+1.7 94.2+1.0 66.3+4.6 50.4+8.1 80.6+0.5
Pipes 53.6+18.4  53.0+5.4 63.1+3.4 55.9+1.5 78.2+1.7 77.6+0.2
U. screw  59.9+26.2 72.4+2.3 78.4+2.1 98.4+1.2 93.3+1.6 99.3+0.0
Mean 22.6+24.2 51.1+27.6 67.2+20.3 60.1+18.5 53.9+24.8 68.9+20.0

PaDiM shows a comparatively good capacity at modeling the Gaus-
sian parameters of the patches of classes that show a stable scene:
engine wiring, underbody pipes and underbody_screw. Additionally, De-
fard et al. (2021) suggest that PaDiM is more resilient to rotations
of the focal plane than other methods. This may explain the better
results of PaDiM on engine wiring than most other classes, as it shows
small changes in rotations regarding the positioning of the cables,
the metallic clamps and the blue hoop. This method is still unable
to consistently detect logical defects. Similarly, PaDiM shows good
capacity at identifying the defects in the underbody pipes class, due to
their relative simplicity in terms of positioning, stability and environ-
mental variations. Other classes show too much diversity for PaDiM to
accurately estimate the Gaussian parameters.

5.6. Patchcore

Patchcore (Roth et al., 2022) is the overall best-performing method,
ranking among the best methods in terms of AUROC for tank screw,
underbody pipes and underbody_screw and reaching high TPRs for en-
gine wiring and pipe_staple. Most notably, Patchcore reaches a TPR of
98.3% on underbody pipes for a TNR of 99%. Patchcore is the only
method in our benchmark that reaches a TPR of more than 99% for
a TNR of 95%, and does so for two classes. Additionally, segmentation
results show that Patchcore is able to consistently identify the anomaly,
albeit with an imprecise boundary because of its patch-based segmen-
tation algorithm. Patchcore is less adapted to the pipe clip task, where it
is not able to accurately identify the defect compared to DRAEM, DSR
and EfficientAD in terms of AUROC and AP.

Patchcore uses patch representations: it shows consistently good
results as its patch representations enable the method to find defects
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at fixed locations. Due to its local patch-based architecture, it does
not pick up the engine wiring logical defects, which require a way to
handle global structures. The misaligned clips in the pipe clip category
are identified to some extent by Patchcore, but are too small and
difficult to pick out from their surroundings. Patchcore does not issue
sufficient distance from the defective patch to its memory bank patches
to identify this kind of defects, because it is very similar to correct
visual structures seen during training. Patchcore would require a much
more precise model of the nominal class patches as seen in the training
data to be able to achieve better results.

5.7. Training and evaluation times

Table 10 shows the mean training and evaluation times of all tested
methods on our dataset. At evaluation time, all methods are able to
process at least several images per second, meaning that all methods are
able to be used on high-cadence assembly lines. For all methods, mean
training times stand under the ten-hour mark, which is reasonably low
for implementing a new inspection cell. Namely, Patchcore and PaDiM
take under one minute to train, which means that these methods could
be deployed extremely rapidly on a new assembly line.

6. Further experiments

In order to bolster our benchmark study, we present results gathered
by varying the inspection and training conditions, in order to iden-
tify possible approaches to improve the performance of unsupervised
methods on real-world data.
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Table 10
Average training time (in seconds) and average number of images processed per second at evaluation time for each
method.
CFlow DRAEM DSR Eff.AD PaDiM  Patchcore
Training time (in s) 19,3744+5,551 29,438+7,357 16,839+4,227 15,954+2,303 15+2 4623

Table 11

Classification results measured by AUROCs (in %), training with data augmentation. The
AUROCs are given as the area under the averaged ROC curve over the eight experiments.
Best results are outlined in bold. Results that improved with data augmentation are underlined.

CFlow DRAEM DSR Eff.AD PaDiM Patchcore
Wiring 46.6+6.1 70.6+2.4 65.4+6.8 79.2+0.9  75.9+1.2 76.5+0.6
Clip 54.6+14.3 75.5+6.0 70.6+7.4 77.8+1.2  62.3+3.2 68.4+0.8
Staple 53.5+8.5 98.1+1.7 85.5+11.3 94.6+0.7 56.4+3.3 92.1+1.0
T. screw 45.7+7.9 64.8+6.1 64.7+10.3 50.2+3.0 46.9+0.9  86.6+1.3
Pipes 82.7+7.3 86.8+4.6 56.9+7.2 88.1+2.9 97.9+0.8 99.8+0.0
U. screw 60.3+18.5 98.7+1.0 97.4+6.6 91.3+0.3 79.4+2.0  98.2+0.6

6.1. Data augmentation

Data augmentation refers to techniques used to increase the number
of available training images. Data augmentation is widely used in
industrial applications to counter the problem of imbalanced data or
insufficient training data (Kim et al., 2023; Niu et al., 2023).

Bergmann et al. (2022) propose a data augmentation pipeline for
benchmarking MVTec LOCO based on vertical and horizontal flips,
random rotations and color jitters. We have decided not to include
flips and color jitters, as our data is not axially symmetric, and is
partially dependent on color cues for anomaly detection. Instead, we
have opted for Gaussian noise to simulate the loss of quality that could
be occasionally experienced in an industrial environment. Our data
augmentation pipeline was set as follows:

» with probability 0.5, a random rotation following a uniform
distribution on the interval [+15°,-15°],

» with probability 0.5, a Gaussian noise with individual pixel per-
turbations p following a Gaussian distribution p ~ N'(0,6?) with
62 ~ U(10,120), o2 being sampled once per image.

The two processes are independent, so both augmentations can be
applied on the same image.

Table 11 summarizes the classification results with data augmen-
tation. Results show that using data augmentation leads to overall
worse classification results in terms of mean AUROC. Some categories
(engine wiring, pipe_staple) show a significant rotation variability be-
tween shots. Only CFlow, DRAEM and, to some extent, EfficientAD
benefit from data augmentation. These methods seem to benefit from
extra diversity in the training data; CFlow might be able to better esti-
mate the data distribution, while DRAEM is able to construct a better
representation in its latent space. EfficientAD is able to largely improve
its results on pipe staple, benefiting from the extra rotation. However, its
performance on tank screw decreases sharply, suggesting that learning
using rotated data does not help the method locate the missing screw.
On the other hand, DSR, an autoencoder-based method, like DRAEM,
shows a significant decrease in performance: this might be due to the
fact that DSR uses quantized subspace representations (Razavi et al.,
2019) which might be overly sensitive to the Gaussian noise. Finally,
PaDiM and Patchcore do not show significant difference with data
augmentation. PaDiM arguably does not benefit from extra rotation
information, due to the purported resistance of this method to rotation
variations (Defard et al., 2021). Finally, the issue of Patchcore is mostly
linked to logical defect detection and small defect identification: the
augmentation that was carried out does not answer the limitations of
the method.
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6.2. Varying the window size

The categories pipe clip and pipe staple show images that were
cropped from a much larger image (see Fig. 4), as well as engine wiring
which is cropped from a comparatively smaller image. We have tested
the performance of the algorithms using different window sizes around
the defect, in order to identify the scale at which the tested algorithms
react to the presence of the defect.

For pipe clip and pipe_staple, we have tested crops at resolutions of
200 x 200, 400 x 400 and 600 x 600 pixels. For engine wiring, we have
tested the original, uncropped image of size 640 x 480 pixels, and crops
of sizes 400 x 400 and 400 x 480 pixels. The other images have not
been resized due to the defect being large enough to be picked up. We
have trained and evaluated each method eight times on each category
and each size.

Table 12 shows the results of our experiments for different window
sizes. The influence of the window size is minor for the engine wiring
category, where the best-performing methods for the category, Effi-
cientAD and PaDiM, keep stable AUROCs throughout the experiments.
However, other methods see their AUROC decrease as the window
size is increased. For the pipe_clip category, most methods see a steady
decrease in AUROC as the window size increases, except for DSR which
achieves its best results for a window size of 400 x 400, although
with a high standard deviation. Finally, the pipe staple category also
sees a significant decrease in its AUROC as the window size increases,
although DRAEM performs significantly better than other methods for
a window size of 600 x 600.

For the engine wiring class, differences are generally minor due
to the small differences in size. However, these results show that
all methods are resilient to the differences that are removed in the
cropping operation (apparition of nuts and bolts, shadows and lighting
differences, positioning of the wires). For the pipe_clip class, results
decrease as expected due to the increasing complexity of the image and
relative difficulty of this specific detection task. Finally, the pipe staple
class shows an outlier result in DRAEM’s performance at the largest
tested cropping size, while the better performing DSR falls short. We
have established that DSR fails to perform with complex scenes and
relatively small defects, while DRAEM seems to perform better on these
tasks while struggling with location information. At a large cropping
size, thus, DSR falls short due to being confronted to a much larger
scene and smaller defect, while DRAEM gives an essentially stable
result.

6.3. Number of training images
We have experimented with reducing the number of training im-

ages. This approach, dubbed few-shot anomaly detection, is of high
interest for industrial applications as it would allow defect detection
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Fig. 4. Comparison of images before and after cropping.

Table 12

Classification results measured by AUROCs (in %) for different window sizes. The AUROCs shown here
are calculated as the means and standard deviations of the AUROCs observed in the eight experiments.
Best results are outlined in bold. Best results differ from the others according to the Welch’s t-test at
the 5% significance level. If several good results are not significantly different, they are all considered

to be the best.

CFlow DRAEM DSR Eff.AD PaDiM Patchcore
Wiring 400 X400  46.1+8.6 71.8+2.3 75.9+2.4 79.7+0.8  79.2+1.3 77.2+0.3
Wiring 400 x 480 51.4+8.5 69.4+1.1 75.5+1.7 80.7+0.6 79.8+0.4 77.7+0.4
Wiring 640 x 480 37.8+10.2 68.4+3.0 72.1+2.9 80.6+0.7 80.0+1.2 76.3+0.4
Clip 200 x 200 61.8+8.7 76.3+6.8 76.1+3.3 83.5+1.0 70.5+2.9 79.5+0.4
Clip 400 x 400 49.3+12.7  76.6+3.6 81.1+6.8 76.8+1.2 62.6+2.0 73.3+0.9
Clip 600 x 600 50.9+6.0 66.6+9.8 71.5+3.9 58.8+1.0 53.5+2.1 58.2+0.9
Staple 200 x 200 48.7+7.8 88.1+6.7 98.7+2.9 82.6+2.4 57.5+2.0 97.0+0.3
Staple 400 x 400 51.2+6.7 74.2+12.1 96.2+3.1 84.3+1.5 54.6+3.0 92.3+0.6
Staple 600 x 600 37.4+5.6 82.7+12.8 60.9+9.1 73.5+5.4 30.0+2.0 52.9+1.4

using as few training images as possible (Liu et al., 2023). We ran
eight experiments using randomly selected training images on each
category of AutoVI using the best-performing method for classification,
Patchcore.

Fig. 5 shows the results of our experiments. In the majority of cases,
a few-shot configuration with less than 10 training images leads to
significantly worse results than using the whole training dataset. The
only exception is the underbody pipes class, with an AUROC above 99%
with only one training image. In all other cases, the AUROC increases
steadily with the number of training images.
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For the engine wiring, pipe_clip, pipe_staple and tank_screw categories,
the images show significant variations and/or exhibit difficult anoma-
lies, which explains the poor performance of few-shot training config-
urations. The results can reach an AUROC as low as 0.5, which means
that the classifier does not perform better than a random classifier and
does not learn enough information to discern defects from nominal
patches. For the tank_screw category, the AUROCs are even significantly
below 0.5 with 4 or fewer training images. Due to the variability
offered in these categories, Patchcore identifies a large number of false
positives that correspond to normal variations to such an extent that



P. Carvalho et al.

AUROC
3

S

nﬁnﬂﬂﬂﬂﬁﬂﬂﬂﬂﬂﬂ

10 25 50 100 All

IS
(=}

Number of training images (engine,wiring)

100 [
90 |-
@) -
3 80
% 70
Z 60|
50
40 |-
10 25 50 100 All
Number of training images (pipe_clip)
100 |-
90
Q80 -
Q
% 70 |-
Z 60 [
50
ol ED
\
1 3 10 25 50 100 All
Number of training images (pipe_staple)
100 |~
90
@) -
3 80
% 70 +
< 60 [~
50
oL mmEE Bﬁ
B B R
1 2 3 4 5 6 7 102550100A1]
Number of training images (tank_screw)
100 —
90 +
Q80 |-
Q
% 70
Z 60|
50
40 |-
T T T T T T T T T T T T 1
1 2 3 4 5 6 7 8 9 10 25 50 100 All
Number of training images (underbody _pipes)
100
90
Q80 -
Q
% 70 |-
Z 60|
50
40 |-
\

! ! ! ! !
9 10 25 50 100 Al

Number of training images (underbody_screw)

Fig. 5. Performance of the Patchcore algorithm for different few-shot learning
configurations.
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Table 13

Classification results measured by AUROCs (in %) for Efficien-
tAD, normalized on the entire training set. The AUROCs shown
here are calculated as the means and standard deviations of
the AUROCs observed in the eight experiments. Best results
are outlined in bold.

Eff.AD, extra norm. Eff.AD, no extra norm.

Wiring 80.6+0.6 79.7+0.8
Clip 79.5+1.5 76.8+1.2
Staple 87.0+0.7 84.3+1.5
T. screw 63.8+2.5 62.4+2.7
Pipes 88.4+4.3 91.2+1.2
U. screw 90.5+0.4 91.0+0.2

it falls short of the random classifier. For the underbody pipes category,
the excellent performance of the 1-shot configuration can be explained
by the fact that the defects shown are structural defects that take up
a significant portion of the image, thus making them stand out in
comparison to the rest of the scene, in addition to the scene itself
not showing significant variability. Finally, the underbody_screw shows
a scenario that attains excellent results for classification with the full
training dataset, but very low results in few-shot configurations. This
category exhibits very significant variations: colors changing over time,
presence of lens flare in some images, etc. Although the defect is easy
to identify, it is difficult or even impossible for a detection algorithm
to handle such a variety of correct conditions with only a few training
images. The high variability suggests that depending on the selected
training images, the algorithm will correctly identify defects only in
images similar to the training images; as there is a different number
of pictures in different lighting configurations, the AUROC will change
significantly between runs.

6.4. Additional normalization data for EfficientAD

We show in Table 13 that EfficientAD yields better results when
normalizing the branches’ responses on the entire training dataset,
instead of the validation set consisting of 5% of the training data
suggested by the authors (Batzner et al., 2024). Namely, we see that
EfficientAD achieves the best performance out of all methods on the en-
gine wiring category. This corresponds to the fact that the normalization
step requires more data to account for the extra variability found in our
dataset. As such, the only classes for which the normalization does not
improve results are underbody pipes and underbody _screw, which show
relatively little structural variability.

7. Discussion and conclusion

We have introduced the Automotive Visual Inspection Dataset (Au-
toVI), a genuine real-world industrial production dataset for visual
inspection. Our dataset includes six different inspection tasks gathered
from real assembly lines, including realistic defective parts that were
directly created on the assembly line. To the best of our knowledge,
this is the first publicly available dataset that shows a variety of in-situ
industrial tasks, including large assemblies, part checks, and inclusion
of logical defects.

Our benchmark study shows several interesting results concerning
the performance of existing algorithms on real-world tasks with mini-
mal tuning of both the data and the methods. We see that some methods
achieve excellent detection results on some tasks, namely Patchcore for
the underbody_screw class, with a True Positive Rate of over 98% at a
True Negative Rate of 99%. However, all other tasks do not show such
results, and leave considerable room for improvement.

Further experiments have comforted our analysis of the tested meth-
ods. We show that all methods are sensitive to different challenges that
stem from a real-world, industrial case, notably the relative complexity
of the scenes, the size of the defect, and the large-scale positioning to
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Table 14
Suggested usage of the reviewed algorithms based on the results of our benchmark
study.

CFlow DRAEM DSR Eff.AD PaDiM Patchcore
High variability v v
Small defects v v v v
Complex scenes v v v
Struct. defects v v v v v v
Logical defects v

detect logical defects. Clearly, there is currently no method that fits
all types of defect detection problem, Table 14 shows the methods
for obtaining satisfactory results depending on the characteristics of
the problem to be solved. Overall, Patchcore is able to work well
in large and complex scenes (tank screw, underbody_pipes), as well as
relatively straightforward detection tasks (large staple in pipe staple,
large screw in underbody screw). Detection tasks such as small, locally
difficult defects in complex scenes (pipe_clip) or logical defects fea-
turing wrongly connected cables and hoops (engine wiring) are more
difficult for this method. Autoencoders such as DRAEM, DSR and in
part EfficientAD are able to better identify the local defective structure
in pipe_clip, while DSR is particularly apt at detecting the missing
staple in pipe staple: though it constitutes a relatively large defect, the
spatial structure of DSR’s subspaces allow it to specifically focus on
all parts of the image and pick up these defects. Finally, PaDiM shows
slightly better performance than other methods on engine wiring due to
its relative stability to rotation that is visible on some images. Most
other methods show results that fall short of these three method’s
performances for all benchmarked tasks. Note also that the line headers
in Table 14 can also be used as features of defect detection problems.
These features are useful for comparing method performance across
benchmarks: if the current benchmark differs, some of their individual
tasks may share certain common properties explaining similar trends
across benchmarks.

Finally, for most categories, a consequential amount of training data
is still required, as removing images from the training set significantly
reduces the detection performance. Training with only a few images,
known as few-shot learning, would be an interesting perspective as it
would allow an inspection system to start detection while having only
seen a few images, saving time on the installation of the system.

Performance-wise, all methods have shown a training time of at
most ten hours, and an evaluation time well under the second, which
makes all tested methods fit for use in a high-cadence industrial con-
text. Further experiments should be conducted on lower-tier hardware
to imitate embedded systems’ performances that are most likely used
in an industrial detection system.

Table 6 shows that the methods tested give results largely inferior
results compared to MVTec AD, and results that are comparable to
MVTec LOCO (lower for DSR and EfficientAD, higher for DRAEM and
Patchcore) despite the lower prevalence of logical defects in AutoVI.
In particular, we show that the best AUROC of AutoVI is 88.4% with
Patchcore, while the best AUROCs of MVTec AD, MVTec LOCO and
VisA are respectively 99.1%, 90.7% and 98.1% with the EfficientAD
method. This result illustrates the fact that AutoVI shows a problem
that is difficult and different than the ones showcased in existing
benchmarks, seeing as the best method on AutoVI is different from the
best method on the MVTec and VisA datasets.

AutoVI has allowed us to make a comprehensive benchmark of
state-of-the-art unsupervised anomaly detection algorithms on com-
plex, real-world problems. The building of AutoVI has required several
months of shooting, selecting, labeling images, and contains a number
of images similar to other major datasets in the literature, such as
MVTec LOCO (Bergmann et al., 2022). We have proposed the publica-
tion of AutoVI as a public benchmark to bolster research efforts towards
development of new unsupervised defect detection methods that will be
better adapted to real-world tasks.
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Glossary

+ Logical defect: Defect that stems from an erroneous assembly of
items in the scene. Associated with large-scale structure identifi-
cation. See Bergmann et al. (2022).

+ Structural defect: Defect that stems from a local, visual defect on
the scene. Associated with local visual structures. See Bergmann
et al. (2022).

» Unsupervised defect detection: Machine learning framework
where methods learn only from non-defective data.
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