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Abstract

A two-dimensional depth-averaged model is derived for open-channel
flows in the smooth turbulent case. The derivation is consistently ob-
tained with a method of matched asymptotic expansions in the outer
and inner layers using a mixing length model of turbulence including
the free-surface reduction of the eddy viscosity. The shear effects are
taken into account by an extra tensor variable of the model called
enstrophy tensor. The friction coefficient is an explicit expression of
the water depth. The three-dimensional (3D) velocity field and the
friction velocity can be reconstructed from the values of the depth-
averaged quantities. Numerical simulations show that the enstrophy
can be used to evaluate the development of the turbulent boundary
layer. In the case of subcritical unsteady flows, the reconstructed
velocity can be described with a logarithmic law modified by Coles’
wake function with apparent von Kármán constant, integration con-
stant and wake-strength parameter, which differ from their values in
steady flows. In the viscous sublayer, the steady-state relation be-
tween the velocity and the vertical coordinate, in the inner scaling, is
not valid for unsteady flows. Large errors on the calculation of the
von Kármán constant can be made if the validity of the steady-state
relation is assumed for unsteady flows. The comparisons of the re-
constructed velocity profiles in the case of 1D unsteady open-channel
flows and 2D wide trapezoidal channels show a good agreement with
experiments.
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1 Introduction

The usual equations of open-channel hydraulics in the unsteady case are
the one-dimensional (1D) Saint-Venant equations, also called the nonlinear
shallow water equations. They can be easily extended to the two-dimensional
(2D) case. These equations are derived with the shallow-water assumption
i.e. the water depth is small compared to the characteristic length in the
direction parallel to the bottom. As a consequence, at the leading order,
the pressure is hydrostatic. Another assumption is that all shear effects are
neglected, which means that the velocity is supposed to be uniform over the
depth. With these assumptions, the Saint-Venant equations can be derived
from the Euler equations of incompressible and inviscid fluids with a depth-
averaging procedure.

Except in the case of discontinuities, which are created in finite time due
to the hyperbolic structure of the equations, there is no inherent dissipative
effects in this approach, which implies that they must be added empirically,
most often as an empirical friction force. The Kármán-Prandtl relation for
smooth pipes can be extended with slightly different numerical values to the
case of smooth open channels but the friction coefficient is found only implic-
itly. Approximate relations were proposed to obtain an explicit expression
of the friction coefficient. More details can be found in Chow (1959) or Yen
(2002) for example.

To find the expression of the friction force, or more generally of the dis-
sipative terms, as part of the derivation process of the depth-averaged equa-
tions implies to take into account the mean flow and turbulence structure of
the flow. Experimental investigation for open-channel flows is more recent
than for turbulent boundary layers in close channels because turbulence mea-
surements is more difficult in water than in air flows and it actually started
with the advent of Laser Doppler Anemometers (Steffler et al. 1985, Nezu
& Rodi 1986). The structure of fully developed open-channel flows is similar
to boundary layers and pipe flows, with an inner region controlled by the
kinematic viscosity ν and by the friction velocity ub =

√
τb/ρ where τb is

the shear stress at the bottom and ρ the fluid density, and an outer region
controlled by the water depth h and the maximum velocity. These regions
overlap in a layer where the logarithmic law holds. Denoting by u the mean
velocity and by z the vertical coordinate, this log law can be written

u+ =
1

κ
ln z+ +B (1)

where u+ = u/ub, z
+ = zub/ν, κ is the von Kármán constant and B the

integration constant. In the outer layer, a deviation from the log-law can be
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taken into account by Coles’ wake function (Coles 1956)

u+ =
1

κ
ln z+ +B +

2Π

κ
f(z/h) (2)

where h is fluid depth and f a universal function often chosen as f(Z) =
sin2(πZ/2). However the wake strength parameter Π controlling this function
is smaller than for zero-pressure-gradient boundary layers and is nearly equal
to zero at a relatively low Reynolds number (Nezu & Rodi 1986). Cardoso
et al. (1989) found only a weak wake and noted that an apparent log-law
can approximate the entire velocity profile. If the Froude number, defined by
F = u/

√
gh, is smaller than 1, the flow is said to be subcritical (the surface

waves are faster than the flow velocity). If F > 1, the flow is supercritical
(no surface perturbation can propagate upstream). For subcritical flows, the
measured values of κ and B are respectively 0.412 and 5.29 (Nezu & Rodi
1986). Very close values were obtained by Cardoso et al. (1989). In the case
of supercritical flows, the same value of κ ≃ 0.41 was measured but it was
found that B decreases if the Froude number increases above 1 (Tominaga &
Nezu 1992, Prinos & Zeris 1995). Miguntanna et al. (2020) found that the
integration constant B is a function of the channel aspect ratio.

In the framework of the eddy viscosity assumption, the mixing length
approach (Prandtl 1925) has been extensively applied to open-channel flows
and is widely recognized as able to provide an accurate description of the
flow over a smooth plane. In the inner layer, the mixing length satisfies the
classical linear layer modified by Van Driest damping function (Van Driest
1956). An expression of the mixing length for open-channel flows, including
the wake strength parameter, was obtained by Nezu & Rodi (1986) giving a
reduction of the eddy viscosity near the free surface where the mixing length
is equal to zero.

In the unsteady case the difficulty is the determination of the friction
velocity. Various methods were used and, in particular, the friction velocity
can be extracted from velocity measurements in the viscous sublayer assum-
ing the validity for unsteady flows of the law u+ = z+ which is found in the
viscous sublayer in the steady case. The value of the von Kármán constant
remains close to κ ≃ 0.41 for weakly unsteady flows (Nezu et al. 1997) but
can deviate from the steady-case value for a strong unsteadiness (Onitsuka
& Nezu 2000, Nezu & Onitsuka 2002). Considerable variations of the inte-
gration constant B and also of the wake-strength parameter Π were found.

The present study is a continuation of a previous work (Richard et al.
2017) where a new model for open-channel flows was derived using a mixing
length model of turbulence and a method of matched asymptotic expansions.
In this article, this work is improved and extended on the following points:
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– The mixing length expression of Nezu & Rodi (1986) with the free-
surface damping effect is used.

– This expression of the mixing length enables an accurate reconstruc-
tion of the velocity field from the bottom to the free surface using the
calculated depth-averaged quantities.

– The model is extended to the case of 3D-flows, leading to a 2D depth-
averaged model.

– The effects of the corrective first-order terms obtained consistently by
an asymptotic method are evaluated in unsteady flows with compar-
isons to experimental results from the literature on the development of
the turbulent boundary layer and on unsteady velocity profiles.

The governing equations, the assumptions and the scaling are given in §2.
The asymptotic expansions in the outer and inner layers and the matching
procedure are presented in §3. The depth-averaged model is consistently
derived in §4 using the asymptotic expansions. The method to reconstruct
the bottom friction and the 3D velocity fields is given in §5. Numerical
simulations are presented in §6 to study the development of the turbulent
boundary layer and the velocity profiles in unsteady situations. Technical
details are given in appendices.

2 Governing equations

2.1 Turbulence model

We study a turbulent flow on a sloping channel with a smooth bottom.
The angle between the channel and a horizontal plane is θ. The basis
for the coordinates x, y and z is (ex, ey, ez). The angle between the axis
Ox and the fall line is β and the axis Oz is normal to the bottom (see
figure 1). In these axes the components of the gravity acceleration are
g = g (sin θ cos β, sin θ sin β,− cos θ)T.

The turbulence is modelled with the mixing-length model. The viscous
stress tensor is written τ = 2ρ (ν + νT )D where ρ is the fluid density, ν its
kinematic viscosity, νT the turbulent viscosity. The tensor D is the strain-
rate tensor defined by D = [gradv + (gradv)T]/2 where v is the mean
velocity field. The turbulent viscosity is given by νT =

√
2L2

m

√
D : D where

the colon denotes the double dot product. For open-channel flows, the mixing
length Lm, in the model of Prandtl modified by the damping term of Van
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Figure 1: Definition sketch.

Driest (1956), if the wake-strength parameter is zero or can be neglected, is
given by the expression (Nezu & Rodi 1986),

Lm = κz
(
1− e−z+/A+

)√
1− z

h
(3)

where κ is the von Kármán constant (κ ≃ 0.41), A+ is a dimensionless
constant with the usual value A+ = 26 and h is the fluid depth. The dimen-
sionless variable z+ is the viscous or wall coordinate defined by z+ = zub/ν
where the shear or friction velocity ub is related to the bottom shear stress
τb by ub =

√
τb/ρ. The factor

√
1− z/h was absent in the expression of the

mixing length used by Richard et al. (2017) and consequently the velocity
profile was accurate only in the inner layer. We define the effective viscosity
as νeff = ν + νT . The constitutive law can thus be written τ = 2ρνeffD.

The wake-strength parameter Π of Coles’ law of the wake was found to
be considerably smaller in the case of open-channel flows than in the case of
zero-pressure-gradient boundary layers where the value Π = 0.55 is observed.
Nezu & Rodi (1986) found that Π is near zero for Re ⩽ 104 and increases to
a maximum of 0.2 for Re ⩾ 2.5× 104 (our definition of the Reynolds number
is Re = hU/ν, different from the definition of Nezu & Rodi 1986). Cardoso
et al. (1989) found a wake of limited strength (Π ≃ 0.08) in the core of the
outer region but they found that the wake effect is partly compensated in the
near-surface zone by a retarding flow, such that an apparent logarithmic law
can approximate the entire velocity profile, explaining why the logarithmic
law is often used with success in open channel flow up to the water surface.
They also highlighted that the outer region of open-channel flow may not
have a universal structure, possibly depending on secondary currents, flow
history and inactive turbulence components. Given the small importance of
the wake function in open-channel flows and the large increase of complexity
needed to take it into account, the wake function is neglected. However we
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will show in the following that, although no wake function is included in the
description of uniform and steady flows, an apparent wake function appears
in the unsteady case.

The mass conservation equation in the incompressible case is div v = 0.
The components of the velocity field are denoted by v = (u, v, w)T. The
components of the viscous stress tensor are denoted by τxx, τyy, τzz, τxy, τxz
and τyz and p denotes the pressure. The momentum balance equation is

ρ

[
∂v

∂t
+ div (v ⊗ v)

]
= ρg − grad p+ div τ . (4)

The no-penetration and no-slip conditions at the bottom imply that v(0) = 0.
At the free surface, the kinematic boundary condition is

w(h) =
∂h

∂t
+ u(h)

∂h

∂x
+ v(h)

∂h

∂y
(5)

and the dynamic boundary condition gives the following equations

[p(h)− τxx(h)]
∂h

∂x
− τxy(h)

∂h

∂y
+ τxz(h) = 0, (6)

[p(h)− τyy(h)]
∂h

∂y
− τxy(h)

∂h

∂x
+ τyz(h) = 0, (7)

−τxz(h)
∂h

∂x
− τyz(h)

∂h

∂y
− p(h) + τzz(h) = 0. (8)

2.2 Shallow-water scaling

The equations are written in dimensionless form using a characteristic depth
hN , a characteristic length L in the Ox-direction and a characteristic velocity
uN with the shallow-water hypothesis

ε =
hN

L
≪ 1. (9)

The dimensionless quantities are denoted with a prime and are defined as

x′ =
x

L
; y′ =

y

L
; z′ =

z

hN

; u′ =
u

uN

; v′ =
v

uN

; w′ =
w

εuN

; p′ =
p

ρghN

;

t′ =
tuN

L
; h′ =

h

hN

; L′
m =

Lm

κhN

; ν ′
T =

νT
κ2hNuN

; τ ′xz =
τxz

ρκ2u2
N

; τ ′yz =
τyz

ρκ2u2
N

;

τ ′xx =
τxx

ερκ2u2
N

; τ ′yy =
τyy

ερκ2u2
N

; τ ′zz =
τzz

ερκ2u2
N

; τ ′xy =
τxy

ερκ2u2
N

; (10)
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A characteristic turbulent viscosity is νe = κ2hNuN . We define the Froude
number F , the Reynolds number Re and the mixing-length Reynolds number
ReML as

F =
uN√
ghN

; Re =
hNuN

ν
; ReML =

hNuN

νe
=

1

κ2
. (11)

There is no assumption on the Froude number i.e. F = O(1). We then define
the ratio

η =
ReML

Re
=

1

κ2Re
=

ν

νe
. (12)

This number is usually very small in open-channel hydraulics. We will assume
that

η = ε2+m , m > 0. (13)

This implies that the Reynolds number must be large for the model to be
valid. Specifically, this condition is necessary for the validity of the matching
procedure and of the viscous scaling (see below). The validity of the shallow-
water scaling does not necessitate a so large Reynolds number. The smooth
turbulent regime is valid as long as the shear Reynolds number defined by
Reb = ksub/ν is smaller than 4 (Henderson 1966) where ks is the equivalent
sand roughness height. This gives a maximum value of ks compatible with
the assumption of a smooth turbulent regime. Taking F = O(1) implies
also that sin θ = O[(ln η)−2] (see below). The dimensionless mixing length is
L′
m ≃ z′

√
1− s where s = z/h and the effective viscosity is ν ′

eff = ν/νe+ν ′
T =

η + ν ′
T . Using νT =

√
2L2

m

√
D : D and given that νeff is scaled as νT (see

(10)) leads to

ν ′
eff = z′2 (1− s)

√(
∂u′

∂z′

)2

+

(
∂v′

∂z′

)2

+O(ε2). (14)

Note that the term exp(−z+/A+) is negligible in the shallow-water scaling
since the full expression is

L′
m = z′

√
1− s

[
1− exp

(
−
z′
√

τ ′b
ηκA+

)]
≃ z′

√
1− s. (15)

We define

λ =
sin θ

κ2F 2
. (16)

The molecular viscosity is negligible in this scaling. In this scaling the mass
balance equation writes

∂u′

∂x′ +
∂v′

∂y′
+

∂w′

∂z′
= 0. (17)
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Defining the 2D-vectors u′ = (u′, v′)T, λ = λ(cos β, sin β)T and τsh =
(τxz, τyz)

T, the momentum balance equation in the Oxy-plane becomes

ε

κ2

[
∂u′

∂t′
+ div (u′ ⊗ u′) +

∂w′u′

∂z′

]
= λ+

∂τ ′
sh

∂z′
− ε

κ2F 2
grad p′+O(ε2). (18)

In the Oz-direction the momentum balance can be written

∂p′

∂z′
= − cos θ +O(ε). (19)

The dynamic boundary condition at the free surface (6)–(8) reduce to

p′(h) = O(ε) ; τ ′xz(h) = O(ε2) ; τ ′yz(h) = O(ε2). (20)

As in Richard et al. (2017), in this scaling the boundary condition at the
bottom cannot be satisfied. It is necessary to use another scaling in an inner
layer near the bottom wall where the molecular viscosity is included.

2.3 Viscous scaling

This scaling is a zoom of the shallow-water scaling using the small parameter
η. Dimensionless quantities in this scaling are denoted by a tilde. Some
dimensionless quantities are not changed and some other are magnified. We
define

x̃ = x′; ỹ = y′; t̃ = t′; ũ = u′; ṽ = v′; p̃ = p′; z̃ =
z′

η
; w̃ =

w′

η
; h̃ =

h′

η
; L̃m =

L′
m

η
;

τ̃xy = τ ′xy; τ̃xz = τ ′xz; τ̃yz = τ ′yz; τ̃xx = τ ′xx; τ̃yy = τ ′yy; τ̃zz = τ ′zz; ν̃ =
ν ′

η
;

(21)

The expression of the dimensionless mixing length in the viscous scaling is

L̃m = z̃
√
1− s

[
1− exp

(
− z̃

√
τ̃b

κA+

)]
. (22)

In this scaling the exponential term is not negligible since the vertical coor-
dinate is magnified by a factor η (but not τb) and consequently

exp

(
−
z′
√
τ ′b

ηκA+

)
= exp

(
− z̃

√
τ̃b

κA+

)
(23)

is not small. The dimensionless strain-rate tensor is D̃ = ηD′. The dimen-
sionless effective viscosity is ν̃eff = 1 + ν̃T . This implies that the molecular
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and turbulent viscosities are of the same order of magnitude in this scaling.
The mass conservation is not changed and writes

∂ũ

∂x̃
+

∂ṽ

∂ỹ
+

∂w̃

∂z̃
= 0. (24)

The momentum balance equation gives

∂τ̃xz
∂z̃

= O(η) ;
∂τ̃yz
∂z̃

= O(η) ;
∂p̃

∂z̃
= O(η). (25)

3 Asymptotic expansions

The methodology is formally the same as in Noble & Vila (2013) for power-
law laminar flows and in Richard et al. (2016) for laminar Newtonian flows
and was detailed in Richard et al. (2017) in the case of two-dimensional
flows. This method is extended to the case of three-dimensional flows. Each
variable is expanded with respect to the small parameter ε as

X = X0 + εX1 +O(ε2) (26)

for any variable X. A second small parameter µ is introduced below and the
first-order termsX1 can have additionally an order of magnitude with respect
to µ. For example, the first-order correction to the velocity is of O(ε/µ2).
However, the main small parameter governing the asymptotic expansions is
still ε and the second parameter is used only to rank the terms of the highest
order (order 1 in the present case). The expansion of the components of

the viscous stress tensor will be denoted as τxz = τ
(0)
xz + ετ

(1)
xz + O(ε2). The

expressions of the variables are obtained at order zero and then at order one.

3.1 Order zero

In the shallow-water scaling, the momentum balance equation (18) gives

∂τ
′(0)
xz

∂z′
= −λ cos β ;

∂τ
′(0)
yz

∂z′
= −λ sin β (27)

and the boundary conditions (20) lead to τ
′(0)
sh (h) = 0. The integration gives

τ
′(0)
sh = λh′ (1− s) . (28)

The constitutive law τ ′ = 2ν ′
effD

′ gives τ
′(0)
sh = ν ′

eff ∂u
′
0/∂z

′ which leads to

z′2

√(
∂u′

0

∂z′

)2

+

(
∂v′0
∂z′

)2∂u′
0

∂z′
= λh′. (29)
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This equation gives the norm ∥∥∥∥∂u′
0

∂z′

∥∥∥∥ =

√
λh′

z′
. (30)

The components of u′
0 can be integrated between the free surface and an

arbitrary depth to obtain

u′
0 = u′

0(h) +
√
λh′λ̂ ln s (31)

where λ̂ = λ/λ. The expression (28) does not diverge when s → 0 but
the expression (31) diverges for s → 0. It is thus necessary to use the
viscous scaling to find the expression of the velocity in an inner layer near
the bottom. Then a matching procedure will be used in an overlap region to
fit the expression of the velocity in the outer layer (with the shallow-water
scaling) and in the inner layer (with the viscous scaling).

In the viscous scaling, (25) implies that τ̃
(0)
xz and τ̃

(0)
yz are constant in the

inner layer and thus equal to their values at z = 0. Since τ̃ = τ ′ and because
the expressions of τ

′(0)
xz and τ

′(0)
yz do not diverge for z → 0, we have simply

τ̃
(0)
sh = τ

′(0)
sh (0) = λh′. We have also τ̃b = λh′. The constitutive law is

integrated in the viscous scaling in order to find the velocity in the inner
layer. With the expression (22), the effective viscosity writes in the viscous
scaling

ν̃eff = 1 + z̃2 (1− s)
(
1− e−z̃

√
τ̃b/(κA

+)
)2√(∂ũ

∂z̃

)2

+

(
∂ṽ

∂z̃

)2

. (32)

We define ξ = 2
√
λh′z̃ and A = 2κA+ to write z̃

√
τ̃b/(κA

+) = ξ/A with

τ̃b = λh′. With τ̃
(0)
xz = ν̃eff∂ũ0/∂z̃ and τ̃

(0)
yz = ν̃eff∂ṽ0/∂z̃, the constitutive law

gives [
1 + z̃2 (1− s)

(
1− e−ξ/A

)2 ∥∥∥∥∂ũ0

∂z̃

∥∥∥∥] ∂ũ0

∂z̃
= λh′. (33)

From this relation, we can show that∥∥∥∥∂ũ0

∂z̃

∥∥∥∥ =
2λh′

1 +

√
1 + ξ2 (1− s) (1− e−ξ/A)

2
. (34)

This can be also written∥∥∥∥∂ũ0

∂z̃

∥∥∥∥ =
−1 +

√
∆

2z̃2(1− s)[1− exp(−ξ/A)]2
. (35)

10



with ∆ = 1 + ξ2(1 − s)[1 − exp(−ξ/A)]2. Reporting this expression in (33)
leads to

∂ũ0

∂z̃
=

2λh′

1 +

√
1 + ξ2 (1− s) (1− e−ξ/A)

2
. (36)

The integration of these equations between the bottom and an arbitrary
depth gives

ũ0 =
√
λh′λ̂

[
− ξ

1 +
√

1 + ξ2
+ ln

(
ξ +

√
1 + ξ2

)
+R(ξ)

]
(37)

where the function R is defined by

R(ξ) =

∫ ξ

0

dξ

1 +

√
1 + ξ2 (1− e−ξ/A)

2
−
∫ ξ

0

dξ

1 +
√

1 + ξ2
+O(

√
η). (38)

The limit of this function for ξ → ∞ is denoted by R i.e.

R =

∫ ∞

0

dξ

1 +

√
1 + ξ2 (1− e−ξ/A)

2
−
∫ ∞

0

dξ

1 +
√

1 + ξ2
. (39)

The vector u′
0 in the outer layer and the vector ũ0 in the viscous layer are

fitted by the matching procedure. We write that both velocities coincide
in an overlap region which is at a very small depth of order

√
η written

z =
√
ηbh where b = O(1). The matching relation can be written

u′
0 (s =

√
ηb) = ũ0

(
ξ =

2b
√
λh′3

√
η

)
+O(

√
η). (40)

The term of O(
√
η) is of an order of magnitude smaller than ε because of (13)

(m > 0). This enables to obtain consistency at order 1 since the corrective
term is of an order smaller than the order 1. This procedure gives the values
of the velocity at the free surface u′

0(h). The equation for u′
0(h) can be

explicitly written

u′
0(h) +

√
λh′λ̂ ln(b

√
η) =

√
λh′λ̂

[
−2b

√
λh′3

√
η

1

1 +
√

1 + 4b2λh′3/η

+ ln

2b
√
λh′3

√
η

+

√
1 +

4b2λh′3

η

+R

 (41)
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since R(2b
√
λh′3/

√
η) ≃ R (the proof is in Richard et al. (2017) Appendix

A). Neglecting terms of O(η), the expression of u′
0(h) can be written

u′
0(h) =

√
λh′λ̂ (R− 1 + ln 2 + lnM − ln η) (42)

where
M = 2

√
λh′3. (43)

As in Richard et al. (2017) we introduce the small parameter

µ = − 2

ln η
(44)

with ε < µ < 1. The main small parameter ε is smaller than µp for any
positive integer p if ε is small enough (Richard et al. 2017). Each term
of the asymptotic expansions of a given order with respect to ε is further
expanded in a power series of this second small parameter µ. The main rel-
evance of this second small parameter is to neglect some small terms and,
especially, the depth-average of the cube of the deviation of the velocity
from its average value, which is a quantity appearing, in particular, in the
energy equation. This is equivalent to Teshukov’s approximation of weakly
sheared flows (Teshukov 2007). A similar approximation was used by Luchini
& Charru (2010) who introduced, after Mellor (1972), the small parameter
ub/U , where U is the depth-averaged velocity, which is approximately pro-
portional to ln−1(Reb) where Reb = hub/ν. The deviation of the velocity
from its average value was taken into account by terms who were found to
be of order (ub/U)2 while terms of the order of (ub/U)3 were neglected. The
small parameter ub/U plays the same role as our parameter µ which can be
written µ = 2 ln−1(κ2Re). In Appendix B, the term ⟨u′∗ ⊗ u′∗ ⊗ u′∗⟩, where
u′∗ is the deviation of the velocity to its average value, is of O(µ3) and can
be neglected as in Teshukov (2007).

The expression (42) shows that u′
0(h) is of O(

√
λ/µ). We assume that

λ = O(µ2). This implies that u′
0(h) is of O(1). With F = O(1), we have

sin θ = O(µ2). We write λ = µ2λ0 with λ0 = O(1). The expression of u′
0(h)

can be written

u′
0(h) =

√
λ0h′λ̂ [2 + µ (R− 1 + ln 2 + lnM)] . (45)

This gives the complete expressions of u′
0 as

u′
0 =

√
λ0h′λ̂ [2 + µ (R− 1 + ln 2 + lnM + ln s)] . (46)

At order zero, the velocity has the well-known logarithmic profile. In the 1D-
case, reverting to dimensional quantities and introducing the friction velocity,

12



Figure 2: Graphs of R (a) and of the integration constant B (b) as a function
of the parameter A+ of Van Driest’s damping factor. The dashed lines show
the case A+ = 26.

which is ub =
√
gh sin θ, the fluid velocity can be written at order zero

u0

ub

=
1

κ
ln

zub

ν
+

1

κ
(R− 1 + 2 ln 2 + lnκ) (47)

which is the usual log-law (1) with the inner variables u+ = u/ub and z+ =
zub/ν. The expression of the integration constant B is

B =
1

κ
(R− 1 + 2 ln 2 + lnκ) . (48)

The values κ = 0.41 and A+ = 26 give B = 5.28. These values agree with
the value B = 5.29 ± 0.47 (and κ = 0.412 ± 0.011) found by Nezu & Rodi
(1986) and with the value B = 5.10 ± 0.96 (κ = 0.401 ± 0.017) found by
Cardoso et al. (1989). The value of B depends on the value of A+ through
R. If A+ = 26 then R = 2.67. The above values are valid for subcritical
flows. For supercritical flows, the value of B can be smaller (Tominaga &
Nezu 1992, Prinos & Zeris 1995). This implies smaller values of A+ and R.
The graphs of R and B as a function of A+ are shown on figure 2(a) and
(b) respectively. The dashed lines give the case A+ = 26 used for subcritical
flows.

Close to the wall, ξ → 0 and ũ0 ∼ ξ
√
λh′/2. This yields the relation

u+ = z+, which is valid in the viscous sublayer.
Even if the expressions of u′

0 and v′0 diverge for z → 0, they are integrable
functions on [0, h] and their depth-averaged values can be calculated. For
any quantity X, its depth-averaged value is defined as

⟨X⟩ = 1

h

∫ h

0

X dz. (49)

13



The depth-averaged velocity at order zero can be calculated from (46). Using
the notation U = ⟨u⟩ = (U, V )T, we obtain

U ′
0 =

√
λ0h′λ̂ [2 + µ (R− 2 + ln 2 + lnM)] . (50)

We define the quantity C(µ) as

C(µ) =
U ′
0√

λ0h′ cos β
=

V ′
0√

λ0h′ sin β
. (51)

Its expression is

C(µ) = 2 + µ (R− 2 + ln 2 + lnM) . (52)

The velocity in the Oz-direction can be found from the mass conservation
equation (17). Taking into account the kinematic boundary condition, the
integration of (17) leads to

w′ =
∂h′

∂t′
− ∂

∂x′

∫ z′

h′
u′ dz′ − ∂

∂y′

∫ z′

h′
v′ dz′. (53)

The depth-averaged mass conservation equation is

∂h

∂t
+

∂hU

∂x
+

∂hV

∂y
= 0. (54)

With this equation, the derivative of h′ with respect to time can be estimated
as

∂h′

∂t′
= −∂h′U ′

0

∂x′ − ∂h′V ′
0

∂y′
+O(ε). (55)

At order zero, we have

w′
0 = −∂h′U ′

0

∂x′ − ∂h′V ′
0

∂y′
+

∂

∂x′

(
h′
∫ 1

s

u′
0 ds

)
+

∂

∂y′

(
h′
∫ 1

s

v′0 ds

)
(56)

which leads to

w′
0 = −s

√
λ0h′

(
cos β

∂h′

∂x′ + sin β
∂h′

∂y′

)[
1 +

µ

2
(R− 1 + ln 2 + lnM + ln s)

]
.

(57)
The last quantity to calculate at order zero is the pressure. It is found from
(19). The integration is straightforward and gives

p′0 = (h′ − z′) cos θ. (58)

In the inner layer, (25) implies that p̃0 is constant. The connection with the
expression (58) in the outer layer gives simply p̃0 = h′ cos θ.
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3.2 Order 1

The asymptotic expansion at order 1 follows the same procedure as for order
zero. The first-order correction to the shear stress is obtained from the mo-
mentum balance equation in the shallow-water scaling. Then the integration
of the constitutive law gives the first-order correction to the velocity in the
outer layer. This expression diverges at the bottom, which necessitates to
match this expression with the expression of the first-order correction of the
velocity in the inner layer. It is found with the integration of the constitutive
law in the viscous scaling. The matching procedure gives the first-order cor-
rection to the velocity at the free surface. The integration over the depth of
the complete expression of the first-order velocity in the outer layer gives the
first-order correction to the depth-averaged velocity. The technical details
being much more complicated, they are gathered in Appendix A.

4 Depth-averaged equations

4.1 Mass and momentum balance equations

The depth-averaged mass conservation equation is given above (54). It can
be written in vector form using the two-dimensional divergence operator

∂h

∂t
+ div (hU) = 0. (59)

Averaging over the depth the momentum balance equation in dimensionless
form in the shallow-water scaling leads to

∂h′U ′

∂t′
+ div (h′ ⟨u′ ⊗ u′⟩) + grad

(
h′2

2F 2
cos θ

)
=

κ2

ε

[
h′λ− τ ′

sh(0)
]
+O(ε).

(60)

The expressions (28) at order zero gives τ
′(0)
sh (0) = h′λ. The depth-averaged

momentum balance equation becomes

∂h′U ′

∂t′
+div (h′ ⟨u′ ⊗ u′⟩)+grad

(
h′2

2F 2
cos θ

)
= −κ2τ

′(1)
sh (0)+O(ε). (61)

To calculate the term ⟨u′ ⊗ u′⟩, we define the tensor

φ =
⟨(u−U)⊗ (u−U)⟩

h2
(62)

which is conveniently called enstrophy tensor as in Richard et al. (2019)
because it has the same dimension as the square of a vorticity. By definition
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we have the equality
⟨u⊗ u⟩ = U ⊗U + h2φ. (63)

The depth-averaged momentum balance equation can be written

∂h′U ′

∂t′
+div

(
h′U ′ ⊗U ′ + h′3φ′)+grad

(
h′2

2F 2
cos θ

)
= −κ2τ

′(1)
sh (0)+O(ε)

(64)
with φ′ = φh2

0/u
2
0. The enstrophy can be expanded as φ = φ(0) + εφ(1) +

O(ε2). The calculation of

φ′(0) =
1

h′2

∫ 1

0

(
u′

0 −U ′
0

)
⊗
(
u′

0 −U ′
0

)
ds (65)

yields

φ′(0) =
1

h′
λ⊗ λ

λ
. (66)

Writing λ = µ2λ0 where λ0 is of O(1), the expression of the enstrophy tensor
at order zero can be written

φ′(0) =
µ2λ0

h′
λ⊗ λ

λ2
= O(µ2). (67)

The expressions at order 1 are found from the integral

φ′(1) =
1

h′2

∫ 1

0

[(
u′

0 −U ′
0

)
⊗
(
u′

1 −U ′
1

)
+
(
u′

1 −U ′
1

)
⊗
(
u′

0 −U ′
0

)]
ds.

(68)
This gives

φ′(1) =
λ0

κ2h′
λ⊗ λ

λ2

(
λ̂ · gradh′

)
×
[
1 +

cos θ

λ0F 2
+ µ (R + 2 + ln 2 + lnM − ζ(3))

]
− λ0

κ2h′
cos θ

λ0F 2

(
λ̂⊗ gradh′ + gradh′ ⊗ λ̂

)
+O(µ2). (69)

With all expressions of the asymptotic expansions at order 0 and order 1,

τ
′(1)
sh (0) can be consistently written

τ
′(1)
sh (0) =

(
1− α1

µ

C(µ)

)
µ2

C2(µ)

(∥∥U ′
0

∥∥U ′
1 +U ′

0

U ′
0 ·U ′

1∥∥U ′
0

∥∥
)

− α

κ2

(
κ− α1

κµ

C(µ)

)
κµ

C(µ)
h′2λ

λ
trφ′(1) + α1

µ

C(µ)
h′2φ′(1) · λ

λ
+O(µ3). (70)
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Quantities of order 1 appear at the right-hand side of this equation. We have∥∥U ′
0

∥∥U ′
1 +U ′

0

U ′
0 ·U ′

1∥∥U ′
0

∥∥ =
1

ε

(
∥U ′∥U ′ −

∥∥U ′
0

∥∥U ′
0

)
+O(ε) (71)

and

φ′(1) =
1

ε

(
φ′ −φ′(0))+O(ε). (72)

Consequently τ
′(1)
sh (0) can be written as a sum of relaxation terms as

τ
′(1)
sh (0) =

(
1− α1

µ

C(µ)

)
µ2

εC2(µ)

(
U ′ ∥U ′∥ − C2(µ)

µ2
h′λ

)
− α

εκ2

(
κ− α1

κµ

C(µ)

)
κµ

C(µ)
h′λ̂ (h′trφ′ − λ)+

α1

ε

µ

C(µ)
h′
(
h′φ′ · λ̂− λ

)
+O(µ3)

(73)

with α = R1 −R + 1 and

α1 = R1 −R + 1− 1

2 (ζ(3)− 1)
. (74)

With κ = 0.41 and A+ = 26, R = 2.67, R1 = 4.82, α = 3.15 and α1 = 0.680.
The quantity R1 is defined in Appendix A and ζ is Riemann zeta function.

In the approximation of weakly sheared flows due to Teshukov (2007),
all terms of O(µ3) are neglected (see above and Richard et al. 2017 for a
complete discussion).

The quantity µ2κ2/C2(µ) is important because it is equal to the friction
coefficient (Richard et al. 2017), defined by

Cf =
µ2κ2

C2(µ)
. (75)

This definition of the friction coefficient is obvious when reverting to the
dimensional equations (see Equation (90) below). The usual Darcy coefficient
is f = 8Cf . From the expression (52) of C(µ), we find

1√
Cf

=
2

µκ
+

1

κ
(R− 2 + ln 2 + lnM) . (76)

The definition (44) of µ gives 2/µ = ln(κ2Re). For a uniform and stationary
flow, we can take as the characteristic depth and velocity, the depth and
the velocity of the normal (equilibrium) flow. By definition, we have in
this case h′ = 1 and U ′ = 1. Moreover, for such an equilibrium flow, the
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first-order corrections are equal to zero. This implies that U ′
0 = 1. Since

U ′
0 = C(µ)

√
λh′/µ (see (50) and (52)), we have at equilibrium

√
λ =

√
Cf/κ.

Consequently, using the definition (43) of M , we obtain

1√
Cf

=
1

κ
ln
(
Re
√
Cf

)
+

1

κ
(R− 2 + 2 ln 2 + lnκ) . (77)

In open-channel hydraulics, the Reynolds number is usually defined with the
hydraulic diameter, which is four times the hydraulic radius. The corre-
sponding Reynolds number ReH can be defined as ReH = 4Re since in our
local approach, the hydraulic radius cannot be defined and is replaced by the
depth h. Consequently, at equilibrium, for a uniform and stationary flow,
the Darcy coefficient f satisfies the implicit relation

1√
f
=

ln 10

2κ
√
2
lg
(
ReH

√
f
)
+

1

2κ
√
2

(
R− 2− 3

2
ln 2 + lnκ

)
. (78)

This relation is similar to the Kármán-Prandtl law for pipes flows with
smooth surfaces. This inconvenient of this relation is that the friction coef-
ficient is found only implicitly.

However, in the general case (i.e. equilibrium or non-equilibrium flows),
the relation (75) leads to the explicit relation

κ√
Cf

=
2κ

√
2√

f
= R− 2 + 2 ln 2 + lnκ+ ln

√
gh3 sin θ

ν
. (79)

With the expression (73) the depth-averaged momentum balance equation
(64) is obtained in a closed conservative form with source terms, which is

∂hU

∂t
+div

(
hU ⊗U + h3φ

)
+grad

(
gh2

2
cos θ

)
=
(
1− α1

κ

√
Cf

)
(ĝh− CfU ∥U∥)

+ α
(
κ− α1

√
Cf

)
h
√

Cf
ĝ

ĝ

(
htrφ− ĝ

κ2

)
− κα1h

√
Cf

(
hφ · ĝ

ĝ
− ĝ

κ2

)
(80)

where ĝ denotes the projection of the vector g on the plane of the bottom
i.e. ĝ = (g sin θ cos β, g sin θ sin β)T and ĝ = g sin θ. It remains to find an
evolution equation for the enstrophy tensor.

4.2 Enstrophy equation

The momentum balance equation in dimensionless form in the shallow-water
scaling can be written

∂u′

∂t′
+ div (u′ ⊗ u′) +

∂w′u′

∂z′
+

1

F 2
grad p′ =

κ2

ε

(
λ+

∂τ ′
sh

∂z′

)
+O(ε). (81)
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Forming u′⊗(81) + (81)⊗u′ and averaging the obtained equation over the
depth, taking into account the boundary conditions and neglecting all terms
of O(µ3) because of the approximation of weakly-sheared flows, leads to the
equation of the enstrophy tensor. Details on this derivation are given in
Appendix B. The result can be written

∂h′φ′

∂t′
+div (h′φ′ ⊗U ′)−2h′φ′divU ′+gradU ′ ·h′φ′+h′φ′ · (gradU ′)

T

=
κ2

ε

1

h′2

[
U ′ ⊗ τ ′

sh(0) + τ ′
sh(0)⊗U ′ − 2W

]
+O(µ3) +O(ε) (82)

where W is the dissipation tensor defined by

W =

∫ h′

0

ν ′
eff

∂u′

∂z′
⊗ ∂u′

∂z′
dz′. (83)

The dissipation tensor is expanded as W = W0 + εW1 + O(ε2). These
asymptotic expansions are given in Appendix B and enable to write the
right-hand side of (82) as a sum of relaxation terms.

4.3 Final system of equations

The final system of equations is composed of the mass conservation equation

∂h

∂t
+ div (hU) = 0, (84)

the momentum balance equation

∂hU

∂t
+div

(
hU ⊗U + h3φ

)
+grad

(
gh2

2
cos θ

)
=
(
1− α1

κ

√
Cf

)
(ĝh− CfU ∥U∥)

+ α
(
κ− α1

√
Cf

)
h
√

Cf
ĝ

ĝ

(
htrφ− ĝ

κ2

)
− κα1h

√
Cf

(
hφ · ĝ

ĝ
− ĝ

κ2

)
(85)

and the enstrophy equation (obtained from Appendix B)

∂hφ

∂t
+ div (hφ⊗U)− 2hφ divU + gradU · hφ+ hφ · (gradU)T

=
α2

κ

√
Cf

h2

[
U ⊗ (CfU ∥U∥ − ĝh) + (CfU ∥U∥ − ĝh)⊗U

]
− αα2

Cf

h

(
U ⊗ ĝ

ĝ
+

ĝ

ĝ
⊗U

)(
h trφ− ĝ

κ2

)
− κα2

√
Cf

h

[
U ⊗

(
hφ · ĝ

ĝ
− ĝ

κ2

)
+

(
hφ · ĝ

ĝ
− ĝ

κ2

)
⊗U

]
(86)
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where

α2 =
1

2 (ζ(3)− 1)
. (87)

With κ = 0.41 and A+ = 26, α2 = 2.47. Note that α1 = α−α2. The system
has the same mathematical structure as the system derived by Teshukov
(2007), with additional source terms, who gave the proof of its hyperbolicity.
Shearing effects, i.e. the variations of the velocity in the depth, are taken into
account by the anisotropic enstrophy tensor. All source terms are relaxation
terms for the average velocity or the enstrophy. Note that the full 2D-system
is hyperbolic but not in conservative form due to non-conservative terms in
the enstrophy equation.

4.4 Two-dimensional Saint-Venant equations

As implied by (67), the enstrophy is of O(µ2) + O(ε). Furthermore, since
U ′

1 = O(1/µ2) we can write

τ
′(1)
sh (0) =

µ2

C2(µ)

(∥∥U ′
0

∥∥U ′
1 +U ′

0

U ′
0 ·U ′

1∥∥U ′
0

∥∥
)

+O(µ). (88)

Consequently the expression (73) of τ
′(1)
sh (0) can be written

τ
′(1)
sh (0) =

µ2

εC2(µ)

(
U ′ ∥U ′∥ − C2(µ)

µ2
h′λ

)
+O(µ). (89)

This equation shows why the quantity µ2κ2/C2(µ) is the friction coefficient
Cf , which appears clearly when reverting to dimensional form. Neglecting
terms of O(µ), the dimensional depth-averaged momentum balance equation
becomes in dimensional form

∂hU

∂t
+ div (hU ⊗U) + grad

(
gh2

2
cos θ

)
= ĝh− CfU ∥U∥ . (90)

At this level of approximation, there is no enstrophy balance equation and the
system reduces to the two-dimensional Saint-Venant equations. The friction
term is consistently rather than empirically introduced. Keeping terms up to
O(µ2) and neglecting terms of O(µ3) gives the complete system {(84), (85),
(86)}.
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4.5 Energy equation

The system admits an energy balance equation. Taking half the trace of
Equation (151) in dimensional form gives the energy balance equation

∂he

∂t
+ div (heU +U ·Π) =

(
1− α

κ

√
Cf

)(
ĝh− Cf ∥U∥U

)
·U

+α
(
κ− α

√
Cf

)
h
√
Cf

(
h trφ− ĝ

κ2

)
ĝ

ĝ
·U−καh

√
Cf

(
hφ · ĝ

ĝ
− ĝ

κ2

)
·U

(91)

where the specific energy e is

e =
U ·U

2
+

gh

2
cos θ +

h2

2
trφ (92)

and where the tensor Π is

Π =
gh2

2
cos θ I + h3φ. (93)

In this expression, I is the identity tensor. The terms of the right-hand side
of the energy equation are relaxation terms due to the dissipative effects in
the flow. The expression of the turbulent energy of the system is h2trφ/2.

In the particular case of the Saint-Venant equations where the terms of
O(µ) are neglected, the specific energy reduces to

e =
U ·U

2
+

gh

2
cos θ, (94)

the tensor Π reduces to Π = (gh2/2) cos θ I and the energy balance equation
reduces to

∂he

∂t
+ div (heU +U ·Π) =

(
ĝh− Cf ∥U∥U

)
·U . (95)

5 Reconstruction of the 3D fields

The three-dimensional fields can be reconstructed from the values of the
depth h, of the depth-averaged fluid velocity U and of the enstrophy tensor
as a function of the applicate z or of s = z/h.

The expression of the shear stress at the bottom can be found from the
expressions (28) at order zero and (120) at order 1. At order zero, the

expression τ
′(0)
sh (0) = λh can be written τ

′(0)
sh (0) = µ2U0 ∥U0∥ /C2(µ). The
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shear stress at order 1 has been already consistently written as a sum of

relaxation terms in (73). Forming τ ′
sh(0) = τ

′(0)
sh (0)+ετ

′(1)
sh (0) and reverting

to dimensional quantities leads to the expression of the shear stress at the
bottom

τsh(0)

ρ
= CfU ∥U∥ − α1

κ

√
Cf (CfU ∥U∥ − ĝh)

− α
(
κ− α1

√
Cf

)√
Cf

ĝ

ĝ
h

(
h trφ− ĝ

κ2

)
+ κα1

√
Cfh

(
hφ · ĝ

ĝ
− ĝ

κ2

)
(96)

which is a function of the depth h, the average velocity U and the enstrophy
tensor φ, with relaxation terms on these quantities but without any deriva-
tive. This expression enables to calculate very easily the bottom shear stress
with the correction of order 1.

From the expressions (46) and (50), we can write u′
0 = U ′

0[1+(µ/C(µ))(1+
ln s)]. At order 1, the expressions (145) and (147) lead to

u′
1 = U ′

1

[
1 +

µ

C
(1 + ln s)

]
−(1 + ln s)α

µ2

C2

(
U ′

1 · λ̂
)
λ̂+α2

[
Li2(1− s) + 1− π2

6

]
×
[ µ
C

(
U ′

1 · λ̂
)
λ̂ −h′ trφ′

1

2
√

trφ′
0

λ̂− α
µ2

C2

(
U ′

1 · λ̂
)
λ̂

]
+O(µ). (97)

Forming u = u(0) + εu(1) and reverting to dimensional quantities gives the
3D-reconstruction of the horizontal velocity field in the outer layer, accurate
at order 1,

u = U

[
1 +

√
Cf

κ

(
1 + ln

z

h

)]
−α

√
Cf

κ2

(√
Cf U · ĝ

ĝ
−
√

ĝh

)
ĝ

ĝ

(
1 + ln

z

h

)
+α2

[
1− π2

6
+ Li2

(
1− z

h

)][√Cf

κ
U · ĝ

ĝ
− h

√
trφ −α

√
Cf

κ2

(√
Cf U · ĝ

ĝ
−
√

ĝh

)]
ĝ

ĝ
.

(98)

This expression enables to reconstruct the 3D-profile of the horizontal veloc-
ity in the outer layer from the quantities h, U and φ calculated with the
resolution of the 2D-model

A similar method is conducted in the inner layer. The expressions of
the velocity at order zero and one are given in Appendix C. Note that the
expression of ũ1 in the inner layer has to be accurate to within O(µ2) in order
to obtain a matching with the expression of u′

1 in the outer layer accurate
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to within O(µ) when ξ → ∞. In dimensional form, the 3D-reconstruction of
the horizontal velocity in the inner layer is

u =
1

κ

{√
CfU +

[(
1− 2

α

κ

√
Cf + 2

αα1

κ2
Cf

)(√
CfU · ĝ

ĝ
−
√

ĝh

)

+2α2

√
Cf

(√
Cf

κ
U · ĝ

ĝ
− h

√
trφ

)]
ĝ

ĝ

}[
R(ξ)− ξ

1 +
√
1 + ξ2

+ ln
(
ξ +

√
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with

ξ =
2κ

ν
z
√
gh sin θ. (100)

This expression is less convenient than the expression in the outer layer be-
cause the functions R and R1 are not explicit and need to be numerically
calculated but the full 3D-velocity profile, from the bottom to the free sur-
face, can be calculated with the depth-averaged quantities h, U and φ using
the expression (99) in the inner layer and the expression (98) in the outer
layer. These expressions connect asymptotically in the overlap layer with an
accuracy of O(µ). At the equilibrium, the relaxation terms are equal to zero,
and these expressions reduce to

u = U

[
1 +

√
Cf

κ

(
1 + ln

z

h

)]
(101)

in the outer layer, and to

u =

√
Cf

κ
U

[
R(ξ)− ξ

1 +
√
1 + ξ2

+ ln
(
ξ +

√
1 + ξ2

)]
(102)

in the inner layer. In the viscous sublayer, ξ → 0 and the velocity in the
inner layer is equivalent to a linear function of z. Defining the friction velocity
ub =

√
τb/ρ, u

+ = u/ub and z+ = zub/ν and taking τb = ∥τsh∥(0), where
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τsh(0) is given by (96), we obtain
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√
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∥τsh∥(0)/ρ

{√
CfU+

[(
1− 2

α

κ

√
Cf + 2

αα1

κ2
Cf

)(√
CfU · ĝ
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. (103)

In an equilibrium situation, the relaxation terms are equal to zero, in partic-
ular

√
Cf∥U∥ =

√
ĝh, and the previous expression gives ∥u+∥ = z+ which

corresponds to the usual law in the viscous sublayer u+ = z+. In a non-
equilibrium situation, in particular for an unsteady flow, the relation between
u+ and z+ is still a linear relation but it is more complex and u+/z+ ̸= 1.

6 Numerical simulations

6.1 Numerical scheme

The system of equations (84), (85) and (86) is a hyperbolic system with
relaxation source terms. In the 1D-case it can be written

∂U
∂t

+
∂F
∂x

= S (104)

where U = [h, hU, he]T, F = [hU, hU2 +Π, hUe+ΠU ]T and

S =


0(
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√
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)
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[
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]
h
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hφ− ĝ

κ2

)
(
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κ
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Cf

)
(ĝh− CfU |U |)U − α2hCf

(
hφ− ĝ

κ2

)
U

(105)
The energy of the system is e = (U2+gh cos θ+h2φ)/2 and Π = (gh2 cos θ)/2+
h3φ. The characteristics of the system are λ1,2 = U ±

√
gh+ 3h2φ and

λ3 = U . The friction coefficient Cf is calculated locally with the explicit
relation (79).

This system is solved with a classical explicit Godunov-type finite-volume
method and a Rusanov Riemann solver. The time step is calculated with a
Courant-Friedrichs-Lewy (CFL) condition. At each time step, the enstrophy
is calculated from the energy.

The system is solved for the simulation of a subcritical flow in an open
channel. At the entrance the discharge is prescribed and the flow is supposed
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to be non-developed. This means that the enstrophy can be taken equal to
zero since the velocity is uniform in the depth. If φ = 0 at the entrance,
the system reduces to the system of Saint-Venant. The depth in a ghost
cell at the entrance is then calculated from the conservation of the Riemann
invariant of the Saint-Venant system U − 2

√
gh.

The end of the channel is treated as a sharp-crested weir as in Richard &
Gavrilyuk (2013): if the depth hN in the last cell is smaller than some height
d, which corresponds to the height of the weir, then the discharge qN+1 in a
ghost cell after the last cell is zero, otherwise qN+1 = (2/3)Cd[2g (hN − d)3]1/2

with Cd = π/(π+2)+0.08(hN−d)/d (Henderson 1966). Neumann boundary
conditions are taken for the depth and the enstrophy.

The numerical cost of the resolution of this system is slightly larger, but
of the same order of magnitude, as the classical Saint-Venant equations. The
additional enstrophy equation is numerically cheap because it is, in 1D, a
simple advection equation with source terms. A more precise evaluation of
the numerical cost was done for the resolution of the 2D-system (see §6.5).

6.2 Development of the boundary layer

Simulations are performed for a uniform flow in a steady case, the so-called
normal conditions. The value of the Reynolds number Re = hU/ν is chosen.
The kinematic viscosity is fixed at ν = 1.0 × 10−6m2 · s−1. This gives the
value qn of the discharge q = hU . The friction coefficient Cfn for a uniform
and steady flow is then calculated with (78). The value of the Froude number
F = U/(gh)1/2 is chosen and the angle θ is then calculated by sin θ = F 2Cfn

in order to have a normal flow. The average velocity of the normal flow is
then found by Un = (F 2gνRe)1/3 and the normal depth hn is determined
as well. The height of the weir d is calculated from the resolution of the
equation (gh3

n sin θ/Cfn)
1/2 = (2/3)Cd[2g(hn − d)3]1/2, Cd being calculated

with the normal depth.
The discharge qn is prescribed at the entrance. After a transient regime

the system reaches a steady state where the depth and the velocity are hn

and Un everywhere except near the beginning of the channel. Since φ = 0
is prescribed at the entrance of the channel because the flow is supposed to
be non-developed, the enstrophy relaxes towards its equilibrium value. The
enstrophy approaches asymptotically its normal value φn = g sin θ/(κ2hn)
and, after some distance, the flow is indistinguishable from a normal flow
with a fully developed boundary layer. The value of the enstrophy can be
used as an evaluation of the development of the boundary layer at the begin-
ning of the channel, with the value φ = 0 for a non-developed flow and the
value φn for a fully developed flow. Assuming that, for a partially developed
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Figure 3: Variations of the normalized enstrophy φ/φmax (black curve) and
of the normalized boundary layer thickness δ/hn (red curve) according to
law (108) with the normalized abscissa along the channel x/hn, in the case
Re = 105 and F = 0.5.

boundary layer, the velocity profile satisfies the usual logarithmic law below
the boundary layer thickness δ and that it is uniform above this limit up to
the free surface, we have

u′
0 =

√
λ0h′

[
2 + µ

(
R− 1 + ln 2 + lnM + ln

z

δ

)]
if z ⩽ δ (106)

and

u′
0 =

√
λ0h′ [2 + µ (R− 1 + ln 2 + lnM)] if δ ⩽ z ⩽ h. (107)

Denoting φmax = φ(δ = h), this yields

φ

φmax

=

(
2− δ

h

)
δ

h
. (108)

As the boundary layer thickness approaches its fully developed value asymp-
totically, it is difficult to define precisely where the flow becomes fully devel-
oped and several definitions were proposed. In our case, the goal is only to
check whether the model gives the right order of magnitude of the length of
the flow developing zone L i.e. the distance from the entrance of the channel
beyond which the flow is fully developed. A reasonable criterion is to take
δ/h > 0.99 for a fully developed boundary layer. The value δ/h = 0.99 cor-
responds to φ/φmax = 0.9999 according to (108). In the following we use the
criterion φ/φmax > 0.9999 to define a fully developed flow.
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Figure 4: (a) Variation of the ratio of the length of the flow developing zone
L over the normal depth hn with the Froude number: Re = 104 (black •);
Re = 5× 104 (blue ■); Re = 105 (green ♦); Re = 5× 105 (red ▲); Re = 106

(black ▼). (b) Variations of L/hn with the Reynolds number for F = 0.5
(dots); dashed line: L/hn = 25.8Re1/10.

Numerical simulations were conducted for values of the Reynolds number
between 104 and 106 and for values of the Froude number between 0.1 and 0.8.
The caseRe = 105 and F = 0.5 is presented on Figure 3 where the black curve
is φ/φmax and the red curve is δ/hn calculated from (108), both given as a
function of the normalized abscissa along the channel x/hn counted from the
entrance. The slope corresponding to these values of the Reynolds and Froude
numbers is sin θ = 1/2162 ≃ 4.6 × 10−4 (note that tgθ is practically equal
to sin θ). In this case the length of the flow developing zone is L/hn = 81.7
(marked on Figure 3 with a dashed line).

The calculated values of L/hn for all studied cases are gathered on Figure
4(a) for different values of the Froude number. The different symbols and
colors correspond to: Re = 104 (black •); Re = 5 × 104 (blue ■); Re = 105

(green ♦); Re = 5 × 105 (red ▲) and Re = 106 (black ▼). The value of
L/hn depends mainly on the Reynolds number but weakly on the Froude
number. For a given value of Re, it is larger when F becomes close to 1 and
slightly larger for very small values of F . For a given value of the Froude
number, L/hn increases with the value of Re. The variation of L/hn with
the Reynolds number for a Froude number equal to 0.5 is shown on Figure
4(b) in a logarithmic plot. In the case F = 0.5, it is very close to the law
L/hn ≃ 25.8Re1/10 (dashed line).

It is very difficult to make comparisons with experimental results due to
the fact that the length of the flow developing zone is defined differently,
that only relatively small values of the Reynolds number can be studied in
laboratory channels and that the channels used in the experiments have a
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finite width. The goal here is only to check that the order of magnitude of
the calculated length L is reasonable.

Kırkgöz & Ardıçhoğlu (1997) conducted experiments in a smooth chan-
nel 0.3m wide. Due to the relatively small value of the channel width, many
experiments are in fact 2D-situations and cannot be considered for a com-
parison with a 1D-model (the ratio width/depth is as low as 1.50 in an
experiment). Therefore only the cases where the ratio width over depth
is larger than 4 are considered therafter (and a ratio of 4 is already quite
small). The remaining measurements have values of the Reynolds numbers
between 7 × 103 and 2.1 × 104 and values of the Froude number between
0.30 and 0.72. The authors presented the values of L/h as a function of the
ratio 4Re/F (or ReH/F where ReH = 4Re) and proposed the empirical law
L/h = 76 − 0.0001(4Re/F ). We can remark that this law gives obviously
wrong results if the Reynolds number is high enough since the predicted value
of L/h becomes negative. For values of the Froude number equal to 0.1, 0.5
and 0.8, L/h becomes negative if Re is higher than 19 000, 95 000 and 152 000
respectively. Furthermore the lowest measured values of L/h were found in
the cases of narrow channels (when the ratio width/depth is smaller than 4).

The calculated values of L/hn as a function of 4Re/F are presented on
Figure 5 (red •) together with the measured values of Kırkgöz & Ardıçhoğlu
(1997) (black ▲) and the values calculated from their empirical law (blue
■). The range of the Reynolds and Froude numbers values was restricted
to the range of the experiments with the largest ratios width/depth (i.e.
Re = 104 and 0.25 ⩽ F ⩽ 0.8) In spite of all above reservations about this
comparison, the order of magnitude of the length of the flow developing zone
seems reasonable for these values of the Reynolds and Froude numbers.

6.3 Unsteady flows

The numerical simulations of unsteady flows are inspired by the experiments
of Nezu et al. (1997). The discharge q0 prescribed at the entrance of the
channel is sinusoidal for half a period to take into account one rising stage
followed by one falling stage, after a delay time tR large enough for the base
flow to be in steady-state conditions. At time tR the discharge is increased
from a base value qb to a peak value qp after a time Td then decreased to
the base value qb after the same duration. Therefore q0 = qb if t ⩽ tR or if
t ⩾ tR + 2Td. Otherwise q0 is given by

q0 = qb +
qp − qb

2

[
1− cos

π(t− tR)

Td

]
if tR ⩽ t ⩽ tR + 2Td. (109)
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Figure 5: Ratio of the length of the flow developing zone over the normal
depth L/hn as a function of 4Re/F : calculated with the model (red •);
measured values of Kırkgöz & Ardıçhoğlu (1997) (black ▲); values calculated
with the empirical law of Kırkgöz & Ardıçhoğlu (1997) (blue ■).

The flow is supposed to be non-developed at the beginning of the channel.
This means that φ = 0 is prescribed at the entrance. The flow is studied far
enough from the entrance, at an abscissa x, for the flow to be fully developed
(x > L). Simulations were performed for values of the Reynolds number
equal to 104, 105 and 106, values of the Froude number equal to 0.18, 0.5 and
0.8 and values of Td equal to 30 s (a strongly unsteady case), 120 s and 240 s.
In addition the ratio qp/qb was set to 4 for Re = 104 and to 5 otherwise and
various channel lengths ℓ were considered. The base flow is in the normal
conditions and this prescribes the value of sin θ. The various parameters of
the simulations are gathered in table 1.

The variation of the depth h against the average velocity U shows the
characteristic loop diagram observed for rivers in flood , which are simulated
with the rising and falling discharge implied by (109). The peak velocity
appears before the peak depth. The cases C7M24 (low Froude number F =
0.18, weakly unsteady Td = 240 s, black curve), C7M30 (low Froude number
F = 0.18, strongly unsteady Td = 30 s, blue curve) and C4M24 (larger Froude
number F = 0.8, weakly unsteady Td = 240 s, red curve) are presented on
figure 6(a) with Re = 105 (see table 1) where the loops are run counter-
clockwise. The loop is wider if the flow is more strongly unsteady (C7M30) or
if the Froude number increases (C4M24). The evolutions of the depth (black
curve), the average velocity (red curve) and the enstrophy (blue curve) are
presented on figure 6(b) (C7M24), (c) (C4M24) and (d) (C7M30). Weakly
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Case Re F sin θ Td (s) ℓ (m) qp/qb x (m)

C3S30 105 0.5 1/2162 30 20 5 17
C3M30 105 0.5 1/2162 30 30 5 17
C3M24 105 0.5 1/2162 240 30 5 17
C4M30 105 0.8 1/844 30 30 5 17
C4M24 105 0.8 1/844 240 30 5 17
C7M30 105 0.18 1/16680 30 40 5 30
C7M24 105 0.18 1/16680 240 40 5 30

Table 1: Parameters used for the numerical simulations in the unsteady case.

unsteady cases (figures 6(b) and (c) are closer to a kinematic wave with only
slight shape changes during the propagation, whereas, in a strongly unsteady
case (figure 6(d), the front of the wave steepens with a tendancy to take a
sawtooth shape. The evolution of the enstrophy depends on the case: for
a small Froude number, the enstrophy increases in the wave (figures 6(b)
and (d)) while it decreases for a larger Froude number (figure 6(c)). For
intermediate values of the Froude number, the enstrophy increases in the
early stages of the wave and then decreases (figure 7(a) for F = 0.5).

The influence of the downstream boundary condition can be important
in some cases, particularly during the falling stage of the wave, as there
is some reflection on the weir. This phenomenon can lead to a complex
behaviour at the end of the falling stage or shortly after that as in the C7M30
case (figure 6(d)). The abscissa x considered to study the flow was usually
chosen far from the weir (which is at an abscissa ℓ) but the effects of the
interactions with the weir are not trivial as it can be seen from the comparison
on figure 7(a) between the cases C3S30 (x = 17m and ℓ = 20m, solid curves)
and C3M30 (x = 17m and ℓ = 30m, dashed curves) where in both cases
Re = 105 and F = 0.5. The graphs of h/hn (black curves), U/Un (red
curves) and φ/φn (blue curves) show that the end of the falling stage is more
complex when the distance to the weir is larger. Even the amplitude of the
wave is modified by the distance to the weir. Because of this sensitivity
to the downstream boundary condition, it is not possible to make precise
comparisons to experimental results without a precise knowledge of the weir
used at the end of the channel and, more generally, of the precise hydraulic
conditions of the experiments, such as the slope.

The reconstruction of the bottom shear stress with the expression (96) is
presented on figure 7(b) for the cases C7M24 (black curves), C7M30 (blue
curves) and C4M24 (red curves). The solid curves show the ratios of τsh(0),
denoted by τb, over its value for the base flow, denoted by τbn, and the dashed
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Figure 6: (a) Normalized depth h/hmax as a function of the normalized ve-
locity U/Umax: cases C7M24 (black curve), C7M30 (blue curve) and C4M24
(red curve) (see table 1). (b) (c) (d) Evolution of the depth (black curve),
velocity (red curve) and enstrophy (blue curve) normalized by their value for
the normal flow as a function of normalized time: cases C7M24 (b), C4M24
(c) and C7M30 (d).
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Figure 7: (a) Comparison between the cases C3S30 (solid curves) and C3M30
(dashed curves): depth (black curves), velocity (red curves) and enstrophy
(blue curves) normalized by their normal value as a function of normalized
time. (b) Reconstruction of the bottom shear stress normalized by its value
in the base flow (solid curves) for the cases C7M24 (black), C7M30 (blue)
and C4M24 (red); dashed curves: normalized depth (same colours).

curves show the ratios of h/hn. As for the average velocity, the peak value
of the bottom shear stress is attained before the peak depth. This is in
accordance with the results of Nezu et al. (1997). The difference between
these two peaks increases for a strongly unsteady case or for a larger Froude
number. In a strongly unsteady case (C7M30), the graph of the bottom
shear stress approaches a sawtooth shape and the end of the falling stage is
complex due to reflections on the weir.

The reconstruction of the velocity profile is presented on figure 8(a) in
the case C7M24 and on figure 8(b) in the case C7M30, with u+ = u/ub, z

+ =
zub/ν, ub being the friction velocity calculated with (96) and ub =

√
τb/ρ.

Even in the case of a relatively weak unsteadiness (C7M24), the velocity
profile during the wave is modified with respect to the velocity profile of
the steady case (black curve) both in the inner layer and in the outer layer.
The red curve shows the velocity profile at the peak depth. In a strongly
unsteady case (C7M30), the evolution of the velocity profile is more complex.
The black curve is the profile of the steady flow and the green, red and blue
curves are the profiles during the early part of the rising stage, at the peak
depth and at the end of the falling stage respectively.

These curves can be approximately interpreted with the same laws as in
the steady case but the constants have apparent values which are different
from the steady-case values. In the outer layer, a log-law is approximately
satisfied with an apparent von Kármán constant κapp and an apparent in-
tegration constant Bapp. Furthermore, in many cases, a deviation from this
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Figure 8: reconstruction of the velocity profile. (a) Case C7M24: steady
profile (black) and profile at the peak depth (red); (b) Case C7M30: steady
profile (black) and profiles at the early part of the rising stage (green), at
the peak depth (red) and at the end of the falling stage (blue).

apparent log-law can be interpreted as a wake function as in Coles (1956)
with an apparent wake-strength parameter Πapp. The velocity profiles can
be approximately described in the outer layer with the law

u+ =
1

κapp

ln z+ +Bapp +
2Πapp

κapp

sin2 πz

2h
. (110)

Note that this relation is only a convenient description of the actual velocity
profile in the outer layer, which is in fact given by (98). This relation, and
in particular the wake function, are only a rough approximation of the real
function calculated by the model. It is mainly useful for comparisons with
laws given in the literature in the case of unsteady flows.

The variations of the apparent von Kármán constant is presented on figure
9(a) for the weakly unsteady cases (Td = 240 s) C7M24 (F = 0.18, black ♦),
C3M24 (F = 0.5, blue ■) and C4M24 (F = 0.8, red •) and on figure 9(b) for
the strongly unsteady cases (Td = 30 s) C7M30 (F = 0.18, black ♦), C3M30
(F = 0.5, blue ■) and C4M30 (F = 0.8, red •). For F = 0.8, the value of the
apparent von Kármán constant remains close to the value κ = 0.41 but for
smaller Froude numbers, the difference between κapp and κ can be important.
For the weakly unsteady cases, the overall evolution is that κapp increases in
the rising stage, reaching a value κapp ≃ 0.435 for F = 0.18, and decreases
in the falling stage. For the strongly unsteady cases, the evolution of κapp

is more complex, especially because the interaction with the weir can have
a strong effect at the end of the falling stage. The value of κapp increases
at the beginning of the rising stage, reaching κapp ≃ 0.46 for F = 0.18,
and decreases before the peak depth and becomes negative at the end of the
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falling stage.
The variations of the apparent integration constantBapp are similar. They

are presented on figure 9(c) for the cases C7M24 (black ♦), C3M24 (blue ■)
and C4M24 (red •) and on figure 9(d) for the cases C7M30 (black ♦), C3M30
(blue ■) and C4M30 (red •). From the steady value B = 5.28, Bapp increases
and can become larger than 7 for F = 0.18. At the end of the falling stage,
Bapp becomes negative in some cases. The difference between Bapp and B is
not small, even for F = 0.8.

The apparent wake-strength parameter Πapp is shown on figure 9(e) for
the cases C7M24 (black ♦), C3M24 (blue ■) and C4M24 (red •) and on figure
9(f) for the cases C7M30 (black ♦), C3M30 (blue ■) and C4M30 (red •). Its
value remains close to 0 for F = 0.8 but is larger for smaller Froude numbers,
particularly for F = 0.18 where it reaches a maximum of Πapp ≃ 0.10 for
Td = 240 s and Πapp ≃ 0.4 for Td = 30 s. In most cases, Πapp is positive but
it can take negative values at the beginning of the rising stage for F = 0.18
and Td = 30 s or at the end of the falling stage in some cases.

The graphs of figure 9 show that the constants of the apparent law (110)
depend strongly on the Froude number. On the contrary, simulations per-
formed for Re = 104, Re = 105 and Re = 106 at a given Froude number show
that these apparent constants depend weakly on the Reynolds number.

In the viscous sublayer, the expression (103) can be used to reconstruct
the velocity profile. The ratio u+/z+ is calculated with this expression and
the results are presented on figure (10) for the cases C7M24 (black■), C7M30
(blue ■) and C4M24 (red ■). In the steady state, u+/z+ = 1 but for
unsteady flows, this ratio is smaller. For F = 0.8, u+/z+ remains close to
1 but for F = 0.18, u+/z+ decreases below 0.8. For a weakly unsteady
case (Td = 240 s), this ratio decreases in the rising stage and increases in
the falling stage but in a strongly unsteady case (Td = 30 s), the minimum
value of u+/z+ is reached before the peak depth and there is some further
perturbations at the end of the falling stage due to interactions with the weir.

The calculation of the von Kármán constant by Onitsuka & Nezu (2000)
and Nezu & Onitsuka (2002) in unsteady flows used an evaluation of the
friction velocity assuming the validity in unsteady situations of the law u+ =
z+ in the viscous sublayer. One of the results of the present work is that
this law is not valid in an unsteady case where u+ is still a linear function of
z+ but with u+/z+ < 1. As it can be seen on figure 10, the difference can
be important, particularly for low Froude numbers, with values of u+/z+

as small as 0.7. Consequently, using the relation u+ = z+ in the viscous
sublayer to evaluate the friction velocity in unsteady situations can entail a
large error on the calculation of the apparent von Kármán constant and also
on the apparent integration constant.
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Figure 9: Apparent von Kármán constant (a) (b), apparent integration con-
stant (c) (d) and apparent wake-strength parameter (e) (f) as a function of
normalized time. (a) (c) (e) Cases C7M24 (black ♦), C3M24 (blue ■) and
C4M24 (red •); (b) (d) (f) Cases C7M30 (black ♦), C3M30 (blue ■) and
C4M30 (red •).
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Figure 10: Ratio u+/z+ as a function of normalized time for the cases C7M24
(black ■), C7M30 (blue ■) and C4M24 (red ■).

We have calculated the apparent von Kármán constant by using u+ = z+

to calculate the friction velocity instead of using the relation (96) in order to
replicate the calculation of Onitsuka & Nezu (2000) and Nezu & Onitsuka
(2002). Using deliberately this wrong value of the friction velocity gives
entirely different values of the apparent von Kármán constant. The results
are presented on figure 11(a) for the case C7M24 and on figure 11(b) for
the case C7M30, where the values of κapp calculated by this method (red
■) are compared to the normal calculation (black •) which uses the friction
velocity predicted by the model. When u+ = z+ is used, κapp decreases in
the rising stage instead of increasing and then increases during the falling
stage or, for a strongly unsteady case, before the end of the rising stage.
This evolution is rather close to the results of Nezu & Onitsuka (2002) .
There is also, particularly for a strongly unsteady case, a sudden increase
of κapp near the beginning of the rising stage before a rapid decrease, and
this feature was noted by Onitsuka & Nezu (2000). Because of the similarity
between our calculations of κapp using u+ = z+ in the viscous sublayer, even
if this relation is not valid in our approach, and the results of Onitsuka
& Nezu (2000) and Nezu & Onitsuka (2002), we think that the qualitative
discrepancies between our really predicted values of κapp (figures 9(a) and (b))
and the calculations made from experimental results in the literature are due
to the wrong assumption that u+ = z+ is valid in unsteady situations, which
leads to large errors in the evaluation of κapp. The evaluation of the apparent
integration constant is also flawed if the validity of u+ = z+ is assumed in
unsteady flows.
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Figure 11: Comparison of the apparent von Kármán constant calculated with
the friction velocity obtained with (96) (black) or by assuming u+ = z+ (red):
(a) case C7M24; (b) case C7M30.

6.4 Comparisons with experiments in 1D unsteady open-
channel flows

6.4.1 Test case 1: Experiment SC3T1 of Nezu et al. (1997)

To assess the validity of the model, it is necessary to compare with experi-
ments made in an unsteady and variable case since the model introduces the
first-order corrections, which are equal to zero in a stationary and uniform
flow. The experiments of Nezu & Nakagawa (1995) and Nezu et al. (1997)
were conducted in a 10-m long and 40-cm wide channel where the discharge
was controlled in order to produce a flood flow. Starting from a base flow
of depth hb, the discharge was increased and then decreased with a peak
depth hp. The hydrograph was a sine curve. The duration from the base
discharge to the peak discharge was Td. Detailed information on the experi-
ments and measurements are available in Nezu & Nakagawa (1995) and Nezu
et al. (1997). In our model, the Reynolds number is assumed to be very large
since η = 1/(κ2Re) is supposed to be of O(ε2+m) with m > 0. The hydraulic
conditions of these experiments are at the lower limit of validity since the
Reynolds number is only of the order of 104. This order of magnitude is
typical of laboratory conditions but natural flows have usually much higher
values of the Reynolds number, typically around 105 or 106, which are more
suited to our model.

We simulated the experiment SC3T1 where Td = 60 s and hb = 4.05 cm.
Since the flow is subcritical, it is controlled by the downstream boundary
condition. The authors gave no information on their downstream control,
but it is likely that it was a weir of some sort. As above, we used a formula
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used for sharp-crested weirs,

qN+1 =
2

3

(
C1 + C2

hN − d

d

)√
2g (hN − d)3, (111)

where d is the weir height, to calculate the discharge q = hU at cell N + 1
from the depth h at cell N and we tuned the coefficients C1 and C2 to obtain
the values at the peak flow. Some hydraulic conditions were not given by
the authors and some conjectures were necessary to obtain some parameters
of the calculation. Neither the mean velocity Ub of the base flow nor the
Reynolds number of the base flow were given. From the values of the von
Kármán constant κ, the integration constant B, the wake-strength parameter
Π and the value of the friction velocity vb for the base flow, the average
velocity of the base flow was estimated by an integration over the depth of
the law (2). The viscosity is not given either, nor the temperature. With
the values of κ, B, Π and vb for the peak flow, the peak mean velocity Up

was estimated. The Reynolds number of the peak flow was provided, which
allowed us to estimate the kinematic viscosity ν.

The friction coefficient Cf was calculated with the explicit relation (79).
The base flow is supposed to be a steady and uniform flow. However it was
not possible to obtain a stationary and uniform flow with the value 1/600
given for the slope. This would imply a friction coefficient roughly twice as
large as what can be calculated with classical relations used in hydraulics,
even considering the hydraulic radius instead of the depth in the definition
of the Reynolds number. Since no value of the friction coefficient and no
discussion about this coefficient are given by the authors, we assumed that it
was a 2D-effect due to the lateral walls or some other unspecified condition.
To obtain a uniform base flow, we had to use a smaller slope of 1/1456.

In a first scenario, we chose the coefficients C1 and C2 to have a uniform
base flow of depth hb and mean velocity Ub and also the same value of hp

as in the experiments and the same value Up at the peak flow as it can
be deduced from the integration of (2) over the depth with the parameters
κ = 0.41, B = 3.44 and Π = 0.33 found by Nezu et al. (1997). However
it appears that the model underestimated the velocity in the defect layer.
Nezu et al. (1997) found a value Π = 0.33 of the wake-strength parameter at
the peak flow whereas the model finds an apparent wake-strength parameter
of only Πapp ≃ 0.02. Because the average velocities were assumed to be
equal, the velocity was overestimated in the “log layer” as a result. As the
velocity profile in this layer was only shifted vertically by a constant value, it
seemed more logical to use a second scenario where the downstream boundary
condition was chosen to obtain the same mean velocity in the “log layer”.
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Figure 12: Reconstructed velocity profile (red curve) and comparisons with
the experimental measures of Nezu et al. (1997) (black dots) and with the
law (2) proposed by Nezu et al. (1997) to fit their measures (black curve).
(a) Base flow; (b) Peak flow.

The final set of parameters used for the calculations in this second scenario
was: ν = 8.68× 10−7 m2/s (which corresponds to a temperature of 26.3◦C);
C1 = 0.61; C2 = 0.0305; d = 7.9 mm; Ub = 0.316 m/s; κ = 0.41; R = 2.67;
g = 9.8 m/s−2. The friction coefficient, calculated with (79), was equal to
0.00275 in the base flow and decreased during the flood event. The various
quantities were taken at a distance of 7m from the beginning of the channel,
as in the experiments. The peak depth was hp = 6.6 cm and the average
velocity at the peak depth was Up = 0.513 m/s. However, since the peak
velocity is reached before the peak depth, this was not the maximum velocity,
which was Umax = 0.517 m/s. The peak value of the Reynolds number was
Rep = 3.9× 104 as in the experiments.

The velocity profile was reconstructed for the base flow and at the peak
depth (h = hp). The results are presented at the figures 12(a) and 12(b)
respectively. The experimental measures were presented with the inner vari-
ables u+ and z+ in Nezu et al. (1997) (where our z is denoted by y). Using the
value of the friction velocity used by the authors and the kinematic viscosity
conjectured as explained above, we reconstructed the experimental dimen-
sional velocity profile (black dots in figure 12). Nezu et al. (1997) calculated
the friction velocity for the case SC3T1 assuming the validity of the log law
u+ = (1/κ) ln z++B with κ = 0.41. With this method, they found a friction
velocity of 1.63 cm/s for the base flow and 2.66 cm/s for the peak flow. Then
the integration constant and the wake-strength parameter were found to fit
the measures. The curves obtained with the law (2) are shown in black in
figure 12 together with the law u+ = z+ used in the viscous sublayer. We
did not reproduce the correction due to Van Driest damping function which

39



would smooth the transition from one law to the other. For the base flow,
the standard value B = 5.3 was found. For the peak flow, they obtained the
value B = 3.44 for the integration constant. In addition, Nezu et al. (1997)
used a wake-strength parameter Π = 0.16 for the base flow and Π = 0.33 for
the peak flow. Such a deviation from the log law is clear at the peak depth
(see Figure 12(b)) but it is not so obvious for the base flow (figure 12(a)).

The reconstruction of the velocity profile with the model is presented in
Figure 12 with a red curve. The relations (98) and (99) were used for the outer
and inner layers respectively with a good matching. The agreement with the
experimental measures is very good for the base flow (figure 12(a)) in spite
of the absence of a wake function. At the peak flow, there is a discrepancy
between the predictions of the model and the experimental results in the
defect layer. The apparent wake-strength parameter is underestimated since
we found Πapp = 0.02, which is much smaller than the value Π = 0.33 found
by Nezu et al. (1997). The origin of this deviation in open channels is not
always clear and could be caused by 2D-effects. Below the defect layer, the
agreement is very good. The law (98) in the outer layer is presented, without
the matching with the law of the inner layer, in Figure 13(a). The comparison
with the experimental measures (black dots) shows that the slope of the curve
found with the model agrees slightly better in the “log-law region” than the
law used by Nezu et al. (1997) (black curve). We use the term “log-law
region” although the profile in this region does not satisfy a pure log law
according to our model.

The bottom shear stress was reconstructed with the relation (96). It
is presented during the whole flood event in Figure 13(b) (red curve). The
curve is superimposed over the results of Nezu et al. (1997) where the bottom
shear stress (denoted here by τw) is first calculated by the log law with the
assumption κ = 0.41 and then normalized by the time-averaged value τ̄w.
The results corresponding to the case SC3T1 is the case α = 0.95 × 10−3

(α is an unsteadiness parameter defined in Nezu et al. 1997). The duration
used to calculate the time-averaged value is not specified. We assumed it
was the duration 2Td of the flood event. The value of the bottom shear
stress presented by Nezu et al. (1997) is thus not a measure but results of
an assumption. In our model, this assumption is not exactly satisfied since
there is a small deviation to the log law due to the first order correction.
Moreover the apparent von Kármán constant κapp = 0.414 is slightly different
from the standard value 0.41. This entails a small difference on the friction
velocity. We found the value vb = 2.45 cm/s at the peak depth instead of
the value vb = 2.66 cm/s found by Nezu et al. (1997). There is thus also a
small difference on the bottom shear stress. The curve α = 0.95 × 10−3 is
not always distinguishable but it is the second highest curve after the case
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Figure 13: (a) Comparison of the reconstructed velocity profile in the outer
layer (red curve) with the experimental measures of Nezu et al. (1997) (black
dots) and the fitting law proposed by Nezu et al. (1997) (black curve). (b)
Bottom shear stress normalized by its time-averaged value calculated by the
model (red curve) superimposed over the curves calculated by Nezu et al.
(1997) assuming the validity of the log law with κ = 0.41. Variations of the
flow depth during the same flood event expressed as ∆h = h−hb normalized
by hp−hb (blue curve) superimposed over the measures of Nezu et al. (1997).

α = 1.28 × 10−3. The curve found with the model (red) is slightly smaller
than the curve (black) of Nezu et al. (1997) but both curves are very close.
It can be noted that in both cases, the maximum value of the bottom shear
stress is reached before the maximum value of the depth. The variation
of the depth is presented with the quantity ∆h = h − hb normalized by
∆hp = hp − hb, in blue for our model, superimposed with the black curve
of Nezu et al. (1997). Both curves are very close one to each other. The
depth variation results of the hydrograph which was exactly a sine curve in
our simulation. In the experiments, it was also a sine curve with a good
accuracy. The small differences are probably not significant.

6.4.2 Test case 2: Experiment U2 of Onitsuka & Nezu (2000)

The second test case is the case U2 of Onitsuka & Nezu (2000). The experi-
ment is similar to the first test case except that the measurements are made
at a distance of 8m from the channel entrance and that Td = 120 s. The
hydrograph, the slope and the viscosity are not specified. We assumed that
the hydrograph was a sine function as in the first test case. We chose the
slope in order to have a uniform base flow. This gives sin θ = 8.25 × 10−6.
The kinematic viscosity was calculated from the values of the base depth
hb = 6.0 cm, the base mean velocity Ub = 3.33 cm/s and the Reynolds num-
ber of the base flow Reb = 2.32× 103 (Re = hU/ν). This Reynolds number
is very small and below the validity domain of the matching procedure and
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Figure 14: Velocity profile in the outer layer calculated with the model for
the simulation of the experiment U2 of Onitsuka & Nezu (2000) (red curve)
and comparison with the law obtained by Onitsuka & Nezu (2000) to fit their
measures (black curve).

of the viscous scaling, which necessitates Re = O(ε−2−m) with m > 0. The
slope is also too small for the model, which is not valid if the slope is equal to
zero. The Froude number of the base flow was also very small: Fb = 0.04. As
a rule, the model is valid if Re > 104 and sin θ > 10−4. Below these values,
the matching procedure and the viscous scaling are not accurate since some
neglected terms are not negligible. This implies that the velocity profile in
the inner layer is not accurate. However, the predictions of the model in the
outer layer are very good.

The friction coefficient was calculated with the explicit relation (79) with
κ = 0.41 and R = 2.67. For the base flow, the friction coefficient was Cfb =
0.00438 and decreased when the depth increased. The flow is subcritical
and is controlled by the downstream boundary condition. We used the same
boundary condition as in the first test case, with C1 = 0.70, C2 = 0.08 and
d = 5.04 cm. These values were chosen to reach the same peak values as
in the experiment. The peak Reynolds number, depth and average velocity
were respectively Rep = 1.16× 104, hp = 7.8 cm and Up = 12.8 cm/s.

The velocity profile in the outer layer of the base flow is accurately re-
constructed from the model. The reconstruction of the velocity profile at the
peak depth is presented in Figure 14 in the outer layer (from a depth corre-
sponding to z+ = 30 in the inner variables until the free surface). The ex-
perimental measurements were accurately fitted by Onitsuka & Nezu (2000)
with the law expressed with the inner variables u+ = (1/κ) ln z+ + B as-
suming the validity of the law u+ = z+ in the viscous sublayer to calculate
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Figure 15: Velocity profile reconstructed from the model for the experiment
N30 of Nezu & Onitsuka (2002) (red curve) and comparison with the ex-
perimental measures (black dots) and the fitting curve of Nezu & Onitsuka
(2002) (black curve).

the friction velocity. Using the value of the friction velocity given by the
authors (vb = 0.65 cm/s for the peak flow), we followed the reverse path to
obtained the experimental dimensional velocity profile (black line in figure
14). The solid red curve is the velocity profile reconstructed from the model
with the relation (98). The agreement with the experimental curve is very
good. Contrary to the first test case, no wake-strength parameter was found
by Onitsuka & Nezu (2000) whereas the reconstructed velocity profile shows
a small non-zero value of Πapp. As mentioned above, the existence or absence
of a “wake function” in the case of open-channel flows is not well understood
and could be caused by several effects related to secondary currents or to the
flow history.

6.4.3 Test case 3: Experiment N30 of Nezu & Onitsuka (2002)

The third test case is the case N30 of Nezu & Onitsuka (2002). It is similar
to the second test case except that Td = 30 s, hb = 6 cm, Ub = 5.2 cm/s and
Reb = 2.5× 103. The slope is calculated assuming the base flow is uniform.
This leads to the value sin θ = 1.97×10−5. As in §6.4.2, the Reynolds number
and the slope are very small which implies that the matching and the profile
in the inner layer are not accurate. On the other hand, the shallow-water
scaling is still valid and the velocity profile in the outer layer is accurate.

The parameters used for the simulation are C1 = 0.60, C2 = 0.03, d =
4.556 cm (with the same downstream boundary condition as above), hp =
7.9 cm and Up = 14.2 cm/s (at the peak depth). The friction coefficient was
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calculated with the explicit relation (79), κ = 0.41 and R = 2.67. It is not
clear whether the values at t/Td = 1.0 were measured at the peak depth or
at the peak velocity, which is reached a little bit earlier. Since the average
velocity found from the integration over the depth of the fitting law given by
the authors with the values κ = 0.347 and B = 3.48 obtained at t/Td = 1.0
(Nezu & Onitsuka 2001, 2002) gives the maximum velocity Umax = 14.6 cm/s,
we assumed that it was the peak velocity, where h = 7.78 cm.

The comparison of the velocity profile reconstructed in the outer layer
using the relation (98) (red curve) with the experimental results of Nezu &
Onitsuka (2002) (black dots) is presented in figure 15. The experimental
results are given in Nezu & Onitsuka in the inner variables u+ and z+. They
were converted in dimensional form using the value of the friction velocity
(vb = 0.79 cm/s at the peak flow). The log law proposed by the authors to
fit the experimental results is shown on the figure (black line). The figure
shows the velocity profile in the outer layer from a value of z corresponding
to z+ = 50 until the free surface. The velocity profile found from the model
is in good agreement with the experimental profile in the outer layer.

6.5 Numerical scheme for the 2D model

In the 2D-case, the shape of the cross-section must be taken into account.
This implies to define the distance zb between the bed and the sloping plane
Oxy (see Figure 1). This distance zb defines a bathymetry and can depend
on x or y. We assume that the variations of zb with x or y are very small such
that ∥grad zb∥/∥gradh∥ = O(ε). In this case, the asymptotic expansions
are exactly the same as above and the only difference is the presence of a
term in grad zb in the depth-averaged momentum equation. The hyperbolic
system with source terms of equations (84), (85) and (86) can thus be written

∂U
∂t

+ div (F) = S (U) (112)

where U = (h, hU , hφ)T,F =

(
hU , hU ⊗U +

gh2

2
cos θ I + h3φ, hφ⊗U

)T

and S (U) = (S1,S2,S3) with S1 = 0,

S2 = −ghgrad zb +
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√
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√
Cf

)√
Cfh

(
h trφ− ĝ
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and

S3 = 2hφ divU−gradU ·hφ−hφ·(gradU)T+
α2

κ

√
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h2
[U ⊗ (CfU ∥U∥ − ĝh)

+(CfU ∥U∥ − ĝh)⊗U ]−κα2

√
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h

[
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(
hφ · ĝ

ĝ
− ĝ
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)
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(
hφ · ĝ

ĝ
− ĝ

κ2

)
⊗U

]
(114)

where ĝ = (g sin θ cos β, g sin θ sin β)T , ĝ = g sin θ, α = 3.15, α1 = 0.68,
α2 = 2.47 and Cf is computed locally from the explicit relation (79).

The system is numerically resolved using a classic first order splitting
method by integrating first the hyperbolic part and then the source terms,
both with the same time step calculated from a CFL condition based on
the maximum eigenvalue over the mesh (Richard et al. 2019). The hyper-
bolic part is treated using a classic Godunov-like scheme with the Rusanov
approximate Rienmann solver, using MUSCL reconstructions for all prim-
itive variables and limiting all the slopes by a Barth limiter (Barth et al.
2017). The treatment of the bathymetry term ghgrad zb is included in the
hyperbolic part of the splitting following the method of Audusse & Bristeau
(2005) to ensure the well-balancing property (conservation of a lake at rest,
for example in the transverse direction of an open-flow channel). Note that
the non-conservative terms of the enstrophy equation are included in the hy-
perbolic step and treated as source terms. All other relaxation source terms
are integrated using an explicit scheme. In order to avoid numerically insta-
bilities at wet/dry fronts, the water depth is maintained over a critical value
h = max (h, hϵ) where hϵ = 1 cm for the enstrophy source terms (exclud-
ing the computation of the friction source term). Finally, an Heun two-step
temporal scheme is applied considering the splitting procedure as one step
method. Note that this numerical resolution is adapted to unstructured
meshes and implemented in the Tolosa project. For the following test case
(§6.6), we compared the numerical cost of the resolution of this 2D-system
with the resolution of the classical 2D Saint-Venant system. The resolution
of this system has a cost 89 % larger than the Saint-Venant system. We
estimate that an optimisation of the treatment of the source terms (which
is not yet implemented) could reduce this additional cost to 50 % approx-
imately. The most important computational cost is in the assembly of the
finite volume flux due to the data access in memory from local stencil. It is
thus consistent to find a similar cost for the computation of the source terms
despite the much higher number of arithmetic operations.
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Figure 16: Geometry of a symmetrical trapezoidal channel (half cross-
section).

6.6 2D-flow in a trapezoidal channel and 3D-reconstruction
of the velocity

The model (112) is applied to the case of a free-surface flow in a channel
with a simple trapezoidal cross-section, following the experiments of Yuen
(1989). In this case, ∂zb/∂x = 0. The geometrical parameters of these
experiments are the half-length b of the flat part of the bottom and the
maximum water depth H in the middle of the channel (see Figure 16). The
size of the computational domain is 20m long and 60 cm wide to simulate
the experiment number 23 of Yuen (1989) with the aspect ratio 2b/H = 10
with 2b = 45 cm and H = 4.5 cm giving a large flat open channel flow in the
crosswise direction. Due to the assumption of a slowly varying bottom (see
above) and the simple turbulence model used for the asymptotic expansions,
the validity of the model is restricted to the cases where the aspect ratio
is large. Smaller aspect ratios will require a refined turbulence model and
asymptotic expansions suited for an arbitrary bathymetry. In this case, the
lateral slope is large but, since the aspect ratio is large, the model is still able
to produce accurate results.

In order to control the inflow boundary condition, given the maximum
water depth H = 4.5 cm corresponding to the experiment 23 of Yuen, the
velocity is enforced in the ghost cell at the inflow respecting the local equi-
librium U =

√
ĝh/Cf . The water depth is calculated solving the nonlinear

problem using a classic Newton method and arising from the equality of
the two ingoing Riemann invariants U + 2

√
gh from the ghost cell and the

first cell in the interior of the mesh domain. For the inflow components of
the enstrophy, the Dirichlet boundary conditions are prescribed if the cell is
not dry with φ11 = 0.01 ĝ/ (κ2h), φ22 = φmin

22 + (φmax
22 − φmin

22 ) (y/ (b+H))2

and φ12 = φmax
12 tanh (3y/ (b+H)), where φmin

22 = φmax
12 , φmax

22 = 2φmin
22 and
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φmax
12 = φmin

11 with φmin
11 = 0.01 ĝ/(κ2H). This small value of φ11 is chosen to

simulate the development of the flow in the channel. For the component V of
the velocity, a Neumann boundary condition is applied. Considering the out-
flow boundary condition, given again the maximum water depth H = 4.5 cm,
the local water depth h is enforced and the velocity U is calculated from the
two outgoing Riemann invariants U + 2

√
gh. For the component V of the

velocity and the components φ11, φ22 and φ12 of the enstrophy tensor, Neu-
mann boundary conditions are applied.

In order to obtain a stationnary solution, the time integration has to be
greater than 250 s and is finally equal to 500 s. The kinematic viscosity is
fixed at ν = 10−6 m2.s−1. The slope is equal to 10−3. The flow is subcritical.

The results obtained for h, U , φ11, φ22, φ12 and Cf are presented in Figure
17. The component V of the velocity is not shown because its values are very
small and not significant. The maximum values of the depth and the velocity
are obtained in the flat part of the channel where they are almost constant
and they decrease on the lateral slopes until the wet/dry front. It is the
opposite for the enstrophy components which are the largest where the depth
is small. The crosswise variations of the depth-averaged velocity U is shown
in Figure 18(a). The maximum value of U is not at the centre of the channel
but it is slightly larger around the limits between the flat and sloping parts.
The component φ11 is much larger than the two other components (note that
φ12 can be negative). The enstrophy components evolve from the beginning
of the channel in relation to the development of the boundary layer (see §6.2).
The development of the boundary layer, evaluated from the growth of φ11,
is faster in the lateral parts of the channel than in the centre since the depth
is larger in the flat central part. The variations of φ11 near the entrance of
the channel is shown on Figure 18(b). The friction coefficient is calculated
locally with (79) and is larger on the lateral part where the depth is small.

The 3D velocity profile is reconstructed in the outer layer with the relation
(98). The isovel pattern in the trapezoidal cross-section is shown in Figure
19 together with the isovel pattern measured by Yuen (1989). The mean
velocity U is normalized by the section mean velocity and the values of the
isovels are approximately the same. The agreement is quite good, especially
in the sloping lateral parts.

7 Conclusion

A consistent 2D-depth-averaged model for open-channel flows in the smooth
turbulent case is derived with a matched asymptotic method and a mix-
ing length model of turbulence including the free surface damping effect but
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Figure 17: Numerical simulation of the experiment 23 of Yuen (1989):
(a) depth h (m); (b) average velocity U (m/s); (c) enstrophy component
φ11 (s−2); (d) enstrophy component φ22 (s−2); (e) enstrophy component
φ12 (s

−2); (f) Friction coefficient Cf .
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Figure 18: (a) Transverse variations of the depth-averaged velocity U ; (b)
Variations of φ11 at the beginning of the channel.

Figure 19: Isovels calculated from the 3D reconstruction of the velocity (up)
and comparisons with the isovels measured by Yuen (1989) (down).
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without the wake function. The model can predict accurate velocity profiles
in the inner layer and in the outer layer. It can be used in unsteady situations
to reconstruct the bottom shear stress and the 3D velocity profile, where the
effects of the first-order corrections can be clearly seen. The friction coeffi-
cient has an explicit form and can be consistently calculated from the water
depth. Shearing effects are taken into account with the variable enstrophy.

The development of the turbulent boundary layer can be evaluated from
the model’s enstrophy. Numerical simulations with the 1D-model show that
the predicted length of the flow developing zone has a correct order of mag-
nitude. The ratio of this length over the normal depth increases with the
Reynolds number but depends weakly on the Froude number in the case of
subcritical flows.

Numerical simulations were conducted for unsteady flows in the subcrit-
ical case with a rising stage followed by a falling stage and a sinusoidal
hydrograph. The peak value of the velocity and of the bottom shear stress
is attained before the peak depth and the delay of the peak depth is larger
for a larger Froude number or for a stronger unsteadiness.

The velocity profile in unsteady flows can be described by an apparent
logarithmic law with an apparent von Kármán constant and an apparent
integration constant. In many cases, a deviation from this log law can be
described by Coles’ wake function with an apparent wake-strength parameter.
The variations of these apparent constants depend weakly on the Reynolds
number but strongly on the Froude number. The variations are large for
small Froude numbers and very small for Froude numbers close to 1. The
apparent von Kármán constant increases at the beginning of the rising stage
and decreases during the falling stage for weakly unsteady flows or before
the peak depth for strongly unsteady flows where it can become smaller
than the steady value at the end of the falling stage. The variations of the
apparent integration constant and of the apparent wake-strength parameter
are qualitatively similar.

In the viscous sublayer, the law u+ as a function of z+ can be studied
since the friction velocity can be calculated with the model. It is found that
u+ in unsteady flows is a linear function of z+ but that u+/z+ < 1 if the flow
is unsteady. The value of u+/z+ remains close to 1 for the larger subcritical
Froude numbers but can be as small as 0.7 for small Froude numbers. This
ratio decreases at the beginning of the rising stage and increases at the peak
depth and in the falling stage for a weak unsteadiness or before the peak
depth for a strong unsteadiness. Consequently our model predicts that the
law u+ = z+ is not valid in unsteady flows. Assuming the validity of this
law to evaluate the friction velocity can lead to large errors in the calculation
of the von Kármán constant and of the integration constant in unsteady
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situations. Indeed, if we assume the validity of this law to calculate the
friction velocity instead of using the value predicted by the model, we find
values of the apparent von Kármán constant and of the integration constant
which are completely different from the consistent predicted values but which
are rather similar to the values obtained from experimental measurements
by authors who used this method of calculation of the friction velocity.

The capability of the model to reconstruct accurately the velocity profiles
is shown by the comparisons with experiments from Nezu et al. (1997),
Onitsuka & Nezu (2000) and Nezu & Onitsuka (2002) in the case of 1D
unsteady open-channel flows and with the experiments of Yuen (1989) in
the case of wide trapezoidal channels where the 3D velocity profiles can be
reconstructed from the values of the depth, average velocity and enstrophy
calculated by the 2D depth-averaged model.
Acknowledgments This work was supported by the AQUA department of
INRAE (project Aquanum).
Declaration of Interests. The authors report no conflict of interest.

A Asymptotic expansion at order 1

In the shallow-water scaling, at order 1, the momentum balance equation
becomes

∂u′
0
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0
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0
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with the boundary condition τ
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sh (h) = 0. The integration of (115) in the

Ox-direction, taking into account the boundary conditions leads to

κ2τ ′(1)xz =
∂

∂t′

∫ z′

h′
u′
0 dz

′+
∂

∂x′

∫ z′

h′
u′2
0 dz′+

∂

∂y′

∫ z′

h′
u′
0v

′
0 dz

′+u′
0w

′
0+

1

F 2

∂

∂x′

∫ z′

h′
p′0 dz

′.

(116)
The calculation in the Ox and Oy directions gives the result

τ
′(1)
sh =

λ0h
′

κ2
λ̂
(
λ̂ · gradh′

) [
1− s+ µT1(s) + µ2T2(s)

]
+
h′

κ2
gradh′ cos θ

F 2
(s− 1)

(117)
with

T1(s) = (1− s) (R + 1 + ln 2 + lnM) +
s ln s

2
, (118)
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T2(s) =

[
R2

2
+R− 7

2
+ ln 2

(
R + 1 +

ln 2

2

)
+ lnM

(
R + 1 + ln 2 +

lnM

2

)]
1− s

2

+
s ln s

2

(
−5

2
+

R

2
+

ln 2

2
+

lnM

2
+ ln s

)
. (119)

At the bottom we obtain

τ
′(1)
sh (0) =

λ0h
′

κ2
λ̂
(
λ̂ · gradh′

) [
1 + µT1(0) + µ2T2(0)

]
− λ0h

′

κ2
gradh′ cos θ

λ0F 2

(120)
with T1(0) = R + 1 + ln 2 + lnM and

T2(0) =
R2

4
+

R

2
− 7

4
+

ln 2

2

(
R + 1 +

ln 2

2

)
+

lnM

2

(
R + 1 + ln 2 +

lnM

2

)
.

(121)
As for the order zero, the velocity is obtained with the constitutive law
τ ′ = 2ν ′

effD
′. Using (14), the constitutive relation in the outer layer yields

τ ′
sh = z′2 (1− s)

√(
∂u′

∂z′

)2

+

(
∂v′

∂z′

)2
∂u′

∂z′
. (122)

From this relation, we obtain

τ ′2xz + τ ′2yz = z′4 (1− s)2
∥∥∥∥∂u′

∂z′

∥∥∥∥4 . (123)

At the order 1, this gives

2
(
τ ′(0)xz τ ′(1)xz + τ ′(0)yz τ ′(1)yz

)
= 4z′4 (1− s)2

∥∥∥∥∂u′
0

∂z′

∥∥∥∥2(∂u′
0

∂z′
·
∂u′

1

∂z′

)
. (124)

Using the expressions found at order zero and those of τ
′(1)
xz and τ

′(1)
yz , this

leads to the relation

λ

λ
·
∂u′

1

∂z′
=

1

2κ2

√
λ0

h′

(
λ

λ
· gradh′

)[
T0(s) + µT1(s) + µ2T2(s)

µs (1− s)
− cos θ

µλ0F 2s

]
.

(125)
Then we can write at order 1

τ
′(1)
sh = z′2 (1− s)

[∥∥∥∥∂u′
0

∂z′

∥∥∥∥−1(∂u′
0

∂z′
·
∂u′

1

∂z′

)
∂u′

0

∂z′
+

∥∥∥∥∂u′
0

∂z′

∥∥∥∥ ∂u′
1

∂z′

]
(126)

which gives

τ
′(1)
sh = s (1− s)h′

√
λh′
[
λ

λ

(
λ

λ
·
∂u′

1

∂z′

)
+

∂u′
1

∂z′

]
(127)
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and finally

∂u′
1

∂z′
=

1

2κ2

√
λ0

h′
λ

λ

(
λ

λ
· gradh′

)[
T0(s) + µT1(s) + µ2T2(s)

µs (1− s)
+

cos θ

λ0F 2

1

µs

]
− 1

κ2

√
λ0

h′ gradh
′ cos θ

λ0F 2

1

µs
. (128)

Integrating this equation gives

u′
1 = u′

1(h) +

√
λ0h′

2κ2
λ̂
(
λ̂ · gradh′

)
×
[
ln s

µ
+T1(0) ln s+

Li2(1− s)

2
+µT2(0) ln s+

µ

4
(R− 5 + ln 2 + lnM) Li2(1−s)

+
µ

2

(
− ln(1− s) ln2 s− 2 ln sLi2(s) + 2Li3(s)− 2ζ(3)

) ]
−

√
λ0h′

κ2

cos θ

λ0F 2

ln s

µ

[
gradh′ − 1

2
λ̂
(
λ̂ · gradh′

)]
. (129)

In this expression, Lin denotes the polylogarithm function of order n. For
n = 2 the dilogarithm is defined as

Li2(s) = −
∫ s

0

ln (1− s′)

s′
ds′. (130)

For n = 3 the trilogarithm can be defined as

Li3(s) =

∫ s

0

Li2(s
′)

s′
ds′. (131)

The function ζ is Riemann zeta function and ζ(3) = Li3(1) ≃ 1.20 is Apéry’s
constant.

Because the expression of u′
1 above diverges when s → 0, a matching pro-

cedure is necessary to connect this expression with the expression in the inner
layer found with the viscous scaling. This procedure yields the expression of
u′

1(h).
In the viscous scaling, the momentum balance equation (25) implies that

∂τ̃
(1)
sh /∂z̃ = 0. The matching procedure for τ

(1)
sh is thus straightforward:

τ̃
(1)
sh = τ

′(1)
sh (0).

The velocity field is obtained from the constitutive law. The constitutive
law gives

τ̃sh = ν̃eff
∂ũ

∂z̃
(132)
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with

ν̃eff = 1 + z̃2 (1− s)
(
1− e−ξ/A

)2 ∥∥∥∥∂ũ∂z̃
∥∥∥∥ . (133)

At order 1, we obtain

τ̃
(1)
sh =

∂ũ1

∂z̃
+z̃2 (1− s)

(
1− e−

ξ
A

)2 [∥∥∥∥∂ũ0

∂z̃

∥∥∥∥ ∂ũ1

∂z̃
+

∥∥∥∥∂ũ0

∂z̃

∥∥∥∥−1(
∂ũ0

∂z̃
· ∂ũ1

∂z̃

)
∂ũ0

∂z̃

]
.

(134)
We can write ∥∥∥∥∂ũ0

∂z̃

∥∥∥∥−1(∂u′
0

∂z′
·
∂u′

1

∂z′

)
=

λ

λ
· ∂ũ1

∂z̃
(135)

and

τ̃ 2xz + τ̃ 2yz =

[
1 + z̃2 (1− s)

(
1− e−ξ/A

)2 ∥∥∥∥∂ũ∂z̃
∥∥∥∥]2 ∥∥∥∥∂ũ∂z̃

∥∥∥∥2 . (136)

We obtain at order 1

τ
′(0)
sh (0) · τ ′(1)

sh (0)√
τ
′(0)2
xz (0) + τ

′(0)2
yz (0)

=

(
λ

λ
· ∂ũ1

∂z̃

)
×
[
1 + 2z̃2 (1− s)

(
1− e−ξ/A

)2 ∥∥∥∥∂ũ0

∂z̃

∥∥∥∥] .
(137)

This leads to

λ

λ
· ∂ũ1

∂z̃
=

1√
∆

λ0h
′

κ2

(
λ

λ
· gradh′

)[
T0(0) + µT1(0) + µ2T2(0)−

cos θ

λ0F 2

]
(138)

where

∆ = 1 + ξ2
(
1− ξη

2
√
λh′3

)(
1− e−ξ/A

)2
. (139)

Because of (13), this expression can be reduced to

∆ ≃ 1 + ξ2
(
1− e−ξ/A

)2
. (140)

With these relations, (134) becomes

∂ũ1

∂z̃
=

1√
∆

λ0h
′

κ2

λ

λ

(
λ

λ
· gradh′

)[
T0(0) + µT1(0) + µ2T2(0)

]
− 2

1 +
√
∆

λ0h
′

κ2
gradh′ cos θ

λ0F 2
− 1−

√
∆

√
∆
(
1 +

√
∆
) λ0h

′

κ2

λ

λ

(
λ

λ
· gradh′

)
cos θ

λ0F 2
.

(141)
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The integration from the bottom to an arbitrary depth gives

ũ1 =

√
λ0h′

2µκ2
λ̂
(
λ̂ · gradh′

) [
T0(0) + µT1(0) + µ2T2(0)

] [
ln
(
ξ +

√
1 + ξ2

)
+R1(ξ)

]
−

√
λ0h′

µκ2
gradh′ cos θ

λ0F 2

[
R(ξ)− ξ

1 +
√

1 + ξ2
+ ln

(
ξ +

√
1 + ξ2

)]
−
√
λ0h′

2µκ2
λ̂
(
λ̂ · gradh′

) cos θ

λ0F 2

[
2ξ

1 +
√

1 + ξ2
−ln

(
ξ +

√
1 + ξ2

)
+R1(ξ)−2R(ξ)

]
+O(µ2)

(142)

where the function R1 is defined by

R1(ξ) =

∫ ξ

0

dξ√
1 + ξ2 (1− e−ξ/A)

2
−
∫ ξ

0

dξ√
1 + ξ2

. (143)

The matching procedure follows the same principle as for order zero i.e.

u′
1 (s = b

√
η) = ũ1

(
ξ =

2b
√
λh′3

√
η

)
+O (

√
η) . (144)

We obtain

u′
1(h) =

√
λ0h′

2κ2
λ̂
(
λ̂ · gradh′

)
×
[
2

µ2
+
1

µ
(R1 + ln 2 + lnM + 2T1(0))−

π2

12
+2T2(0)

+T1(0) (R1 + ln 2 + lnM)

]
−
√
λ0h′

κ2

cos θ

λ0F 2
gradh′

[
2

µ2
+

1

µ
(R− 1 + ln 2 + lnM)

]
−
√
λ0h′

2κ2

cos θ

λ0F 2
λ̂
(
λ̂ · gradh′

)[
− 2

µ2
+

1

µ
(2 +R1 − 2R− ln 2− lnM)

]
+O(µ)

(145)

where

R1 =

∫ +∞

0

dξ√
1 + ξ2 (1− e−ξ/A)

2
−
∫ +∞

0

dξ√
1 + ξ2

(146)

is the limit of R1(ξ) when ξ → +∞. This procedure yields the complete
expression of u′

1. Note that the leading term in u′
1 is of O(1/µ2). Denoting
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U ′
1 = (U ′

1, V
′
1)

T, the depth-averaged velocity at order 1 is then

U ′
1 =

√
λ0h′

2κ2
λ̂
(
λ̂ · gradh′

)[ 2

µ2
+
1

µ
(R1 − 1 + ln 2 + lnM + 2T1(0))−

1

2
+2T2(0)

+T1(0) (R1 − 1 + ln 2 + lnM)

]
−
√
λ0h′

κ2

cos θ

λ0F 2
gradh′

[
2

µ2
+

1

µ
(R− 2 + ln 2 + lnM)

]
−
√
λ0h′

2κ2

cos θ

λ0F 2
λ̂
(
λ̂ · gradh′

)[
− 2

µ2
+

1

µ
(3 +R1 − 2R− ln 2− lnM)

]
+O(µ).

(147)

B Derivation of the enstrophy equation

Forming u′⊗(81) + (81)⊗u′, we obtain

∂u′ ⊗ u′

∂t′
+div (u′ ⊗ u′ ⊗ u′)+

∂w′u′ ⊗ u′

∂z′
+

u′

F 2
⊗grad p′+

grad p′

F 2
⊗u′

=
κ2

ε

(
u′ ⊗ λ+ λ⊗ u′ + u′ ⊗

∂τ ′
sh

∂z′
+

∂τ ′
sh

∂z′
⊗ u′

)
.+O(ε) (148)

Averaging this equation, taking into account the boundary conditions and
the expression (58) of the pressure at order zero, leads to

∂

∂t′
(h′ ⟨u′ ⊗ u′⟩)+div (h′ ⟨u′ ⊗ u′ ⊗ u′⟩)+U ′⊗grad

(
h′2

2F 2
cos θ

)
+grad

(
h′2

2F 2
cos θ

)
⊗U ′

=
κ2

ε
(h′U ′ ⊗ λ+ h′λ⊗U ′ − 2W ) +O(ε) (149)

where the expression of the dissipation tensorW is (83). The averaged quan-
tity ⟨u′ ⊗ u′⟩ is expressed with the enstrophy tensor in (63) and ⟨u′ ⊗ u′ ⊗ u′⟩
can be written

⟨u′ ⊗ u′ ⊗ u′⟩ = U ′ ⊗U ′ ⊗U ′ + h′2U ′ ⊗φ′ + h′2φ′ ⊗U ′

+ ⟨u′∗ ⊗U ′ ⊗ u′∗⟩+ ⟨u′∗ ⊗ u′∗ ⊗ u′∗⟩ (150)

where u∗ = u − U . Since u′∗
0 = O(µ), we have ⟨u′∗ ⊗ u′∗ ⊗ u′∗⟩ =

O(µ3) + O(ε). All terms of O(µ3) are neglected in the approximation of
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weakly sheared flows. We obtain

∂

∂t′
(
h′U ′ ⊗U ′ + h′3φ′)+div

(
h′U ′ ⊗U ′ ⊗U ′ + h′3U ′ ⊗φ′ + h′3φ′ ⊗U ′)

+div
(
h′3φ′)⊗U ′+h′3φ′·(gradU ′)

T
+U ′⊗grad

(
h′2

2F 2
cos θ

)
+grad

(
h′2

2F 2
cos θ

)
⊗U ′

=
κ2

ε
(h′U ′ ⊗ λ+ h′λ⊗U ′ − 2W ) +O(µ3) +O(ε). (151)

Equation (60) is written

∂h′U ′

∂t′
+ div

(
h′U ′ ⊗U ′ + h′3φ′)+ grad

(
h′2

2F 2
cos θ

)
=

κ2

ε

[
h′λ− τ ′

sh(0)
]
+O(ε). (152)

Forming U ′⊗(152) + (152)⊗U ′ yields

∂

∂t′
(h′U ′ ⊗U ′) + div

(
h′U ′ ⊗U ′ ⊗U ′ + h′3U ′ ⊗φ′)

+div
(
h′3φ′)⊗U ′−gradU ′·h′3φ′+U ′⊗grad

(
h′2

2F 2
cos θ

)
+grad

(
h′2

2F 2
cos θ

)
⊗U ′

=
κ2

ε

(
h′U ′ ⊗ λ+ h′λ⊗U ′ −U ′ ⊗ τ ′

sh(0)− τ ′
sh(0)⊗U ′)+O(ε). (153)

The difference (151)−(153) leads to the evolution equation of the enstrophy
tensor

∂h′φ′

∂t′
+div (h′φ′ ⊗U ′)−2h′φ′divU ′+gradU ′ ·h′φ′+h′φ′ · (gradU ′)

T

=
κ2

ε

1

h′2

[
U ′ ⊗ τ ′

sh(0) + τ ′
sh(0)⊗U ′ − 2W

]
+O(µ3) +O(ε). (154)

The direct integration of (83) is not possible but the asymptotic expansion
of the dissipation tensor can be calculated with (151). We obtain

W0 =
h′

2

(
U ′

0 ⊗ λ+ λ⊗U ′
0

)
(155)
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and

W1 =
(λ0h

′)3/2

κ2

λ⊗ λ⊗ λ

λ3
·gradh′

{
3+

cos θ

λ0F 2
+µ

[
1

2
+4R+

R1

2
+
9

2
ln 2+

9

2
lnM

− cos θ

λ0F 2

(
3

2
−R +

R1

2
− ln 2

2
− lnM

2

)]
+µ2

[
−17

2
+
7

4
R2+

9

4
ln2 2+

ln 2

2
+
R1

2
+
R1

2
ln 2

+
9

4
ln2M +

RR1

2
+ 4R ln 2 + lnM

(
1

2
+ 4R +

R1

2
+

9

2
ln 2

)]}
−(λ0h

′)3/2

κ2

cos θ

λ0F 2

[
2+µ

(
R−2+ln 2+lnM

)]
×
(
λ

λ
⊗ gradh′ + gradh′ ⊗ λ

λ

)
.

(156)

The right-hand side of (151) can be written

κ2
(
h′U ′

1 ⊗ λ+ h′λ⊗U ′
1 − 2W1

)
. (157)

Using the asymptotic expansions found above, we can write

2W1 −
(
h′U ′

1 ⊗ λ+ λ⊗ h′U ′
1

)
=

(
1− α

µ

C(µ)

)
µ2

C2(µ)

[
U ′

0⊗

(
U ′

1

∥∥U ′
0

∥∥+U ′
0

U ′
0 ·U ′

1∥∥U ′
0

∥∥
)
+

(
U ′

1

∥∥U ′
0

∥∥+U ′
0

U ′
0 ·U ′

1∥∥U ′
0

∥∥
)
⊗U ′

0

]

+ α

(
−1 + α

µ

C(µ)

)
µ

C(µ)
h′2trφ′

1

(
U ′

0 ⊗
λ

λ
+

λ

λ
⊗U ′

0

)
+ α

µ

C(µ)

(
U ′

0 ⊗ h′2φ′
1 ·

λ

λ
+ h′2φ′

1 ·
λ

λ
⊗U ′

0

)
+O(µ3). (158)

Using (71) and (72), this expression enables to write the right-hand side of
(82) as a sum of relaxation terms.

C Expressions of the zero-order and first-order

velocity in the inner layer

In the inner layer, the expressions (37) and (142) lead to

ũ0 =
µ

C(µ)
U ′

0

[
R(ξ)− ξ

1 +
√
1 + ξ2

+ ln
(
ξ +

√
1 + ξ2

)]
(159)
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and

ũ1 =

{
µ

C(µ)
U ′

1 +

[(
1− 2

α

κ

κµ

C(µ)
+ 2

αα1

κ2

(
κµ

C(µ)

)2
)

µ

C(µ)

(
U ′

1 ·
λ

λ

)

+2α2
µ

C(µ)

(
µ

C(µ)

(
U ′

1 ·
λ

λ

)
− h′ trφ′

1

2
√

trφ′
0

)]
λ

λ

}[
R(ξ)− ξ

1 +
√

1 + ξ2
+ ln

(
ξ +

√
1 + ξ2

)]

+

[(
1− α

κ

κµ

C(µ)
+

αα1

κ2

(
κµ

C(µ)

)2
)

µ

C(µ)

(
U ′

1 ·
λ

λ

)
+α2

µ

C(µ)

(
µ

C(µ)

(
U ′

1 ·
λ

λ

)

−h′ trφ′
1

2
√

trφ′
0

)]
λ

λ

[
R1(ξ)− 2R(ξ) +

2ξ

1 +
√

1 + ξ2
− ln

(
ξ +

√
1 + ξ2

)]
+O(µ2).

(160)
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