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Abstract—This research addresses the challenge of community
detection in federated learning environments where data is
non-independent and identically distributed across clients. We
propose a CFL (Clustered Federated Learning) approach that
groups clients into communities based on their model similarities
during training. The proposed method is based on the integration
of three fundamental elements, namely: the Louvain clustering
algorithm, a model similarity measurement system, and a strategy
for attributing aggregated models to clients. The primary benefit
of this approach is its capacity to discern client communities
without the need for pre-existing information, while simultane-
ously enhancing task performance. The Cifar10 dataset was used
to conduct a comprehensive analysis of the method’s response
to various factors, including the degree of data distribution
imbalances, different model initialization approaches, varying
client participation rates, and different strategies for assigning
clients to clusters. Our evaluation extends beyond traditional
metrics by encompassing both model accuracy and clustering
quality. When compared to existing CFL methods on an image
classification problem, our approach demonstrates advantages
through continuous clustering throughout training, flexible client
reassignment between groups, and maintained model quality. The
approach integrates smoothly with standard federated learning
frameworks and improves both task performance and community
detection. The results illustrate the efficacy of our clustering
approach in identifying relevant communities of related target
classes. Finally, the conducted experiments have identified specific
avenues for further research that will extend the proposed global
framework. The code associated to this work can be found at
https://github.com/albenoit/DeepLearningTools

Index Terms—Federated Learning, Community Detection,
Clustered Federated Learning.

I. INTRODUCTION

Federated Learning (FL) has emerged as a promising ap-
proach for privacy-enhanced, secure decentralized machine
learning [18]. Yet, the inherent heterogeneity and diversity
of data across clients poses significant challenges, limiting
the effectiveness of a single federated model [11], [16].
Recent advances in model personalization [23] and particularly
Clustered Federated Learning (CFL) [5] have addressed this
challenge by grouping clients based on similarity criteria, cre-
ating intermediate models that bridge local and global models.
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While these methods have demonstrated improved task per-
formance by leveraging both similar local model aggregation
and global knowledge, they primarily focus on performance
optimization rather than exploring the potential for community
detection. Furthermore, crucial questions remain unanswered
regarding the effectiveness of model similarity measures, clus-
tering strategies, and result stability across various factors such
as client participation rates and model initialization. In this
work, we explore the community detection potential of CFL
while studying both model task and clustering convergence
behaviours with respect to some important factors encountered
in real life application. The identification of communities
during training opens new avenues for model optimization,
particularly in challenging scenarios involving non-iid data
and data streams, by optimizing community models for clients
with similar data distributions. We explore this direction that
continuously detect client communities along training, and
we integrate it into a clustered federated learning approach.
Using a controlled dataset, we evaluate our method’s clustering
effectiveness while providing insights into result variability
across different methodological choices and initializations.
Our framework illustrated in fig. 1 introduces a community
model attribution method that seamlessly integrates with state-
of-the-art approaches in client sampling [7] and model aggre-
gation methods [25] that aim at mitigating bias.

Our contributions are summarized as follows:

1) A regular client clustering enabling for community de-
tection on the server side with no prior on clients’ data.

2) Community models detection added to a global model.
3) A community model client attribution strategy.
4) An evaluation of the approach on a controlled dataset to

quantify both task performance and clusters quality.

This article is structured as follows: the second section gives an
overview of state-of-the-art CFL methods. The third and fourth
sections present the problem statement and our contributions,
respectively. The fifth section elaborates on the performance
evaluation, explores the sensitivity of our approach to critical
factors such as data non-iidness and provides a comparison of
attribution strategies according to their hyperparameters. Fi-
nally, the last section discusses the performance and scalability
of our proposal and conclude the paper.



II. RELATED WORK

The initial proposal of Federated Learning [18] assumes
that a single model can be applied to all clients, even in
cases where their data distributions are non-iid. However, later
studies [11] have demonstrated that FL is highly sensitive to
data distribution-related bias issues. Indeed, the averaging of
client models with markedly disparate distributions may result
in suboptimal optimization of the global model. Furthermore,
in realistic scenarios, clients and their data evolve over time,
creating new forms of bias that need to be addressed. Bias
mitigation is thus an active research direction with promising
approaches including model aggregation optimization [4] and
appropriate data sampling strategies as presented in [7], [17].
Following this direction, Personalized Federated Learning
[23] has been recently proposed as a means of providing
each client with relevant shared models. Among the various
methodologies, those based on CFL isolate groups of clients
with a view to mitigating bias and providing relevant models
to similar client subsets. Such approaches rely on a variety of
similarity measures as well as optimization objectives. This
section presents several recent approaches from the literature.

In their work [7], Fraboni et al. propose client clustering as
a means of mitigating bias. In contrast to the other presented
works, this study considers client sampling clustering with the
aim of reducing communication costs with the server while
increasing the number of clients represented and reducing
the variance of the client weights. Hierarchical clustering is
applied to the gradient between each client and the global
model.

Sattler et al. introduce Clustered Federated Learning [21]
as a new federated multitask learning method. The method
improves performance by grouping clients into clusters with
jointly trainable data distributions, achieving greater or equal
performance than conventional federated learning under pri-
vacy constraints. In this article, clients are bipartioned af-
ter each round by comparing the cosine similarity of their
gradient updates. Clients are thus grouped with respect to
their convergence directions but the proposed method remains
task performance guided and does not study the resulting
partitioning.

The IFCA algorithm [8] is a Clustered Federated Learning
method that aims to enhance the efficiency of FL when
clients possess non-iid data. In contrast with the prevailing
approach in the CFL literature whereby clustering is typically
conducted on the server side, Ghosh et al. posit that cluster
formation on the client’s side can reduce the computational
burden on the server. Consequently, IFCA clients are re-
quired to identify their cluster by themselves by selecting the
model that minimizes their loss. This results in an increased
computational cost on the clients as they must test several
models before identifying their cluster. Furthermore, IFCA
necessitates the number of clusters to be known in advance
which limits its applicability in real scenarios. Additionally,
the communication cost is increased as clients must receive a
set of models from the server instead of a single one.

FlexCFL [5] is a CFL technique that aims to group clients
based on their similarities in gradient update patterns. A partic-
ular mechanism is put in place for the allocation of a model to
new clients, with the objective of improving scalability. This
approach is limited to supervised learning, as the migration
of clients from one cluster to another is triggered when
the distribution of data labels in the client’s cluster evolves
above a predefined threshold. The calibration of such a policy
may prove challenging, and it may entail the communication
of client label distributions. FlexCFL employs a similarity
metric, termed Euclidean Distance of Decomposed Cosine
Similarity which decomposes the updates into m direction
using Singular Value Decomposition, subsequently computing
a cosine similarity. The primary benefit of this metric is
that it circumvents the concentration phenomenon that arises
from the dimensions of the model parameters. Furthermore,
they propose a method for clustering clients based on their
gradients, using EDC to handle changes in data. FlexCFL is
compared to IFCA and demonstrates superior global model
optimization on multiple datasets (MNIST, FashionMNIST,
FEMNIST) and models (CNN, MLP, MCLR). However, as
with IFCA, the number of clusters obtained with FlexCFL
must be known in advance, and the quality of the clustering
is not evaluated.

In their study, Briggs et al. propose hierarchical clustering
as a means of grouping clients based on the degree of
similarity observed in their local updates [3]. In contrast to
previous methods which cluster clients after each round, this
approach first train models without any clustering step for n
communication rounds and subsequently employs hierarchical
clustering. Next, clusters are trained separately until the end
of the training. The application of clustering after a specified
number of rounds allows clients to converge to a global shared
solution before being clustered. However, this approach may
result in the formation of clusters that are more similar in
nature and potentially introduce a bias related to the global
model. The authors demonstrate that in a non-iid setting,
initiating the clustering process in the first communication
rounds is more advantageous. In contrast to IFCA or FlexCFL,
this method does not require the number of clusters to be
predetermined, thus offering enhanced flexibility. Neverthe-
less, the datasets are expected to remain static throughout
the training process. Similarly, Espinoza Castellon et al. [6]
propose a client partitioning strategy that is applied a single
time, in a late round along a regular federated learning session.
The use of model cosine similarity based clustering enables
the grouping of clients after the global model has reached
a point of convergence, allowing them to specialize in the
remaining rounds while sharing their knowledge with their
similar neighbours. The selection of the clustering round
remains a challenging aspect of this process, particularly in
light of the potential of bias introduced by the global model.

The works presented in this section are focused on the
optimization of a single or a set of shared models, with a
variety of strategies employed. It is notable that none of the
aforementioned works assess the quality of their clustering.



Fig. 1: Overview of our CFL community detection approach over a round. Firstly, clients participating in the previous round
send their trained model to the server. Then the server runs the aggregate fit function described in the algorithm 1 and detects
client communities. Finally, the server executes the function configure fit from the algorithm 2 to sample and initialize the new
set of participating clients. In this example, returned models in configure fit are the nearest community model of each client.
It therefore matches the 1NN algorithm.

Sattler et al. highlight that CFL presents a novel privacy
concern, as it appears feasible to infer information about
clients from their models at each round [21]. In this study,
we extend this concept and seek to achieve both optimal task
performance and the discovery of communities of clients from
their models throughout the Federated Learning process.

III. PROBLEM STATEMENT

In the pursuit of a comprehensive approach to CFL that
does not require minimal prior knowledge of data and client
behavior, we focus on a setup that uses standard model
aggregation methods. In this configuration, only the local
model updates are communicated from clients to the server,
with no client-to-client communication or exchange of private
information. This setup establishes a baseline that can later
be enhanced through improvements in aggregation, client
sampling, and other complementary techniques outlined in the
previous section. We then assess the effectiveness of these
strategies in relation to their specific configuration, model
initialization, and factors such as client data distribution and
participation rates.

A. General configuration

We focus on non-convex optimization problems addressed
with neural network and build upon the centralized federated
learning as defined by [18]. We assume that a set K of clients
participate to the optimization of the same model architecture
relying on the same optimization criteria but different training
data distributions. Clients are connected to a single central
server that receives and aggregates client models at each
communication round. Regarding client selection, all or a

random subset Qt ⊂ K with Qt ̸= ∅ of the clients participate
to a given communication round t and provide the server with
their updated local models.

Community models WCi are computed as the average of the
local model weights wk of subsets of clients Ci, with Ci ⊂ K
and Ci ̸= ∅ defined in eq. 1.

WCi
t+1 =

1

|Ci|
∑
k∈Ci

wk
t (1)

With such base aggregation, at a given round, each client
has the same contribution to their community model WCi

and
the server does not need to know about client dataset behaviors
and consider them equally. Regarding client sampling for each
round, we consider the standard uniform random sampling
approach but other refined strategies such as [7] can be used
flawlessly. Finally, data distribution of each client remains
constant along a given experiment but can vary from an
experiment to another (Cf. evaluation section V).

B. Server side priors

In the absence of prior knowledge regarding client com-
munities and their data behaviors, the objective of the server
is twofold: firstly, to assist clients in optimizing their task
performance and, secondly, to facilitate the detection of their
communities. It is imperative that clustering does not introduce
bias and result in a reduction in the client task performance due
to the client being locked into a specific cluster. This constraint
also presents opportunities for further research in the area of
federated learning on data streams and time-evolving data, as
discussed in [17].



IV. COMMUNITIES DETECTION

Community detection is a fundamental task aiming at iden-
tifying groups of entities that are densely connected within
themselves but sparsely connected to other groups [9]. In this
approach, the federated clients are considered as individual
entities and aim to be partitioned based on similarities in
their model parameters. This similarity metric serves as the
edges in a client graph, facilitating the grouping of clients
with comparable models.

We then introduce a client clustering and community-
based model computation process, performed on the server
side throughout the optimization process. The objective of
this approach is to eliminate the necessity for case-specific
clustering hyperparameter search as for [3], [6]. Furthermore,
this strategy allows for the continuous monitoring of client
community assignments throughout the federated optimization
process, which can facilitate the detection of security threats,
such as detecting poisoning attacks. [6].

This section presents our approach to detecting client
communities, which involves selecting a similarity metric,
partitioning clients in a scalable manner and synthesizing the
community models and a global model.

A. Similarity metric

The most common methods for evaluating the similarity
between models are representational and functional similarity
metrics [12], which respectively compare each neuron activa-
tion and output. The most commonly used are CCA and CKA
[13], two representational metrics. However, reference data
inputs are required to generate neuron responses, relying on
one common set of carefully selected and unbiased samples to
compare multiple models. Given the server-side priors detailed
in the previous section and the general difficulty of collecting
relevant, unbiased and privacy-preserving centralised data, we
do not consider such an approach. As an alternative, distance
metrics may be employed to evaluate the dissimilarity between
models according to their parameters values. Such metrics
are characterized by a low computational cost. The most
typical ones reviewed in [12] are L-norms, cosine distance
and Procrustes disparity. Furthermore, the concept of deep
relative trust or trusted distance introduced with the Fromage
optimizer [1] provides a means of expressing the functional
distance between models with similar structures. The upper
bound is given by equation 2 where L is the number of model
layers, wa,l and wb,l are the parameters of models a and b at
layer l.

trusted(a, b) =

L∏
l=1

(
1 +
||wa,l − wb,l||F
||wa,l||F

)
− 1 (2)

In a preliminary study, we compared various similarity
metrics and identified the trusted distance as the most relevant
due to its stable results. Nevertheless, this choice is not crucial
for the purpose of the study, as alternative metrics, such as
the cosine distance that is commonly employed in CFL, yield

comparable results, albeit with slightly less selectivity. Sub-
sequently, the distance values are transformed into similarity
values mapped to the range [1,0] by applying eq. 3 prior to any
other transformation. This facilitates comparison and provides
normalized values for the following processes:

f(v) = 1− v −min

max−min
(3)

where v is the distance value to be normalized while min
and max are respectively the lowest and highest distance
observed across all the client model pairs in a given round.

Normalized similarity values may be subjected to further
post-processing in order to exert an influence on the clustering
of the client graph. Three main approaches are possible,
their choice impacting on cluster composition : ”exaggerating”
small distances (e.g. x −→ x1/2), exaggerating great distances
(e.g. x −→ x2), or linearly transforming the distance matrix.
Exaggerating great distance by the following transformation
x −→ x3 has been chosen to facilitate the differentiation
between low and high similarities. Note that as the exponent
value increases, similarity values decrease, which can make it
challenging to distinguish between low and high similarities
if the exponent becomes too large.

B. Client partitioning method

The process of identifying client groups can be conceptu-
alised as a clustering problem, whereby the complete client
adjacency matrix is constructed through the calculation of
similarities between each pair of clients. Moreover, it can be
formulated as a community detection problem if only a subset
of the client distances is considered. In cross-device scenarios
with a large number of clients, the full adjacency matrix may
become a significant computational burden. Nevertheless, it
remains a viable proposition in a cross-silo FL configuration
with a reduced number of clients. Furthermore, the partitioning
algorithm entails an additional cost in comparison to the basic
form of FL. The selection of an appropriate algorithm should
be informed by a number of factors, including the desired
clustering quality, the computational cost requirements, the
potential for scalability, and the cost of hyperparameter tuning.
A number of methods for client clustering have been proposed
in the literature, as surveyed in [19]. CFL state-of-the-art
papers usually rely on hierarchical clustering as for [3], [5].

In this work and as for [6], we consider the Louvain
community detection (e.g. Louvain [2], Leiden [24]) that
is appropriate with a wide range of client numbers while
requiring few hyperparameter searches. The main advantage
of Louvain clustering, compared with traditional methods such
as K-Mean, is its ability to create clusters without knowing
the number of groups to be created. The Louvain cluster-
ing algorithm aims to optimize the modularity of a graph,
which measures the strength of division of a network into
communities. Modularity quantifies the difference between the
actual number of edges within communities and the expected
number of edges if the network were randomly connected. Its
main hyperparameter termed ”resolution”, regulates the size



of the clusters and thus the fragmentation of the communities.
Low-resolution values lead to numerous small clusters, while
high values lead to a limited number of large clusters. In
the following, the partitioning at a given round yields P , the
list of client communities. Each community i presenting a
community model noted WCi computed from eq. 1.

C. Clients’ model attribution

Finally, a comprehensive strategy for client partitioning
and community cluster attribution must be established when
considering the entirety of the CFL process. In light of the
aforementioned problem statement and the availability of a
minimum level of knowledge regarding client behaviors, the
server is effectively blind and thus requires a meticulous
clustering process that avoids any biasing of clients by locking
them into a non-relevant cluster. We then put forward a flexible
approach inspired by [5] that applies client partitioning on a
regular basis throughout the optimization process. However,
our approach differs in that clients clustering occurs after
each round, rather than relying on a tuned trigger that relies
on a label shift measure. Furthermore, we examine a variety
of model attribution strategies that would allow any client
to move to the most relevant community model at any time
during the process. The choice of strategy therefore has an
impact on task performance and clustering quality.

We consider three aggregated model attribution strategies,
which are applied after the client sampling step of each
federated round t. Each strategy aims at providing participating
clients q with a personalized aggregated model wq

t+1.

1) AVG: participating clients receive the global model Wt

that is the unweighted average of the set of community
models WCi

t . Each community thus contributes with the
same weight to build the global model. This approach
resembles the standard FedAVG but does not weight
client nor community contributions thus being naively
more ethical.

2) 1NN: relying on the same model distance, here the
trusted distance, a given client receives its nearest com-
munity cluster. Note that in case of a new unknown
client, the global model Wt is attributed as an initial-
ization.

3) WNN: an intermediate approach based on a semi-soft
assignment strategy [15] shown in eq. 4. It computes the
average of neighboring community clusters, introducing
more flexibility through the parameter β. This parameter
modulates the influence of neighboring clusters, while
an early cut-off effect is introduced by selecting the
nearest neighbors, which reduces the influence of distant
or long-range clusters. For each selected client q, their
k-nearest community models, Nq , are considered and
their individual distance to each client q is used as
a weighting factor uq,j to compute the personalized
aggregated model wnn(q,Nq) at round t (we do not
explicitly mention t in the following formulation). We
consider β = 1.0 as the default configuration. Again, in

case of a client newcomer, the global model Wt is sent
instead.

We then present the aggregation and the model attribution
algorithms in respectively alg. 1 and alg. 2 using the same
notations. Those two algorithms are called sequentially as for
the classical Federated Learning process. Fig. 1 illustrates the
global workflow of our contribution over a single round, this
process being repeated along training rounds.

uq,j =
exp

(
−βtrusted(wq,W

Cj )
)∑

l∈Nq
exp (−βtrusted(wq,WCl))

wnn(q,Nq) =
1

|Nq|
∑
j∈Nq

uq,jW
Cj

(4)

Algorithm 1 Model aggregation step for a FL round t

1: procedure AGREGATE(clientUpdates)
Require: clients the graph of known clients, may be empty
Ensure: clients, P , Wt and each WCi to be updated

2: clients← updateClientGraph(clientUpdates)
3: P ← applyLouvainClustering(clients)
4: for each Ci ∈ P do
5: WCi

t ← 1
|Ci|

∑
k∈Ci

wk
t ▷ Equation 1

6: end for
7: Wt ← 1

|P |
∑

i∈P WCi
t ▷ Same as equation 1

8: end procedure

Algorithm 2 Client sampling and model attribution

1: procedure CONFIGURE FIT(K, P , Wt)
Require: a client sampling method SampleClients, kNN

relies on the trusted distance.
Ensure: a subset Q ⊂ K start a round with an appropriate

aggregated model.
2: Q←SampleClients(K)
3: for each client q ∈ Q do
4: if AVG or q is newcomer then
5: wq

t+1 ←Wt

6: else
7: if 1NN then
8: wq

t+1 ← kNN(q, P , k=1)
9: else if WNN then

10: nearest clusters Nq ← kNN(q, P , k=3)
11: wq

t+1 ← wnn(q, Nq) ▷ Equation 4
12: end if
13: end if
14: FitRound(q, wq

t+1)
15: ▷ client then fits starting with wq

t+1

16: end for
17: end procedure

V. EVALUATION

A. Experimental setup
This section presents an approach to evaluating our con-

tribution in a manner that is comparable to that of state-of-



Fig. 2: Client similarity distributions over 2 FL optimization trials without (top row) or with (bottom row) normalization. The
histograms are averaged from 4 experiments with different random seeds. For visualization and as for the applied process,
top row shows the similarity values calculated from the raw distance measure v with f(v) = (max − v)3, where max is
the highest distance value between all client models at a given round. Bottom row shows the similarities calculated from the
normalized distance with eq. 3. Normalized similarity thus enables faster convergence to the expected cluster separation.

the-art methods. The objective is to identify a relevant case
study in which realistic communities can coexist without the
need for artificial exaggeration of their behaviors, which could
be easily identified by high-capacity models. We therefore
consider the classification problem related to the standard Ci-
far10 dataset [14] with preserved image orientations and color
distributions, without introducing any related data augmenta-
tion. Furthermore, we apply a client sampling policy on the
training dataset to create communities based on semantic label
distribution shifts, with the aim of verifying the capability of
CFL approaches to detect such communities while maximizing
classification performance. This is done by relying on the
underlying label ontology of the dataset.

Cifar10 is a challenging toy dataset that allows for relevant
evaluation of community detection along with a difficult
target classification problem. It gathers 10 classes: airplane,
automobile, bird, cat, deer, dog, frog, horse, ship and truck.
The Cifar10 dataset comprises 5,000 training images and
1,000 test images per class. It is assumed that there are two
superclasses representing higher levels of the dataset labels
ontology: ’animals’ and ’vehicles’. Consequently, the standard
10-class recognition problem is extended to include the addi-
tional goal of detecting these two superclasses or communities
while clients are training with different class distributions.
The model used for the experiments is MobileNet [10] which
is a high-capacity model but remains frugal with modest
performances on Cifar10 compared to newer models. This
choice is, however, relevant for conducting all the proposed
experiments at a reasonable cost, which totals 8,000 CPU
hours, not including calibration trials. These experiments were
conducted on a single Intel Xeon(R) Gold 5118 CPU @
2.30GHz, which was equipped with 40GB of RAM and used
the TensorFlow 2.14.1 and Flower 1.9.0 libraries within our

open-source framework.
The following section assesses the task performance and

cluster quality of the models on the official Cifar10 validation
set, a collection of balanced 10k samples, through three
metrics: model accuracy, the Adjusted Rand index (ARI) and
the Silhouette score. Adjusted Rand index produces a score
that assesses a clustering compared to an expected partitioning
[22]. The Silhouette score, meanwhile, evaluates how closely
clients are associated with their cluster and how distant they
are from other clusters [20]. Each experiment is conducted
over 40 rounds, with 10 clients, and the results are averaged
over four runs with different initialization seeds. Each client
has a majority class, the quantity of which can varies between
experiments.

B. Results

1) Louvain resolution and data distribution: The first ex-
periment entails a comparison of the aforementioned metrics in
accordance with varying data distributions and Louvain resolu-
tions. The objective is to ascertain which data distribution and
resolution are most advantageous for community detection.
Subsequently, an exaggerated imbalanced data context is con-
structed based on the Cifar10 dataset. In this context, 10 clients
participate to each of the training rounds of an FL session,
with each client having a specific majority class with varying
importance in its local training set. With the 10 class labels
indexes in L = {l0, l1, ..., l9}, we thus create a context where
a given client k has a majority class lk such that Pk(lk) = mk

while any other label lo ∈ L with lo ̸= lk has balanced ratio
with the others such that Pk(lo) = (1.0 −mk)/9. By setting
mk = 1.0, it is ensured that each client owns a single class that
is distinct from those owned by other clients. This represents
the most non-iid case in this configuration.



(a) Accuracy (b) Adjusted Rand Index (c) Silhouette score

Fig. 3: Metrics for 1NN attribution model strategy according to Louvain resolution and data distribution.

Fig. 3a illustrates the resulting classification accuracy mea-
sures as a function of the degree of non-identity controlled
by mk and the Louvain resolution on the balanced validation
set. The degree of non-iidness has a significant impact on the
accuracy of the classification, whereas the Louvain resolution
exerts no notable influence. However, in contrast to accuracy,
ARI exhibits a markedly higher value when training on non-
iid data, as illustrated in Fig. 3b. Furthermore, the clusters
are more dense and better separated when the client data
is non-iid and the resolution is higher, as illustrated by
Silhouette scores in Fig. 3c. The results demonstrate that
the optimal hyperparameters for community detection are a
Louvain resolution of 1.0 and a data distribution parameter of
mk = 1.0. A higher Louvain resolution enables the formation
of fewer, larger clusters, which is an effective approach for
detecting only two communities, as is the case for the specific
evaluation conditions under consideration. Additionally, the
value of mk = 0.7 represents a compromise between enhanced
model optimisation and a diminished Silhouette score. In
conclusion, it can be stated that when the data is more balanced
across clients, the local models are more similar, which in turn
makes community detection more challenging. Furthermore,
it is noteworthy that the clustering of models becomes more
straightforward when clients are biased towards a specific
majority class. This ultimately aligns with the clustering of
the animals and vehicles superclasses. Our CFL approach is
then capable of differentiating between high-level semantic
categories, even in the absence of explicit training and despite
significant variability in the training data, even at the class
level. This is a promising result that will require further
validation in other contexts through subsequent studies. From
a data-driven perspective, this outcome demonstrates that when
clients exhibit a pronounced bias towards a specific class (i.e.,
when mk is high), the local models of a given superclass
tend to converge towards a similar solution. This occurs
despite the considerable diversity of the objects’ backgrounds
across images that can be similar across superclasses. Our
results complement those of previous work, such as IFCA
[8], which demonstrated the capability of CFL to differentiate
clusters artificially created by image rotations. Furthermore,
our findings confirm the potential privacy issue discussed in
[21], as the server is aware of the community model to which
a given client belongs.

Furthermore, we investigated the influence of the model

similarity measure formulation on the separability of the
community. Fig. 2 illustrates the evolution of similarity dis-
tributions along the federated rounds comparing two trials
with either non-normalized or normalized distances. It can
be observed that, with normalized distances, the distributions
converge more rapidly to the two expected modes, which
illustrate high intra-cluster and low inter-cluster distances.

2) Model attribution and selection rate: In this section,
the relevance of each proposed model attribution method
described in section IV-C is compared with a varying ratio
of participating clients. For the purposes of this analysis, we
consider a non-iid training data distribution for each client
with mk = 0.7, as discussed in the previous section. In order
to ensure consistency across experiments, the client selection
rates remain constant. Louvain resolution is set to 1.0 for each
method. Finally, we add to the comparison the results provided
by the IFCA state-of-the-art paper [8].

The original IFCA method has been tested on rotated Ci-
far10 images with the objective of improving the global model.
As detailed in the original paper, the images were successfully
partitioned into two clusters: one comprising regular images
and the other comprising rotated images. Nevertheless, the
clustering of images according to their semantic superclass
represents a distinct and potentially fruitful avenue for further
investigation, which could be effectively addressed through the
aforementioned approach. In the course of our experiments,
we employed the IFCA method with the identical dataset
described in the preceding sections. It thus should be noted
that the IFCA method is not compared in the same conditions
as those described in the original paper, as the distribution
of data among clients is entirely distinct. In these conditions,
as illustrated in Fig. 4a and 4b, the results demonstrate that
the global model produced by IFCA is less accurate and that
the clustering produced is not as relevant as that produced by
other methods. Given that IFCA produced inferior results to
other approaches in favourable conditions, further testing was
not conducted on lower client selection rates.

Moreover, we assess our approach in comparison to
the AVG methodology, which incorporates a late clustering
phase that emulates the methodology proposed by Espinoza-
Castellón [6]. It is notable that this ’late’ attribution strategy
necessitates a considerable input of domain expert effort in
optimization with respect to the round at which clustering
is applied. This renders the approach case study dependent,



(a) Accuracy (b) Adjusted Rand Index (c) Silhouette scores

Fig. 4: Impact of model attribution strategies and client selection rate (constant along rounds) with strong data non-iidness
(mk = 0.7) and Louvain resolution set to 1.0.

thereby increasing the cost due to the calibration requirements.
In our experiments, we have applied clustering at round 10, in
accordance with the recommendations of this approach, which
coincides with the point at which models begin to converge
and metrics reach at least 50% of their maximum value.

Figures 4a, 4b and 4c illustrate respectively, the accuracy,
ARI and silhouette scores on the balanced Cifar10 validation
set after the proposed CFL training process. The results
presented here are the average of four trials conducted with
different initialisations, along with the estimated standard
deviation envelope range. It can be observed that the highest
scores are obtained when all clients participate in each run.
This is to be expected, given that all similarity edges in
the client graph are constantly updated and the adjacency
matrix is fully measured. This is a realistic assumption in a
cross-silo scenario, but not in the case of cross-device case
studies. Subsequently, a reduction in client participation rate
is observed to result in a decline in performance indicators.
It is evident that the client graph undergoes partial updates
during each round, which in turn affects the convergence
of clusters. In the case study presented here, a selection
rate of 50% has a moderate impact on the accuracy and
silhouette score for the 1NN and WNN strategies, while the
ARI score is the most adversely affected. An examination of
the ARI score envelopes for these methods reveals a notable
sensitivity to model initialization seeds. This is evident given
the limited number of clients. However, a smoothing effect
may be anticipated if a larger number of clients were to be
included in a larger-scale experiment, provided that the number
of target classes remains below the number of clients. This
hypothesis requires further investigation.

A comparison of the 1NN and WNN attribution methods
reveals that the former yields superior metrics overall. A strong
assignment to the closest cluster is beneficial for both clients
in terms of task performance and clustering. The AVG and
Late strategies achieve comparable accuracy but higher ARI.
However, their silhouette scores are the lowest due to the
reliance on a unique global model before local fitting by
clients. The resulting clusters are narrow, which can introduce
challenges in interpretation.

In conclusion, when considering case studies where late

clustering approaches are not relevant or when high cluster
separation requirements exist, the 1NN attribution method is
a relevant approach, although it remains sensitive to initial
conditions if the client selection rate is low. The AVG and
Late approaches remain preferable if low cluster separability
is an acceptable outcome.

3) On the variability of the results: This final section
presents the influence of the model’s initialization seed and the
client sampling process on the variability of the results. With
regard to centralized learning, such variability is a known phe-
nomenon that may potentially compromise the reproducibility
of the results. Such variability is more pronounced in the
context of decentralized learning, where additional higher-
level server and client coordination processes are involved.
As already demonstrated in Fig. 4b the variability of the ARI
values for the 1NN and WNN attribution methods is evident.
In order to gain further insight, additional experiments were
conducted with metrics monitored throughout the FL training
sessions. The experiments relied on the following parameters:
mk = 0.7, Louvain resolution at 1.0 and client selection
rate at 100%. The same experiment was repeated 4 times
with different initialization seeds and the resulting standard
deviation envelopes are reported. However, due to limitations
in computational resources, it was not possible to conduct a
greater number of trials.

Fig. 5b compares the Silhouette curves along training trials
for the 1NN strategy at 100% and 50% client participation
ratios and with the AVG strategy with 100% client participa-
tion. As demonstrated in the preceding experiment, the AVG
represents an effective approach for optimizing the global
model and for clustering the clients. However, due to its
intrinsic nature as a model aggregator, it is unable to effectively
create strongly separated clusters. The Silhouette score of
the AVG remains approximately 0.5 with minimal variation,
whereas the 1NN strategy is capable of more effectively sep-
arating the clusters throughout the entire FL session, thereby
facilitating the detection of client communities. Moreover,
the 1NN strategy demonstrates minimal variability when all
clients participate, which makes it suitable for use in cross-
silo scenarios. However, it is important to note that the 1NN
results exhibit variability when clients participate partially in



(a) Accuracy with a 100% selection rate (b) Silhouette score (c) ARI with a 50% selection rate

Fig. 5: Performance evaluation of community model attribution strategies along the FL optimization process with varying client
selection rates. Data non-iidness is strong (mk = 0.7) and Louvain resolution is 1.0.

each FL round. The impact of client migration in the initial
rounds on this variability is evident, while such variability is
reduced and stabilizes later in the process.

Despite the relevance of the 1NN approach to provide each
client with a personalized community model, as a side effect,
the 1NN strategy can be less efficient when it comes to the
optimization of the global model Wt. However, this is not the
objective of the present study. Nevertheless, a comparison of
the task performance of global models related to the 1NN,
AVG and IFCA approaches is presented. As expected, Fig.
5a demonstrates the superiority of the AVG global model,
while the 1NN approach reaches a slightly lower value. The
IFCA approach obtains notably the lowest score in this setup.
However, such performance evaluations should be extended in
order to also consider model bias and potential ethical issues
in FL, which extend beyond the scope of this work and provide
avenues for future research.

Furthermore, as demonstrated in the preceding evaluations,
the 1NN and AVG strategies are equally effective in identify-
ing the anticipated communities when all clients are selected
in each communication round. However, the 1NN strategy
was unable to detect communities when only 50% of clients
participated in each round, as illustrated Fig. 4b. More into
the details, fig. 5c illustrates the evolution of the ARI metric
along the FL process in this scenario. First, both the AVG and
Late strategies demonstrate a rapid convergence towards the
optimal detection of the expected communities. Following the
clustering phase applied at round 10, the later cluster personal-
ization phase maintains the communities until the conclusion
of the process. The AVG approach demonstrates compara-
ble behavior but is capable of reporting minor changes, as
illustrated at round 20 for a single trial. With regard to the
1NN approach, ARI converges rapidly but reaches a low ARI
value close to 0 with a substantial and consistent variability.
This illustrates the instability of the clustering generated by
similarity measures with varying degrees of freshness. One
avenue for future research could be the improvement of the
partitioning method in such conditions.

Finally, the efficacy of community models is assessed and
their performance is benchmarked against that of the global

Fig. 6: mk = 0.7, 1nn, 100% selection rate, 1.0 resolution

model. The aim is to determine the relevance of the community
models on the validation data of their respective clients and
to compare them with the global model. Fig. 6 illustrates
the progression of the global and community models on sets
of validation data throughout the training rounds. It can be
observed that the proposed CFL strategy result in a consistent
improvement in model performance, thereby demonstrating
that client migration does not lead to significant performance
fluctuations along the optimization process. Furthermore, it
is evident that the community models exhibit superior per-
formance compared to the global model when evaluated on
the validation data specific to their respective clients.The
global model performance evaluated on the whole (merged)
validation data provides a lower performance. These findings
highlight the necessity of optimizing community models in
addition to a global model when non-iid data may not permit
a relevant aggregation of local models. The global model
remains a valuable resource, offering an initial model for new
clients until their appropriate community is identified. The
proposed CFL strategy presents new avenues for research,
including the development of reliable methods for community



detection in CFL, the stabilization of client models, and the
investigation of convergence towards a satisfactory solution
while allowing clients to change community.

VI. CONCLUSION

This work proposes a clustered federated learning approach
with the objective of optimizing both client task performance
and clients’ community detection. The proposed methodology
involves bidirectional exchange between clients and the central
server, where client local models and community models are
iteratively updated throughout the federated learning process.
In the course of our experiments, we considered a reference
data partitioning strategy based on the underlying ontology
of the Cifar10 dataset. The ontology can be identified by the
server when the label distribution is non-iid on the client local
datasets. This confirms the potential for privacy issues but
also allows for bias mitigation as each community can be
processed equally. The variety of experiments also identifies
further specific research directions, thus enabling the extension
of the proposed global approach.

Firstly, a large-scale experiment will allow the method to
be evaluated in a cross-device case study, thereby facilitating
further investigation into the impact of the ratio between
clients and communities at scale. In addition, the effective-
ness of refined client clustering strategies can be evaluated
to improve community detection convergence. In particular,
the relevance and stability of the clustering provided by the
Louvain algorithm can be enhanced and compared to other
scalable methods. Another avenue for further investigation
is the mitigation of bias, as well as the enhancement of
privacy and security based on community detection. Finally,
the relevance of the approach in more complex scenarios, such
as Cifar100, is to be studied.
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