

Incorporation of P_2O_5 in a Na_2O-rich aluminoborosilicate glass

Sophie Achigar, Daniel Caurant, Elise Régnier, Odile Majérus, Thibault

Charpentier

► To cite this version:

Sophie Achigar, Daniel Caurant, Elise Régnier, Odile Majérus, Thibault Charpentier. Incorporation of P_2O_5 in a Na_2O-rich aluminoborosilicate glass. Materials Letters, 2024, 377, pp.137283. 10.1016/j.matlet.2024.137283 . hal-04696542

HAL Id: hal-04696542 https://hal.science/hal-04696542v1

Submitted on 13 Sep 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Materials Letters Volume 377, 15 December 2024, 137283

https://doi.org/10.1016/j.matlet.2024.137283

Incorporation of P2O5 in a Na2O-rich aluminoborosilicate glass

Sophie Achigar^{a,b}, Daniel Caurant^{a,*}, Elise Régnier^b, Odile Majérus^a, Thibault Charpentier^c

^aChimie ParisTech, PSL Research University, Centre National de la Recherche Scientifique (CNRS), Institut de Recherche de Chimie Paris (IRCP), 75005 Paris, France ^bCEA, DES, ISEC, DPME, SEME, LFCM, Univ Montpellier, 30207 Marcoule, France ^cUniversité Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France

*Corresponding author. *E-mail address:* daniel.caurant@chimieparistech.psl.eu (Daniel Caurant)

Abstract

This work focuses on the effect of adding increasing amounts of P_2O_5 (0-10 mol%) on the microstructure and crystallization tendency of a Na₂O-rich aluminoborosilicate simplified nuclear glassy matrix obtained after melt quenching or controlled cooling from 1100°C. Above 2 mol% P_2O_5 , phase separation followed by crystallization of Na₃PO₄ occurred, then followed by NaCaPO₄ and even Na₄P₂O₇ when P₂O₅ content reached 10 mol%. The Na₂O and CaO depletion induced in the residual glass by phosphate phases crystallization is responsible for an important increase of its glass transition temperature due to a significant increase of the silicate network polymerization as confirmed by ²⁹Si MAS NMR.

Keywords: P₂O₅ solubility, borosilicate glass, phosphate crystallization, ²⁹Si MAS NMR

1. Introduction

Dismantling nuclear facilities leads to radioactive waste which may have highly variable compositions. In a previous work, we focused on the waste coming from the dismantling operation of a French spent fuel reprocessing facility studying the ability of an alkali-rich (~ 33 mol% alkali oxides) glassy matrix belonging to the SiO₂-B₂O₃-Al₂O₃-Fe₂O₃-Na₂O-Li₂O-CaO system to solubilize simulated wastes containing P₂O₅, MoO₃ and ZrO₂ (abundant in the real waste) [1]. In this paper, to complete the previous study, we focused on the effect of phosphorus, and more precisely on the impact of adding increasing P₂O₅ amounts on the phase separation and crystallization tendency in the melt and during cooling of a simplified version of the alkalirich glass previously investigated. For this, we synthesized quenched and slowly cooled samples belonging to the SiO₂-B₂O₃-Al₂O₃-Aa₂O-CaO system derived from the previous glass composition, by adding increasing P₂O₅ amounts (0-10 mol%). The samples microstructure and the crystallization of phosphate phases were investigated using X-ray diffraction (XRD), scanning electron microscopy coupled with energy dispersive X-ray analysis (SEM-EDX) and ²⁹Si MAS NMR spectroscopy.

2. Experimental

A series of six peralkaline samples (Na/(B+Al) > 1) was prepared by adding increasing P₂O₅ amounts (0-10 mol%, in 2 mol% step) to the composition 50.6SiO₂-8.2B₂O₃-33.4Na₂O-6.1CaO-1.7Al₂O₃ (mol%) from reagent grade SiO₂, H₃BO₃, Na₂CO₃, CaCO₃, Al₂O₃ and NH₄H₂PO₄ powders: the melting was performed in two times at 1100°C during 2 h in platinum crucibles, with an intermediate {casting + grinding} step to guarantee the glass homogeneity. To finish, the melt was cooled either rapidly (~10⁴ °C.min⁻¹) between two brass plates (quenched samples) or slowly at 1°C.min⁻¹ (slowly cooled samples). Above 10 mol% P₂O₅ a macroscopic phase separation occurred in the melt which justifies the upper limit chosen for

this study. SEM observations were performed with a FEG-SEM Zeiss Supra TM55 microscope. The chemical analysis of the quenched samples by EDX (Bruker AXS X-Flash Detector 4010) indicated that compositions were close to the target ones, even if boron cannot be quantified by this technique. Differential thermal analysis (DTA/TG STA 449 Netzsch) was used to determine the glass transition temperature (T_g) of the quenched samples. The crystalline phases present in the samples were studied and identified by XRD (X'Pert PRO PANalytical diffractometer (CuK_{α} radiation, λ =0.15406 nm)). For several quenched samples, the structural evolution of the silicate network was followed by ²⁹Si MAS NMR (data were collected on a Bruker Avance II 300WB spectrometer with a magnetic field of 7 T using a Bruker 4 mm CPMAS at a spinning frequency of 12.5 kHz).

3. Results and discussion

Quenched samples containing less than 8 mol% P_2O_5 appeared transparent, while above this concentration they were opalescent or opaque, which agrees with the detection of heterogeneities by SEM above 6 mol% P_2O_5 (Fig.1a,b). Nevertheless, XRD put in evidence the crystallization of phosphate phases above 2 mol% P_2O_5 , firstly only γ -Na₃PO₄ (sodium orthophosphate) from 4 mol% P_2O_5 , followed by NaCaPO₄ (sodium-calcium orthophosphate) and Na₄P₂O₇ (sodium pyrophosphate) for the highest P_2O_5 content (Figs.1a,b and 2a). In comparison, the slowly cooled samples all appeared opalescent or opaque, except the one without P_2O_5 . A complex evolution of their microstructure - coupling phase separation (droplet like morphology) and subsequent crystallization - was observed by SEM above 2 mol% P_2O_5 , with an increasing proportion of crystalline heterogeneities with P_2O_5 concentration identified by EDX and XRD (Figs.1c-f and 2b). Whereas only a weak crystallization of γ -Na₃PO₄ was detected for the sample with 2 mol% P_2O_5 (dendritic crystals mainly grown from sample surface, Fig.1c), an increasing crystallization of γ -Na₃PO₄ and NaCaPO₄ was then put in evidence, followed by Na₄P₂O₇ and cristobalite with 10 mol% P_2O_5 (Fig.1d-f). All these results clearly show the high tendency of phosphorus above 2 mol% P_2O_5 to separate from the borosilicate network during slow cooling and are in accordance with the ones obtained in our previous work on a more complex system which showed that the crystallization of phosphate phases (NaLi₂PO₄, NaCaPO₄) also appeared above 2 mol% P₂O₅ [1]. This crystallization tendency of phosphate phases above several mol% P₂O₅ is also in agreement with the results reported by Stone-Weiss et al. on peralkaline Na₂O-rich borosilicate glasses even if in this study the amount of B_2O_3 was significantly higher than in the present work [2]. This crystallization tendency is in accordance with structural results reported in literature showing that phosphorus is mainly present as isolated orthophosphate and pyrophosphate entities in silicate glasses rich in alkali and alkaline-earth oxides [3,4]. Such isolated monomeric and dimeric phosphate entities would easily agglomerate in the supercooled melt during cooling, leading respectively to orthophosphate and pyrophosphate crystallization. The significant crystallization of sodium pyrophosphate (constituted of dimeric $P_2O_7^{4-}$ entities) for the highest P_2O_5 content (10 mol%, Fig.2) can be explained by the progressive decrease with P₂O₅ content of the total amount of $Na^{+} + Ca^{2+}$ cations available to compensate new isolated monomeric entities PO_4^{3-} (each PO_4^{3-} entity needs 3 Na⁺ or 1 Na⁺ + 1 Ca²⁺ cations for charge compensation, i.e. 3 positive charges per P atom). Indeed, as shown in Fig.3a, when P₂O₅ concentration reaches 10 mol% the amount of $Na^+ + Ca^{2+}$ cations that would be needed to compensate all PO_4^{3-} entities (if all phosphorus were present as PO_4^{3-} units) becomes higher than the total Na⁺ + Ca²⁺ cations amount available in the sample. This could thus explain the formation of pyrophosphate crystals rather than only orthophosphate ones for the highest P₂O₅ content to reduce the amount of positive charge needed per phosphorus atom for charge compensation (each $P_2O_7^{4-}$ entity needs 4 Na⁺ cations for local charge compensation, i.e. 2 positive charges per P atom), and the macroscopic separation in the melt of a highly crystallized phase containing a high proportion of Na₄P₂O₇ when 12 mol% P₂O₅ is added to the composition (XRD pattern not shown).

EDX analysis of the slowly cooled samples showed that phosphate phases crystallization induced an important Na₂O+CaO depletion in the residual glass surrounding the crystals, accompanied by a significant SiO₂ and B₂O₃ enrichment whereas no more than 1 mol% P₂O₅ remained in the glass (Fig.3b). Assuming that the evolution of the residual glass composition was similar for quenched and slowly cooled samples, both the increase of the proportion of glass formers (SiO₂, B₂O₃) and the decrease of the proportion of glass modifiers (Na₂O, CaO) in the residual glass could explain the increase of Tg with P2O5 content for the quenched samples (~100°C, Fig.3c). The global increase of the fraction of BO₄ units (Fig.3a) also contributes to the increase of the reticulation of the glassy network. Moreover, the increase of the slope of T_g evolution observed above 4 mol% P₂O₅ could be correlated with the change of the evolution of SiO₂ and B₂O₃ (slope increase), Na₂O and CaO (slope decrease) concentrations in the residual glass above 4 mol% P₂O₅ (Fig.3b) due to phosphate phases crystallization (Fig.2a). A similar Tg evolution was observed by Skerratt-Love et al. by adding increasing P2O5 contents in a sodium borosilicate glass [5]. In agreement with both the evolution of the residual glass composition (increase of the SiO₂/(Na₂O+CaO) concentration ratio), the increase of the proportion of BO_4^- entities and the increase of T_g with P_2O_5 content (Fig.3), a displacement towards more negative chemical shift values of the ²⁹Si MAS NMR spectra of the quenched samples was observed (Fig.4a), indicating an increase of the silicate network polymerization (increase of the proportion of bridging oxygen atoms (BO)) related to the increasing mobilization of Na⁺ and Ca²⁺ cations to compensate the negative charge of phosphate entities in phosphate crystals (Fig.4b). Whereas the glass without phosphorus is significantly depolymerized as shown by the presence of both Q₃, Q₂ and Q₁ entities, an increasing contribution of Q_3 and Q_4 entities at the expense of Q_2 and Q_1 entities is put in evidence with P₂O₅ addition (Fig.4a). The highly depolymerized character of the glass without P₂O₅ is expected by calculating the average number N of NBOs formed per SiO₄ tetrahedra (N=1.34) by the amount of Na₂O+CaO available to act as modifiers (taking into account the BO₄⁻ and AlO_4^- entities present in glass structure). The increase with P_2O_5 content of the reticulation of the glassy network (calculated as the proportion of BO in the residual glass) shown in Fig.3c agrees with the increase of T_g and ²⁹Si MAS NMR results.

It is interesting to notice that it is not the room temperature stable form of sodium orthophosphate α-Na₃PO₄ (tetragonal structure) that was identified by XRD in the quenched or slowly cooled samples (Fig.2a,b), but the metastable γ -Na₃PO₄ form (cubic structure, stable only above 320°C). The presence of this high-temperature crystalline form could be explained by the incorporation of calcium in the structure of the sodium orthophosphate crystals formed during cooling actually leading to Na_{3-2x}Ca_xPO₄ composition, as shown by EDX analysis for the slowly cooled samples ($x \sim 0.2 - 0.3$). This partial Na/Ca substitution would stabilize the high temperature crystalline γ -form at room temperature. Indeed, by preparing Na_{3-2x}Ca_xPO₄ ceramic pellets (x=0-0.30) at 800-900°C, we confirmed that even when x=0.05, the γ -form was detected at the same time as the α -form and when x ≥ 0.15 , only the γ -form was present. However, using the same preparation method with x=0 (i.e. without calcium), only the α -form was present (the formation of the NaCaPO₄ phase was only detected from x=0.25 upwards). Nevertheless, this cannot be the only explanation for the crystallization of only γ -Na₃PO₄ in our samples because by removing CaO from the composition with 6 mol% P_2O_5 , the crystallization of only γ -Na₃PO₄ was still detected after slow cooling (crystallization of γ-Na₃PO₄ was also observed by Skerratt-Love et al. in their sodium borosilicate glasses without CaO [5]). During crystallization, the partial substitution of a small amount of Si (coming from the glass composition) in the P site of Na₃PO₄ crystals could also stabilize the high temperature crystalline γ -form, as shown by Hopper et al. for lightly Si-doped $Na_{3(1+x)}P_{(1-3x)}Si_{3x}O_4$ ceramics [6]. Indeed, by EDX we detected the presence of a weak quantity of silicon (<1 mol% SiO₂) in the sodium orthophosphate crystals.

4. Conclusion

The microstructural and structural investigations of the quenched and slowly cooled P₂O₅bearing Na-rich aluminoborosilicate samples presented in this study showed that above 2 mol% P₂O₅, phase separation followed by crystallization of γ -Na₃PO₄ occurred, then followed by NaCaPO₄ and even Na₄P₂O₇ when P₂O₅ content reached 10 mol%. The Na₂O+CaO depletion induced in the residual glass by phosphate phases crystallization is responsible for an important increase of T_g (~100°C) due to a significant increase of the silicate network polymerization as shown by ²⁹Si MAS NMR. Complementary studies by ³¹P, ¹¹B, ²⁷Al and ²³Na MAS NMR and Raman spectroscopies will be presented in a forthcoming paper. The next step of this study will consist in determining the impact of these crystallized phases and of the polymerization of the residual glass on the long-term behavior (chemical durability) of the partially crystallized glasses.

Acknowledgments

This study was a part of the DEM&MELT project, which was a partnership between CEA, industrial partners (Orano, ECM Technologies), and ANDRA. This project was supported by the French government program titled "Programme d'Investissements d'Avenir (PIA)", whose management was entrusted to ANDRA.

Figure 1

Figure 1. SEM images (backscattered electrons) of quenched samples with 8% (a) and 10% (b) P_2O_5 and slowly cooled samples with 2% (c), 4% (d), 6% (e) and 10% P_2O_5 . N_3P (γ -Na₃PO₄), NCP (NaCaPO₄), N₄P₂ (Na₄P₂O₇). Macroscopic pictures of the samples are shown in inset.

Figure 2

Figure 2. XRD patterns recorded at room temperature of the quenched (a) and slowly cooled (b) samples increasing P₂O₅ contents (0-10 mol%). \Box (γ -Na₃PO₄ PDF#:00-031-1318), \circ (Na₄P₂O₇ PDF#:04-018-4331), \triangle (NaCaPO₄ PDF#:04-0016-6900), \blacktriangle (SiO₂ cristobalite PDF#:04-013-9484).

Figure 3. Evolution with P_2O_5 content : (a) of the Na₂O + CaO amount needed to compensate the negative charge of phosphate entities (if it is assumed that all phosphorus is present as orthophosphate entities) and available in the samples (taking into account the amount of Na⁺ + Ca²⁺ ions needed to compensate the BO₄⁻ and AlO₄⁻ entities present in glass structure, according to ¹¹B and ²⁷Al MAS NMR results for the quenched samples not presented in this paper (The evolution of the relative proportion of BO₄⁻ entities deduced from ¹¹B MAS NMR is shown in the figure. Except for the sample with 10 mol% P₂O₅ for which a very small fraction of aluminum was detected in five-fold coordination by ²⁷Al MAS NMR, for all other samples aluminum is only present as AlO₄⁻ entities). (b) of the composition of the residual glass surrounding the crystalline phases for several slowly cooled samples (EDX analysis, B₂O₃ was estimated by difference to 100%). (c) of T_g for the quenched samples and of the percentage of bridging oxygen atoms (% BO) in the glassy phase (in blue) calculated from the residual glass composition (Fig.3b) and the relative proportion of BO₄⁻ entities (Fig.3a) assuming that all aluminum and phosphorus are present respectively as AlO₄⁻ and PO₄³⁻ entities in the glass. Lines in Fig.3b are guides for the eyes.

Figure 4. (a) Evolution of ²⁹Si MAS NMR spectra for several quenched samples with increasing P₂O₅ content. Q₁, Q₂, Q₃ and Q₄ indications correspond to the chemical shift range expected for Q_n entities (SiO₄ tetrahedral units with n bridging oxygens) in alkali silicate glasses. (b) Structural scheme showing the reticulating effect of the addition of P₂O₅ (here as PO₄³⁻ units present in the glass or in the crystals) on the silicate network (each PO₄³⁻ units added needs $3Na^+$ for charge compensation leading to the disappearance of 3 non-bridging oxygens).

References

- [1] S. Achigar et al., J. Nucl. Mater. 544 (2021) 152731.
- [2] N. Stone-Weiss et al., J. Phys. Chem. C 124 (2020) 17655.
- [3] R. Dupree, et al., J. Non-Cryst. Solids. 106 (1988) 403.
- [4] R. Mathew et al., Chem. Mater. 25 (2013) 1877.
- [5] K.L. Skerratt-Love et al., J. Non-Cryst. Solids 600 (2023) 121999.
- [6] A. Hooper et al. J. Solid State Chem. 24 (1978) 265.