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Finite dimensional Galerkin approximations for mildly-coupled bilinear
quantum systems

Nabile Boussaı̈d1 Marco Caponigro2 Thomas Chambrion3

Abstract— Several infinite dimensional bilinear quantum sys-
tems encountered in the physics literature can be described,
with good precision, by appropriate finite dimensional approx-
imations. We present a regularity condition sufficient for the
existence of these approximations. We also show a counterex-
ample of a system that is approximately controllable while its
infinite dimensional dynamics cannot be precisely described by
its finite dimensional Galerkin approximations.

I. INTRODUCTION

A. Quantum control

The state of a quantum system evolving in a finite di-
mensional Riemannian manifold Ω is descrived by the wave
function, namely a point ψ in the unit sphere of the space
L2(Ω,C). The square of the modulus of the wave function
|ψ|2 : Ω → [0,+∞) is the density of probability for the
state of the system. Classical examples of choices for Ω
could be the set {0, 1} to model the spin of an electron,
or (0,+∞) endowed with the usual distance to model the
length of a chemical bound, or SO(3) endowed with its bi-
invariant Riemannian structure to model the orientation of a
rigid molecule in space.

When the system is suitably isolated from external in-
fluence and submitted to a sufficiently smooth external
excitation (e.g., an electric field), the wave function evolves
following the Schrödinger equation

i
∂ψ

∂t
= −∆ψ + V (x)ψ + u(t)W (x)ψ, x ∈ Ω (1)

where ∆ is the Laplace Beltrami operator on Ω, V : Ω → R
is a physical potential (accounting for the properties of the
system) and W : Ω → R a potential accounting for the
properties of the external excitation. The dynamics is usually
called bilinear in order to emphasize the bilinear dependence
of the term u(t)W (x)ψ in (u, ψ).
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3Institut de Mathématiques de Bourgogne, UMR 5584,
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The aim of quantum control is to design a (open-loop)
control u : [0, T ] → R such that the solution of the
Schrödinger equation (1) satisfies desirable properties, for
instance: the final point ψ(T ) is close, in some sense, to a
given target.

B. Finite dimensional approximations

As soon as Ω is not a finite set, the state space (i.e.,
the unit sphere of the Hilbert space L2(Ω,C)) is infinite
dimensional. This leads to considerable difficulties, and
especially - in the field of quantum control- for the definition
or the computation of the solutions of (1), or the study of
the controllability of (1).

A widely used and remarkably efficient techniques con-
sists in replacing (1) with a finite dimensional problem, for
which the aforementionned problems of definitions, existence
or computation of solutions are easily tackled with standard
calculus and geometric techniques.

An important issue, both from a practical and a theoretical
viewpoint, is to ensure that the results obtained on the finite
dimensional approximations are true (or almost true, in a
sense to be precised) for the original infinite dimensional
system (1).

C. Content

In this note, we study the existence of the so-called
Good Galerkyn Approximations (GGA for short), i.e. a
finite dimensional Galerkin approximation of the infinite
dimensional system whose evolution is “close”, in some
suitable topology, to the one of the original system. The term
“Good” is chosen in order to emphasize the facts that these
approximations are not only valid for a specific control u,
but for every control, and every times, provided the energy
in the control is bounded. Our aim is to present the possible
difficulties arising when approaching infinite dimensional
bilinear conservative dynamics with their finite dimensional
approximations. The two main original results of this note
are a positive one (Theorem 3) with sufficient condition for
the existence of a GGA and a negative one (given in Section
V), namely an example for which a GGA cannot exist.

The paper is organized as follows. In Section II, we
reformulate the problem (1) in the abstract framework of con-
servative dynamics in Hilbert spaces and recall well-known
well-posedness and controllability results, along with their
link with the regularity of the systems under consideration.
In particular, we recall the notion of mildly-coupled systems
(Section II-C). Section III is devoted to various concepts
of finite dimensional approximation and to the introdution



to the central notion of Good Galerkyn Approximations.
Section IV states an original result on the existence of GGA
for mildly-coupled systems. Finally, we provide in Section V
an original counter-example showing that a GGA does not
exist in general.

II. FRAMEWORK AND ASSUMPTIONS

Let H be a a complex Hilbert space with Hilbert product
⟨·, ·⟩, and associated norm ∥ · ∥. We consider a conservative
bilinear control system on H

ψ′(t) = (A+ u(t)B)ψ(t), (2)

where ψ(t) is the state at time t and belongs to H. The linear
operators A and B are skew-symmetric operators and u is a
scalar function called control taking value in a U ⊂ R. The
operator A is sometimes called drift and B is called control
operator.

A. Solutions and Propagators

The definition of solution for system (2) when H is
infinite dimensional is, in general, not trivial, indeed, even the
definition of the sum of unbounded operators is not obvious.
In order to define the solutions of system (2), we make the
following assumptions.

Assumption 1: Let (A,B,U) be such that
1) A is a linear skew-adjoint operator with domain

D(A) ⊂ H such that A : D(A) → H is invertible;
2) B is a linear skew-symmetric operator with domain

D(B) ⊂ H such that D(A) ⊂ D(B);
3) The control set U is a subset of R containing 0;
4) For every u in U , the operator A + uB with domain

D(A) is essentially skew-adjoint.
Since, by Assumption 1, A + uB is essentially skew-

adjoint, it generates a group of unitary operators. We can
therefore define the solution and the propagator of system (2)
associated with a piecewise constant control. Namely, for any
T > 0, given any initial state ψ0, and any piecewise constant
control

u =

k∑
i=1

ui1[ti,ti+1), (3)

for a partition t1 = 0 < t2 < · · · < tk+1 = T of [0, T ] and
a finite sequence (ui)1≤i≤k in U , Equation (2), with value
ψ0 at t = 0, can be integrated in H providing a unique
continuous solution given by t ∈ [0, T ] 7→ Υu

t ψ0 where for
t ∈ [ti, ti+1]

Υu
t := e(t−ti)(A+uiB) ◦ · · · ◦ e(t2−t1)(A+u1B), (4)

is called the propagator associated with A+ u(t)B.
In order to define the propagator of (2) associated with

a bounded variation controls we denote by BV (I, E) the
space of bounded variation functions from I ⊂ R interval to
E ⊂ R endowed with the norm ∥ · ∥BV := ∥ · ∥L1 +TV(·),
where TV(·) denotes the total variation. On BV (I, E), we
consider the following notion of convergence : (uk)k∈N ∈
BV (I, E) converges to u ∈ BV (I, E) if (uk)k∈N is a
bounded sequence in BV (I, E) pointwise convergent to

u ∈ BV (I, E). The definition of propagators extends by
continuity to BV controls, see for instance [1, Corollary 9]

Definition 1: The operator B is said relatively bounded
with respect to A, or A-bounded, if D(A) ⊂ D(B) and
there exist a, b > 0 such that for every ψ in D(A),

∥Bψ∥ ≤ a∥Aψ∥+ b∥ψ∥. (5)

In this case we call ∥B∥A the infimum among all the
constants a satisfying (5) (and, in principle, it can be 0).
As a consequence of Kato–Rellich Theorem (see, for in-
stance, [2, Theorem X.12]) the A-boundedness of B is a
sufficient condition for Assumption 1.4.

B. Controllability

We say that system (2) is controllable if, given an
initial state ψ0 ∈ H and a final state ψ1 ∈ H, with
∥ψ0∥ = 1 = ∥ψ1∥, there exists a (open-loop) control u(t)
in BV ((0,∞), U) and T > 0, such that Υu

Tψ0 = ψ1.
The controllability of system (2) is a well-established topic
when the state space H is finite-dimensional, i.e. when the
manifold Ω is finite, see, for instance [3] or [4] and references
therein. Many controllability results in the finite-dimensional
framework rely on general controllability methods for left-
invariant control systems on compact Lie groups ([5], [6],
[7], [8]).

When the state space H is infinite-dimensional the sit-
uation is complicated by the subtleties of the evolution in
Banach spaces and the consequent fragmental nature of
controllability theory for PDEs.

One of the first known results is a negative one: indeed
when B is a bounded operator the bilinear Schrödinger
equation is not exactly controllable, namely the attainable set
has empty interior as a meagre set [9], [10]. The obstruction
to exact controllability holds even when considering very
large class of controls [1], as for instance L1 controls [11]
or Radon measures [12]. In certain cases, it is possible to
prove exact controllability for the potential well in suitable
functional spaces on a real interval (see [13], [14], [15]).
The results extend to a system describing a particle confined
on a radially symmetric 2D domains [16]. However in
higher dimension and for more general systems the exact
description of the reachable set is a difficult task. The
literature hence focuses on weaker controllability properties.
Approximate controllability results have been obtained with
different techniques: adiabatic control ([17], [18]), Lyapunov
methods ([19], [20], [21]), and Lie-algebraic methods ([22],
[23], [24], [25], [26], [27], [28]).

C. Mildly coupled systems

In this paper we use the notion of mild-coupling, firstly
introduced in [1]. This is a regularity assumption on sys-
tem (2) and it is a generalization of the notion of weak-
coupling introduced in [29]. Given a skew-adjoint operator
A and k ∈ R, k ≥ 0, we define

∥ψ∥k/2 =
√
⟨|A|kψ,ψ⟩.



Definition 2 (Mild coupling): Let k ∈ R, k ≥ 0. A pair
of skew-adjoint operators (A,B) is k-mildly coupled if
(i) A is invertible with bounded inverse from D(A) to H,
(ii) for any t ∈ R, etBD(|A|k/2) ⊂ D(|A|k/2),
(iii) there exists c ≥ 0 and c′ ≥ 0 such that B − c and

−B−c′ generate contraction semigroups on D(|A|k/2)
for the norm ∥ · ∥k/2.

Remark 1: In Definition 2.(iii) the restriction to
D(|A|k/2) of the group generated by B − c, in principle
acting on H, defines a contraction semigroup. We thus
have two generators and, thanks to Definition 2.(ii), the
domain of the second one is included in the first and the
smallest domain is dense in H. The same comment can be
made for −B − c′. Neglecting the constant c and c′ and
the minus sign, we identify these three operators (which
are closed in H and D(|A|k/2) respectively) and with an
abuse of notation we denote them by the same symbol B
as they are restrictions of B. The domains of B − c and
−B − c′ acting on D(|A|k/2) are, in fact, both equal to
{ϕ ∈ D(|A|k/2) ∩ D(B) | Bϕ ∈ D(|A|k/2)}. They both
contain this set since whenever ϕ is in this set, then

e±tBϕ− ϕ∓ tBϕ =

∫ t

0

(e±tB − 1)Bϕds = o(|t|),

in H or D(|A|k/2) and, t 7→ e±tBϕ is differentiable in
D(|A|k/2), then it is also differentiable in H.

The notion of mild coupling is related to the notion
of weak coupling, introduced in [29, Definition 1] for
Schrödinger operators with pure point spectrum.

Assumption 2: Let (A,B,U,Φ) be such that
1) (A,B,U) satisfies Assumption 1
2) The skew-adjoint operator A has pure point spectrum

with an associated complete orthonormal basis Φ =
(ϕk)k∈N of eigenvectors ;

Definition 3: Let k ∈ R, k ≥ 0. A pair of skew-adjoint
operators (A,B) is k-weakly coupled if:
(i) (A,B,R) satisfies Assumption 2
(ii) for every u ∈ R,

D(|A+ uB|k/2) = D(|A|k/2)

(iii) there exists a constant C such that for every ψ in
D(|A|k),

|ℜ⟨|A|kψ,Bψ⟩| ≤ C|⟨|A|kψ,ψ⟩|.
The relation between these two definitions is given by the

following lemma.
Lemma 1: Let (A,B) be k-weakly coupled for some k ≥

0 and A be invertible. Then (A,B) is k-mildly coupled.
Proof: This is [1, Lemma 21].

Remark 2: The assumption on the invertibility of A is
needed to ensure that ∥·∥k/2 is a norm equivalent to the graph
norm of D(|A|k/2) and, for many examples in the physics
literature is not restrictive. Indeed whenever the operator A
is skew-adjoint with a spectral gap up to replacing A by
A − λi for a suitable λ in R, one can assume that A is
invertible. This translation on A is physically irrelevant since
it corresponds to a phase shift on the propagator.

Remark 3: In general the converse of Lemma 1 is not
true. There are examples o systems with operators (A,B)
that are k-mildly coupled but not k-weakly coupled. Indeed,
Assumption (ii) in Definition 3 is quite a strong one. For in-
stance, consider the pair of operators A = d

dx and B = i d2

dx2

in H = L2([0, 1]) with respective domain D(A) = {ϕ ∈
AC[0, 1] | ϕ(0) = ϕ(1)} and D(B) = {ϕ ∈ L2([0, 1]) |
ϕ′ ∈ AC[0, 1], ϕ(0) = ϕ(1), ϕ′(0) = ϕ′(1)} corresponding,
up to a time-reparametrization, to the conservative bilinear
system

i
d

dt
φ(t, x) = −∆xφ(t, x) + iu

d

dx
φ(t, x)

with φ(t, 0) = φ(t, 1) and dxφ(t, 0) = dxφ(t, 1). This
system is 2-mildly coupled (see for instance [30, Section
VIII.2] and [2, Example 1, Section X.1]) while it is not
weakly coupled since D(A+ uB) = D(B) ⊊ D(A).

More in general, given every invertible skew-adjoint un-
bounded operator A, the pair (A, iA2) is 2-mildly coupled
and not 2-weakly coupled since D(A + iA2) = D(A2) ̸=
D(A).

Remark 4: Many systems encountered in the physics lit-
erature are sufficiently regular to be weakly-coupled, hence
mildly-coupled. See, for instance, [29, Section III and Sec-
tion IV] or the recent paper [31]. The main advantage of
Definition 2 is that no assumptions are made on the spectrum
of A: the results in this paper my also apply in presence of
continuous spectrum. This is the case, for instance, of the
Morse potential controlled by a (bounded) external field [32].

III. GALERKIN APPROXIMATIONS

A. Compressions and dynamics

For every N in N, we define

LΦ
N = span{ϕ1, . . . , ϕN},

and by πΦ
N the projection of H on LΦ

N , namely

πΦ
N : H → H

ψ 7→
∑N

j=1⟨ϕj , ψ⟩ϕj .
(6)

Remark 5: We stress the fact that the projections in (6)
and, as a consequence, the compressions of operators
strongly depend on the basis Φ. However, for the sake of
readability, from now on we drop the mention to Φ.

Remark 6: When it does not create ambiguities we iden-
tify Im(πN ) = LN with CN .

We define

A(N) = πNAπN and B(N) = πNBπN .

as the compressions of A and B (respectively) associated
with LN .

Definition 4: The Galerkin approximation of order n of
system (2) is the system in CN described by the equation

ẋ =
(
A(N) + uB(N)

)
x. (7)

Since LN is a finite dimensional (A(N), B(N),R) satisfies
Assumptions 2. We can therefore define the unitary propa-
gator Y (N)

t,0 (u) of (7) associated with a BV control u.



B. A general (yet deceptive) result

Proposition 2: Let (A,B,Φ, U) satisfy Assumption 2.
For every n in N, for every T > 0, for every u : [0, T ] → U
piecewise constant, for every ε > 0, there exists N in N,
such that for every k ≥ N , for every t in [0, T ],

∥Y (N)
t,0 (u)πN −Υu

t πN∥ ≤ ε.
Proof: The proof of Proposition 2 is inspired by the

recent [33, Proposition 2.11], stated in the framework of
ultra-weak solutions in the sense of Lions. We present here
an elementary proof that does not rely on advanced notions
of solutions of PDEs.

Without loss of generality we consider u constant, and
conclude in the general case by concatenation.

The subspace span(Φ) is dense in H and, hence, it is a
core of A(k) + uB(k), k ∈ N and of A + uB as well (this
is a reformulation of Assumption 2). For any ϕ in span(Φ),
((A(k)+uB(k))ϕ)k∈N converges to (A+uB)ϕ. We deduce
from [34, Theorem VIII.25.a], that (A(k) + uB(k))k∈N

converges to A + uB in the strong resolvent sense (for
a precise definition of convergence in the strong resolvent
sense, see [34, Section VIII.7]).

From Trotter’s theorem, [34, Theorem VIII.21], the se-
quence (et(A

(k)+uB(k)))k∈N converges strongly to et(A+uB)

uniformly in t in any bounded interval.
Proposition 2 guarantees the possibility to approach any

conservative bilinear dynamics with a finite dimensional one
as soon as the drift A has pure point spectrum and the
eigenvectors of the drift are in the domain of the control
operator B. These conditions are fulfilled, to the best of our
knowledge, for all the bilinear quantum systems with discrete
spectrum encountered in the physics literature.

While the result of Proposition 2 may seem appealing, its
importance should not be overestimated. The main drawback
is that the finite dimensional approximation strongly depends
on the time and on the control u. It is not clear at all (and
false in general, see Section V) that the same approximation
will provide the same precision when using controls with
the same size (say L1 norm, which is the most natural to
consider on the set of control laws, see [35]). In particular,
it is not clear a priori how Proposition 2 can be used to
obtain approximate controllability results.

To overcome this difficulty, we introduce here the notion
of Good Galerkyn Approximations.

IV. GOOD GALERKYN APPROXIMATIONS AND
MILD-COUPLING

In [22] and [23], precise estimates of the distance between
the infinite dimensional systems and some of its Galerkin
approximations are used to prove that systems of type (1)
are approximately controllable under physical conditions of
non-degeneracy of the discrete spectrum of −∆+ V . These
estimates are derived for a sequence of ad hoc controls
designed to steer the system from a given source to a given
target. Besides the discretness of the spectrum of −∆+ V ,
very few regularity assumptions are made on (1). Since the
potential W is not assumed to be bounded or regular (say, not

even continuous), the estimates obtained for a control u can
possibly fail to hold for controls close to u, for instance, in
a small neighborhood of u for some Hk norm. In this paper
we give a sufficient condition for mildly coupled system to
admit a sequence of Good Galerkyn Approximations (see
Theorem 3 below). In other words the propagator of a mildy-
coupled system, can be precisely approached by propagators
of finite dimensional bilinear Galerkin approximations.

Theorem 3: Let (A,B) be k-mildly coupled for some
k ≥ 0. Assume that B is A-bounded and that B(1 − A)−1

is compact. Let U = [−1/(2∥B∥A), 1/(2∥B∥A)]. Then for
every ε > 0, L ≥ 0, p ∈ N, s ∈ [0, 1+k/2), and (ψj)1≤j≤p

in D(|A|1+k/2)p there exists N ∈ N such that for any
u ∈ BV ([0, T ], U),

∥u∥BV < L⇒ ∥Υu
t (ψj)− Y

(N)
t,0 (u)πNψj∥s < ε,

for every t ≥ 0 and j = 1, . . . , p.
The proof of Theorem 3 relies on energy estimates for the

propagator of (2) and is presented in Section IV-B below.

A. Energy bounds for mildly coupled systems

If (A,B) is k-mildly coupled the A-boundedness of B
extends naturally to D(|A|k/2). Hence it is not restricting to
consider H = D(|A|k/2) as stated in the following result.

Lemma 4: Let k be a nonnegative real. Let (A,B) be k-
mildly coupled and such that B is A-bounded. Then

inf
λ>0

∥B(A− λ)−1∥
L(D(|A|

k
2 ),D(|A|

k
2 ))

≤ ∥B∥A
Proof: This is [1, Lemma 23]

As mentioned in Remark 3 the condition D(|A +
uB|k/2) = D(|A|k/2) in Definition 3 is quite strong and, in
principle is hard to check in practice. The following result
provides a easy verifiable condition. Roughly speaking, the
idea is that if the control u is “sufficienly small” then A+uB
is a small pertubation of A.

Lemma 5: Let k be a positive real, (A,B) be k-mildly
coupled, and u ∈ R such that |u| < 1/∥B∥A. Then
D(|A|s) = D(|A+ uB|s) for every s ∈ [0, 1 + k/2].

Proof: This is [1, Lemma 24]
Proposition 6: Let k ∈ R, k ≥ 0 and let (A,B)

be k-mildly coupled with B be A-bounded. Let U =
[−1/(2∥B∥A), 1/(2∥B∥A)]. Then
(i) for any t ∈ [0, T ] and for any ψ0 ∈ D(|A|k/2) there

exists C (depending only on A, B, and k) such that

∥Υu
t (ψ0)∥k/2 ≤ Ce∥u∥BV ∥ψ0∥k/2.

(ii) for any t ∈ [0, T ] and for any ψ0 ∈ D(|A|1+k/2) there
exists M (depending only on A, B, k, and ∥u∥L∞([0,T ]))
such that

∥Υu
t (ψ0)∥1+k/2 ≤MeM∥u∥BV ∥ψ0∥1+k/2.

Proof: This result is a consequence of [1, Proposi-
tion 25].

Lemma 7: Let k be a positive real. Let (A,B) be k-mildly
coupled and let Φ be an Hilbert basis made of eigenvectors
of A. Then, for every N in N, (A(N), B(N)) is k-mildly
coupled.



Proof: From [1, Proposition 20] there exists C =
C(A,B, k) such that

|ℜ⟨|A|kψ,Bψ⟩| ≤ C∥ψ∥D(|A|k/2),

for every ψ ∈ D(|A|k/2). Hence restricted to LN , we obtain
(A(N), B(N)) that is k-mildly coupled.

B. Proof of the main result

Since the propagators are contractions in H, it is sufficient
to prove the statement for (ψj)1≤j≤p in the dense subset
D(A). Fix an arbitrary ψ ∈ D(A), let N ∈ N and u in BV
with values in [−1/(2∥B∥A), 1/(2∥B∥A)].

Consider yu : t 7→ πNΥu
t (ψ), that is, an absolutely

continuous function satisfying

ẏu(t) = (A(N)+u(t)B(N))yu(t)+u(t)πNB(I−πN )Υu
t (ψ),

for almost every t. Then, by variation of constants formula

yu(t) = Y
(N)
t,0 (u)ψ

+

∫ t

0

Y
(N)
s,t (u)u(s)πNB(I − πN )Υu

s (ψ)ds,

for every t.
Now

∥Υu
t (ψ)− Y N

t,0(u)πNψ∥ ≤ ∥(I − πN )Υu
t (ψ)∥

+ ∥yu(t)− Y
(N)
t,0 (u)ψ∥.

Since Y (N)
t,0 (u) is unitary

∥yu(t)− Y
(N)
t,0 (u)ψ∥

≤ ∥u∥L1∥πNB(I − πN )Υu
t (ψ)∥

≤ ∥u∥L1∥πNB(I −A)−1(I − πN )Υu
t (ψ)∥

+ ∥u∥L1∥πNB(I −A)−1(I − πN )AΥu
t (ψ)∥.

Finally, notice that I −πN tends strongly to 0, as N goes
to infinity. Moreover since B(I − A)−1 is compact, then
B(I−A)−1(I−πN ) tends to 0 in norm. The conclusion for
s = 0 then follows from Proposition 6 point (i) with k = 0.

Consider now the general case s ∈ (0, 1). The sequence(
πNΥu

t (ψ)− Y
(N)
t,0 (u)(ψ)

)
N∈N

converges to zero in H as
N tends to infinity, uniformly with respect to t ≥ 0 and u
with total variation less than L (this is the case treated previ-
ously). The same sequence

(
πNΥu

t (ψ)− Y
(N)
t,0 (u)(ψ)

)
N∈N

is bounded in D(A) uniformly with respect to t ≥ 0 and u
with total variation less than L, indeed

∥πNΥu
t (ψ)− Y

(N)
t,0 (u)(ψ)∥1 ≤

∥πNΥu
t (ψ)∥1 + ∥Y (N)

t,0 (u)(ψ)∥1

where both terms on the right hand side are bounded,
uniformly with respect to N , u and t since the projections
πN are bounded in D(A) as they commute with A. The
conclusion follows from standard interpolation arguments
(see, for instance, [1, Lemma 38]).

The only remaining point to check is the boundedness
of

(
πNΥu

t (ψ)− Y
(N)
t,0 (u)(t, 0)(ψ)

)
N∈N

in D(|A|1+k/2)

which follows from Proposition 6.
Remark 7: The compactness of the operator B(1−A)−1

is crucial to estimate the norm

∥(I − πN )BπNψ(t)∥,

uniformly in t ∈ [0, T ] and ∥u∥BV ([0,T ]) ≤ L. This
compactness is used only for the uniform bound of the above
norm.

V. EXAMPLE: A CONTROLLABLE SYSTEM WITHOUT
GOOD GALERKIN APPROXIMATION

We present here a (non-physical) example which is
simultaneously approximately controllable and cannot be
suitably represented by its finite dimensional Galerkin
approximations. It consists in system (2), in which the
Hilbert space H is equal to L2(R,C) endowed with its
standard scalar product ⟨f, g⟩ =

∫
R
f̄g, A is equal to

i
(
(∆ + x2) + (∆ + x2)−1

)
and B is the multiplication by

x4. The skew symmetric operator is skew adjoint, with
spectrum Sp(A) = i{(2k− 1)/2+2/(2k− 1), k ∈ N}. The
kth Hermite function ϕk is an eigenstate of A associated
with the eigenvalue i(2k + 1)/2 + i2/(2k − 1). The family
Φ = (ϕk)k∈N is an Hilbert basis of H.

Notice that B is not relatively bounded with respect to
A, while, for every (constant) u in [0,+∞), A + uB is
the generator of group of unitary transformations. We define
the solutions of (2) only for controls u that are piecewise
constant.

For parity reasons, B leaves invariant the sets Φe =
(ϕ2k)k∈N and Φo = (ϕ2k+1)k∈N. Hence, no global con-
trollability in H is to be expected.

Defining ϕok = ϕ2k+1 for every k in N and Φo =
(ϕok)k∈N, the closure Ho of spanΦo is an Hilbert space stable
by A and B. The restriction of A and B to Ho are denoted
by Ao and Bo respectively.

The set {(j, k) ∈ N2, |j − k| = 1} is a non resonant
chain of connectedness of (Ao, Bo,Φo) (in the sense of [23,
Definition 2.5]). Hence the control system (Ao, Bo) is ap-
proximately controllable in Ho (see, for instance [23], [25],
[28]). Moreover, for every j in N, for every ε > 0, there
exists a piecewise constant positive control uj,ε with L1

norm less than
∑j−1

l=1
π

2n2 < π3

12 that steers this system
from the first eigenstate ϕo1 to an ε-neighborhood of ϕoj . The
(Ao)s norm of ϕoj tends to +∞ as j tends to infinity. Hence
(Ao, Bo) does not satisfy the conclusions of Theorem 3.
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vol. 13, no. 1, pp. 117–133, 1996.

[9] J. M. Ball, J. E. Marsden, and M. Slemrod, “Controllability for
distributed bilinear systems,” SIAM J. Control Optim., vol. 20, no. 4,
pp. 575–597, 1982.

[10] G. Turinici, “On the controllability of bilinear quantum systems,” in
Mathematical models and methods for ab initio Quantum Chemistry,
ser. Lecture Notes in Chemistry, M. Defranceschi and C. Le Bris, Eds.,
vol. 74. Springer, 2000.

[11] N. Boussaı̈d, M. Caponigro, and T. Chambrion, “On the ball-marsden-
slemrod obstruction for bilinear control systems,” in 2019 IEEE 58th
Conference on Decision and Control (CDC), 2019, pp. 4971–4976.

[12] ——, “Impulsive control of the bilinear schrödinger equation: propa-
gators and attainable sets,” in 2019 IEEE 58th Conference on Decision
and Control (CDC), 2019, pp. 2316–2321.

[13] K. Beauchard and J.-M. Coron, “Controllability of a quantum particle
in a moving potential well,” J. Funct. Anal., vol. 232, no. 2, pp. 328–
389, 2006.

[14] K. Beauchard and C. Laurent, “Local controllability of 1D linear and
nonlinear Schrödinger equations with bilinear control,” J. Math. Pures
Appl., vol. 94, no. 5, pp. 520–554, 2010.

[15] M. Morancey and V. Nersesyan, “Simultaneous global exact control-
lability of an arbitrary number of 1D bilinear Schrödinger equations,”
J. Math. Pures Appl. (9), vol. 103, no. 1, pp. 228–254, 2015.
[Online]. Available: http://dx.doi.org/10.1016/j.matpur.2014.04.002

[16] I. Moyano, “Controllability of a 2d quantum particle
in a time-varying disc with radial data,” Journal
of Mathematical Analysis and Applications, vol. 455,
no. 2, pp. 1323–1350, 2017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0022247X17304390

[17] R. Adami and U. Boscain, “Controllability of the schroedinger equa-
tion via intersection of eigenvalues,” in Proceedings of the 44th IEEE
Conference on Decision and Control, December 12-15, 2005, pp.
1080–1085.

[18] U. Boscain, F. Chittaro, P. Mason, and M. Sigalotti, “Adiabatic
control of the Schroedinger equation via conical intersections of the
eigenvalues,” IEEE Trans. Automat. Control, vol. 57, no. 8, pp. 1970–
1983, 2012.

[19] M. Mirrahimi, “Lyapunov control of a quantum particle in a
decaying potential,” Ann. Inst. H. Poincaré Anal. Non Linéaire,
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