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Abstract
A	major	 aim	of	evolutionary	biology	 is	 to	understand	why	patterns	of	genomic	di-
versity vary within taxa and space. Large- scale genomic studies of widespread spe-
cies are useful for studying how environment and demography shape patterns of 
genomic divergence. Here, we describe one of the most geographically comprehen-
sive surveys of genomic variation in a wild vertebrate to date; the great tit (Parus 
major) HapMap project. We screened ca 500,000 SNP markers across 647 individuals 
from 29 populations, spanning ~30 degrees of latitude and 40 degrees of longitude 
– almost the entire geographical range of the European subspecies. Genome- wide 
variation was consistent with a recent colonisation across Europe from a South- East 
European refugium, with bottlenecks and reduced genetic diversity in island popula-
tions. Differentiation across the genome was highly heterogeneous, with clear ‘is-
lands of differentiation’, even among populations with very low levels of genome- wide 
differentiation. Low local recombination rates were a strong predictor of high local 
genomic differentiation (FST), especially in island and peripheral mainland populations, 
suggesting that the interplay between genetic drift and recombination causes highly 

https://doi.org/10.1111/1755-0998.13969
www.wileyonlinelibrary.com/journal/men
https://orcid.org/0000-0002-3298-2905
https://orcid.org/0000-0002-7505-5458
https://orcid.org/0000-0002-6183-686X
https://orcid.org/0000-0002-4516-7002
https://orcid.org/0000-0003-4806-4102
https://orcid.org/0000-0003-0484-4545
https://orcid.org/0000-0001-6984-906X
mailto:
https://orcid.org/0000-0003-3356-5123
http://creativecommons.org/licenses/by/4.0/
mailto:j.slate@sheffield.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1111%2F1755-0998.13969&domain=pdf&date_stamp=2024-05-15


2 of 15  |     SPURGIN et al.

1  |  INTRODUC TION

Since the first studies of allozyme variation in humans (Harris, 1966) 
and Drosophila (Hubby & Lewontin, 1966; Lewontin & Hubby, 1966), 
there has been great interest in explaining how evolutionary and 
ecological processes shape the patterns of genetic variation ob-
served within and among natural populations. One focus of research 
and debate in this area has been on quantifying the roles of adap-
tive and neutral processes in explaining observed levels of genetic 
variation (Nei, 2005). However, adaptation does not just occur in 
isolation, but acts on genetic variation that is also shaped by muta-
tion, recombination, gene flow and genetic drift (Hartl & Clark, 1997; 
Hedrick, 2005). More recently there has been increased effort in 
understanding how these fundamental evolutionary forces operate 
in concert to generate and maintain the levels of genetic diversity 
commonly observed in natural populations (Chen et al., 2017; Feder 
et al., 2012; Lanfear et al., 2014).

The increasing feasibility of high- throughput sequencing and 
genotyping, alongside subsequent characterisation of genome- 
wide variation across large numbers of individuals, has revealed 
that at the genomic level, patterns of variation and divergence 
among natural populations and species are highly heterogeneous 
(Turner et al., 2005).	A	key	feature	of	these	‘genomic	landscapes’	
of divergence that has received particular attention is the pres-
ence of so- called ‘islands of differentiation’: outlier regions of 
the genome with high levels of divergence estimated from statis-
tics such as FST or dxy that consistently emerge at the same loci 
in different comparisons between populations or related species 
(Nadeau et al., 2012; Poelstra et al., 2014; Renaut et al., 2013; 
Turner et al., 2005). Initially these regions were termed ‘islands 
of speciation’, and they were thought to arise as a result of re-
duced gene flow in genomic regions associated with reproductive 
isolation (Turner et al., 2005; Wolf & Ellegren, 2017). Subsequent 
research has revealed that highly heterogeneous patterns of ge-
nomic divergence can occur even in the complete absence of 
gene flow, as a result of recombination rate variation and linked 
selection (Booker et al., 2022; Cruickshank & Hahn, 2014; Noor 
& Bennett, 2009). In genomic regions of low recombination, se-
lection for beneficial mutations (positive selection), or against 

deleterious mutations (background selection), will impact rel-
atively large genomic regions as a result of elevated levels of 
linkage disequilibrium (LD) among sites. Selection within these 
regions reduces diversity within populations, and increases levels 
of differentiation among them, resulting in ‘islands’ of increased 
differentiation that persist over evolutionary time (Cruickshank & 
Hahn, 2014; Johri et al., 2020; Turner & Hahn, 2010).	 Another,	
less well- explored reason by which islands of divergence can arise 
is due to the differential effects of genetic drift in response to 
variation in effective population size across different genomic re-
gions; something that may be particularly important in recently 
colonised populations (Campagna et al., 2015; Ma et al., 2018). 
These circumstances promote fixation of haplotypes and there-
fore result in either reduced or inflated local differentiation.

Comparing patterns of genomic differentiation among sets of 
populations or species at different stages of the divergence/specia-
tion continuum is a powerful way of disentangling the forces that 
shape variation among populations. For example, across multiple 
Heliconius butterfly populations and species, patterns of genomic 
variation are shaped by a combination of gene flow and selection, 
particularly in genomic regions harbouring genes involved in wing 
patterning (Martin et al., 2013). In contrast, in Helianthus sunflowers, 
genomic architecture is the main driver of genomic differentiation 
across sets of populations (Renaut et al., 2013). Similarly, recent re-
search in birds has revealed that differentiation landscapes are con-
served across populations, species and even across avian families, 
with the same islands of differentiation arising among populations 
of distantly related species (Burri et al., 2015; Chase et al., 2021; 
Van Doren et al., 2017; Vijay et al., 2017). This latter pattern ap-
pears to have arisen, at least in part, as a result of a highly conserved 
synteny and recombination landscape in birds (Bravo et al., 2021; 
Zhang et al., 2014), with background selection in regions of low re-
combination producing recurrent islands of differentiation (Booker 
et al., 2020; Burri, 2017).

It is now clear that the recombination landscape and linked 
selection are key drivers of genomic variation within and among 
populations. However, we are only just beginning to understand 
how this linked selection interacts with other evolutionary forces 
to shape patterns of differentiation across natural populations and 

heterogeneous differentiation landscapes. We also detected genomic outlier regions 
that were confined to one or more peripheral great tit populations, probably as a 
result of recent directional selection at the species' range edges. Haplotype- based 
measures of selection were related to recombination rate, albeit less strongly, and 
highlighted population- specific sweeps that likely resulted from positive selection. 
Our study highlights how comprehensive screens of genomic variation in wild organ-
isms can provide unique insights into spatio- temporal evolutionary dynamics.

K E Y W O R D S
adaptation, birds, ecological genetics, genomics/proteomics, molecular evolution, population 
genetics – empirical
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species (Burri, 2017; Ellegren & Wolf, 2017; Jiang et al., 2023; Jiggins 
& Martin, 2017; Lohse, 2017; Perrier & Charmantier, 2019; Ravinet 
et al., 2017).	 A	 large-	scale	 analysis	 of	 three-	spined	 sticklebacks	
(Gasterosteus aculeatus) showed that islands of differentiation were 
more likely to arise in low recombination regions when gene flow 
occurred between populations (Samuk et al., 2017). There is also a 
significant impact of divergence time; in recently separated popula-
tions the differentiation landscape is most likely to reflect selective 
sweeps. Then, as divergence accumulates, genomic architecture is 
expected to play an increasingly important role in generating these 
genomic islands (Burri, 2017).

Because of their large effective population sizes and ecologically 
varied ranges, widespread continental species are excellent mod-
els for studying how demography and the environment shape ge-
netic and phenotypic variation among populations. Insight into the 
evolutionary history of such species can be gained if genetic varia-
tion is characterised across much of its geographical range. Cross- 
population comparisons of genetic variation can then be utilised to 
make inferences about phylogeography, levels of gene flow between 
populations and how adaptation to different environmental and eco-
logical conditions occurs (Perrier et al., 2020). The first large- scale 
studies were performed in humans – that is, the HapMap Projects 
(International HapMap, 2005; International HapMap et al., 2007, 
2010) which characterised human genetic variation on different 
continents, with a view to determining the feasibility of association 
mapping studies. Similar studies have been conducted in domesti-
cated species and their wild ancestors (Bovine HapMap et al., 2009; 
Chia et al., 2012; Kijas et al., 2012; Parejo et al., 2023), and in model 
organisms (Kirby et al., 2010; Lindblad- Toh et al., 2005). More 

recently, there is a growing appreciation that HapMap- type stud-
ies are useful for studying signatures of selection and adaptation in 
natural populations of species with large effective population sizes 
and	 high	 levels	 of	 gene	 flow	 (Alonso-	Blanco	 et	 al.,	 2016; Horton 
et al., 2012; Mueller et al., 2018; Williamson et al., 2014).

The European great tit (Parus major major) is an excellent model for 
ecological and evolutionary studies (Gosler, 1993).	As	is	the	case	with	
several avian species which are amenable to long- term study (Culina 
et al., 2021), a wealth of ecological data exists across multiple great tit 
populations (Charmantier et al., 2008; Dingemanse et al., 2012; Visser 
et al., 1998), enabling informed hypotheses about selection to be 
tested in this system. Phylogeographic research using mitochondrial 
DNA	suggests	that	this	species	has	experienced	post-	glacial	range	ex-
pansion through Central and Northern Europe, possibly from a single 
refugium in South- East Europe (Kvist et al., 1999). Most contempo-
rary populations are characterised by large effective population sizes 
and low levels of genetic differentiation (Kvist et al., 2003; Lemoine 
et al., 2016). However, these previous cross- population molecular 
studies have relied on a modest number of microsatellite loci and 
mitochondrial	DNA,	making	the	detection	of	genomic	regions	under	
selection impossible. The genome of the great tit has been sequenced 
(Laine et al., 2016), and a high density panel of ca 500,000 SNP mark-
ers has been developed (Kim et al., 2018).	A	study	of	two	European	
populations using this marker panel suggests that rapid adaptation has 
occurred at the genomic and phenotypic levels, with pronounced se-
lection on morphology (Bosse et al., 2017).

Here, we perform a HapMap study of 647 unrelated individuals 
across 29 populations (Figure 1), to examine how genomic architec-
ture, natural selection and population history have shaped patterns 

F I G U R E  1 Sampling	locations	of	great	tit	populations.	Population	names	and	sample	sizes	are	given	in	Table S1, and numbers on the map 
correspond to the ‘code’ column in Table S1.

 17550998, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1755-0998.13969 by C

ochrane France, W
iley O

nline L
ibrary on [18/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



4 of 15  |     SPURGIN et al.

of genomic variation across recently colonised European great tit 
populations. Using a large SNP panel typed across all individuals, 
we first characterise genome- wide patterns of variation within and 
among populations, in order to infer population phylogeography. We 
then examine how variation is partitioned across the genome and test 
the hypothesis that highly divergent genomic regions have arisen in 
genomic regions of low recombination (Cruickshank & Hahn, 2014; 
Noor & Bennett, 2009; Perrier & Charmantier, 2019). Finally, we ex-
amine how genomic divergence accumulates along the colonisation 
route of this species, with the aim of inferring how recent natural se-
lection and demography drive variation across the genome.

2  |  MATERIAL S AND METHODS

2.1  |  Sampling and molecular methods

Samples were collected from 29 populations from 22 regions across 
Europe (Figure 1; Table S1). Samples were pooled into regions ei-
ther based on geographical proximity (e.g. Cambridge and Wytham 
Woods)	or	on	sample	size	 (e.g.	Romania	and	Bulgaria).	An	explora-
tory analysis considering all sampled populations separately yielded 
virtually identical results to those shown here, and in no cases did we 
observe	 substructure	within	 pooled	 populations	 in	 our	 Admixture	
analyses (Figure S3).

Birds	were	trapped	during	the	breeding	season	(April–May)	from	
nest boxes, or using mist nets, and ringed with a uniquely numbered 
aluminium ring. Blood was taken via brachial or tarsal venipunc-
ture	and	stored	in	either	1 mL	Cell	Lysis	Solution	(Gentra	Puregene	
Kit,	Qiagen,	USA),	Queen's	buffer,	or	absolute	ethanol.	All	samples	
were	genotyped	using	a	custom-	made	Affymetrix®	great	tit	650 K	
SNP chip at Edinburgh Genomics (Edinburgh, UK), following the ap-
proaches described elsewhere (Kim et al., 2018).

2.2  |  Analyses

Unless stated otherwise, all population genetic statistics were 
calculated in PLINK version 1.9 (Purcell et al., 2007), and down-
stream analysis and plotting was carried out in R version 3.3 (R Core 
Team, 2013). For population genetic analyses, we used the filtering 
approaches outlined previously (Bosse et al., 2017). Briefly, we ran-
domly removed individuals from pairs with relatedness values >0.4, 
and for demographic analyses we used a LD- pruned dataset (based 
on	VIF > 0.2),	with	 SNPs	 associated	with	 an	 inversion	 on	 chromo-
some	1A	(da	Silva	et	al.,	2019)	removed.	After	filtering,	a	total	of	647	
samples	 (mean = 22.3	 birds	 per	 population,	 range = 3–50)	 typed	 at	
483,888 SNPs were retained for analysis.

In each population, we estimated LD (R2) for each pair of mark-
ers	 within	 50 kb	 on	 the	 same	 chromosome	 and	 compared	 this	 to	
physical distance between marker pairs. We calculated observed 
heterozygosity for each SNP and population using a reduced SNP 
dataset, which was pruned based on LD to remove all markers with 

R2 > 0.1,	 then	 thinned	with	 a	 probability	 of	 retaining	 each	 variant	
of 0.25. We calculated genome- wide (mean) FST between each pair 
of populations using the pruned and thinned dataset described 
above. Pairwise FST (linearised as FST/(1−FST)) was compared to (nat-
ural logarithm) geographical distance between populations using 
Mantel tests, implemented in the Ecodist package in R (Goslee & 
Urban, 2007). We tested whether genetic structure was related to 
distance from candidate refugial populations (in Romania/Bulgaria, 
Turkey, Spain and Italy), using Pearson correlations. We also esti-
mated	population	 structure	using	Admixture	version	1.3,	with	de-
fault	settings	 (Alexander	et	al.,	2009). We varied values of K from 
1 to 10; by which point increasing values of K provided no informa-
tive information about population structure (see Section 3). Model 
support for each value of K was estimated by calculating five- fold 
cross- validation error. Finally, we visualised the evolutionary history 
among European great tit populations by generating a maximum 
likelihood tree in TreeMix version 1.13 (Pickrell & Pritchard, 2012). 
We rooted the tree using a sample of P. minor individuals sampled 
from	Amur,	Russia	(Kim	et	al.,	2018). We fitted models allowing for 
range of migration events (0–10), and used a window size of 500 
SNPs (Pickrell & Pritchard, 2012). To assess model fit, we calculated 
the proportion of variance in relatedness between populations ex-
plained by each model (Pickrell & Pritchard, 2012).

Recombination rates at each locus were estimated by com-
paring the location of SNPs on the genome assembly (v1.1) with 
their location on the great tit linkage map (van Oers et al., 2014). 
Previous linkage mapping, using a lower density SNP chip, was inde-
pendently carried out in UK and Netherlands great tit populations 
and the two maps were almost identical (van Oers et al., 2014). For 
the purposes of this analysis, we used SNPs and marker intervals 
from	 the	UK	comprehensive	map.	A	 total	of	2706	SNPs	were	 lo-
cated on both the genome assembly and the linkage map. Thus, a 
position	 in	Mb	and	cM	of	each	of	 these	SNPs	 is	known.	All	other	
SNPs on the HD chip have a physical (Mb) position but no known 
linkage map position. The great tit genome v1.1 is 1.02 Gb long, 
so the average physical interval between mapped SNPs is ~376 Kb.	
The linkage map position of each unmapped SNP was estimated 
by interpolation; by taking the closest mapped SNP in either direc-
tion, and, assuming a constant recombination rate in the interval 
between those SNPs. For example, an unmapped SNP with physi-
cal	position	1.4 Mb,	flanked	by	mapped	SNPs	at	1.0 Mb/0.5 cM	and	
2.0 Mb/1.0 cM,	would	be	estimated	to	be	located	at	0.5 + (1.4–1.0)/
(2.0–1.0) × (1.0–0.5) = 0.7 cM.	 Having	 interpolated	 cM	 position	 of	
every SNP, the local recombination rate was calculated as the cM 
interval spanned by the nearest neighbouring SNPs, divided by the 
physical distance (bp) spanned by those same neighbouring SNPs. 
In other words, for the ith SNP, the recombination rate is estimated 
as the linkage distance between the i − 1th	and	i + 1th	SNP,	divided	
by the physical distance between the i − 1th	 and	 i + 1th	 SNP.	 For	
downstream analyses, local recombination rates were estimated by 
averaging	 across	 all	 SNPs	 in	 each	 500 kb	window.	We	 calculated	
gene density in 10-  and 500- kb windows using custom R scripts and 
the annotated great tit genome (v 1.1) (Laine et al., 2016).
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We examined the genomic landscape of differentiation across 
European great tit populations by calculating FST in 10-  and 500- 
kb bins, using python scripts obtained from Github (https:// github. 
com/ simon hmart in/ genom ics_ general). We did not estimate dxy, as 
this parameter is difficult to estimate accurately from single SNP 
loci (Cruickshank & Hahn, 2014). We also calculated standardised 
FST (zFST) by mean- centring windowed values and dividing them 
by the standard deviation among windows. We defined outlier 
regions as 500- kb bins with zFST values greater than 10. Finally, 
Rsb (Tang et al., 2007) was calculated for three pairwise compar-
isons (in Spain, Finland and the Netherlands), using the R pack-
age Rehh (Gautier & Vitalis, 2012), and this averaged into 500- kb 
windows. Unlike FST, the Rsb statistic gives an indication of which 
population an adaptively important haplotype is under positive 
selection in, and is thought to be less sensitive to local recombi-
nation rates (Tang et al., 2007). Rsb estimation requires phased 
genotype data, so phasing was performed using shapeIT2 v 2.r837 
(O'Connell et al., 2014). The –duohmm argument was used to en-
sure that family information, where available, was used to improve 
the accuracy of phasing. The –effective- size parameter was set at 
500,000 reflecting the large effective population size of European 
great tit populations (Laine et al., 2016). Local recombination rates 
(measured in cM/Mbp) were used in the map files. Comparisons 
between FST, Rsb, recombination rate and gene density were car-
ried out using Spearman rank correlation (as the distributions of 
these statistics were highly skewed).

3  |  RESULTS AND DISCUSSION

3.1  |  Genetic diversity and population history

Sampling locations and sample sizes for each population are given in 
Figure 1 and Table S1. Levels of genetic diversity (πSNP) were gener-
ally high, but we observed substantial variability among populations 
(Figure 2a). Similarly, LD declined rapidly with genomic distance in 
all populations, reaching baseline levels within ~5 kb	 in	 all	 popula-
tions, but also varied among populations (Figure S1). Highest levels 
of LD (and lowest levels of genetic diversity) were observed in the 
Mediterranean island populations of Crete (Greece) and Sardinia 
(Italy), with lowest levels of LD in Central and Western Europe 
(Figure S1). This is consistent with reduced effective population size 
in these island populations, either as result of the colonisation pro-
cess or more recent bottlenecks, along with low levels of subsequent 
gene flow from the continent to the islands (James et al., 2016; 
Postma & van Noordwijk, 2005).

Mean genome- wide FST between all pairs of European great 
tit populations was 0.015, with a significant but weak pattern of 
isolation- by- distance (Mantel test; t = 2.36,	df = 404,	r = .117	(95%	CI	
0.077–0.173), p = .011;	Figure S2). Instead, the highest levels of FST 
were found in comparisons involving the Mediterranean island popu-
lations of Corsica (France), Sardinia and Crete (Figure S2).	Admixture	
analysis was consistent with this pattern (Figure 2, Figure S3); the 

K = 2	analysis	assigned	individuals	in	Sardinia	and	Corsica	to	one	ge-
netic cluster, and the remaining populations to the second. Thus, it 
is likely that much of the genetic structure between European great 
tit populations is a result of genetic drift in these relatively isolated 
island	populations.	Admixture	analysis	also	revealed	some	structure	
between (mainly peripheral) mainland and larger island populations. 
At	 K = 3	 (the	 model	 that	 best	 fitted	 the	 genetic	 data;	 Figure 2d, 
Figure S4), Spain was separated from the rest of mainland Europe. 
Increasing values of K (see Figure S3) resulted in the separation of 
populations in Scotland (K = 4),	Sardinia	(from	Corsica;	K = 5),	south-
ern France (K = 6),	Crete	(K = 7)	and	England	(K = 8).	The	Admixture	
output at K = 8	(Figure 2e) gives the most detailed picture of genetic 
structure among European great tit populations. Further increases 
in K did not generate patterns of structure that corresponded to 
geographical variation (Figure S3) and were increasingly less well 
supported (Figure S4). Thus, even with hundreds of thousands of 
markers	 the	 Admixture	 analysis	 was	 unable	 to	 separate	 many	 of	
the European populations, confirming that levels of divergence are 
extremely low (Laine et al., 2016).	 PCA	 largely	 corroborated	 the	
Admixture	 results,	with	PC1	 separating	Corsica	 and	Sardinia	 from	
the remaining populations, PC2 separating Spain, while PC3 and PC4 
separated Scotland, England, Corsica, Sardinia and Crete (Figure S5).

Maximum likelihood analyses implemented in TreeMix showed 
that	a	model	with	no	migration	explained	97.8%	of	variance	in	relat-
edness between populations (Pickrell & Pritchard, 2012); increasing 
the number of migration events improved the percentage of re-
latedness	explained,	 up	 to	99.7%	when	10	migration	events	were	
fitted (Figure S6). In Figure 3, we display the maximum likelihood 
trees with zero to three migration events, after which the variance 
in relatedness explained plateaued when more migration events 
were added (Figure S6). The tree was generally characterised by 
short branch lengths, with the exception of the island populations 
of Sardinia and Crete, which were grouped with the population from 
mainland Italy (Figure 3). Thus, the TreeMix analysis is consistent 
with large populations and low overall genomic divergence, with 
the exception of the Mediterranean island populations, where ge-
netic drift appears to have been stronger However, much (though 
not all) of the grouping that did occur among continental popula-
tions made geographical sense, with populations from Finland and 
Estonia grouped together, as were some populations from South- 
East Europe, and populations from England and Scotland (Figure 3). 
Interestingly, with three migration events TreeMix grouped the 
Spanish and Corsican populations, which is consistent with previous 
subspecies descriptions of European great tits (Clements, 2007). 
However, the plots with zero, one and two migration events do not 
cluster the Spanish populations with the Sardinian or Corsican ones, 
and	we	also	note	that	the	admixture	and	PCA	analyses	did	not	sup-
port a close relationship between them.

We next tested the hypothesis that great tits colonised Europe 
after the last ice age from a single refugium in South- East Europe. 
This scenario has been suggested before (Kvist et al., 1999), but due 
to the low number of genetic markers available the power to test 
this hypothesis was limited. Using our genome- wide panel of SNP 

 17550998, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1755-0998.13969 by C

ochrane France, W
iley O

nline L
ibrary on [18/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://github.com/simonhmartin/genomics_general
https://github.com/simonhmartin/genomics_general


6 of 15  |     SPURGIN et al.

markers, we compared genetic and geographic distance between 
each population and the proposed refugial populations. Because 
of the elevated structure in Corsica, Sardinia and Crete (Figure S2), 
we excluded comparisons involving these populations. We found 
that FST between Turkey and the remaining populations was signifi-
cantly related to (natural logarithm) distance from Turkey (r = .81,	

t = 6.59,	df = 23,	p < .001;	Figure 2b). The same relationship was not 
found for alternative potential refugial populations (Hewitt, 1999) 
in Spain (r = .24,	 t = 1.69,	 df = 47,	 p = .10)	 or	 southern	 Italy	 (r = .35,	
t = 1.81,	 df = 23,	p = .08).	Our	 results	 therefore	 lend	empirical	 sup-
port to the hypothesis (Kvist et al., 1999) that after the last glacial 
maximum, great tits progressively colonised Central and Northern 

F I G U R E  2 Genetic	diversity	and	structure	in	European	Great	tit	populations.	(a)	Nucleotide	diversity	within	each	population.	(b)	Pairwise	
FST	in	relation	to	geographic	distance	from	Turkey,	only	including	comparisons	involving	Turkey.	(c-	e)	Output	from	Admixture	analysis	at	
K = 2,	K = 3	and	K = 8.	Population	details	can	be	found	in	Table S1.
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    |  7 of 15SPURGIN et al.

Europe primarily from a single refugium in the south- east. We can-
not completely rule out a Spanish refugial population, given that it is 
the mainland population most divergent from the other populations. 
However, the admixture analysis and isolation- by- distance patterns 
find no evidence that the Spanish population has contributed to 
other populations. Clearly, although our sampling was extensive, it 
is not exhaustive, and more fine- scaled sampling in Eastern Europe 
and beyond would be required to determine a more precise loca-
tion and extent of refugial great tit populations. Sampling in North 
Africa	and	West	Asia	would	also	be	useful	to	determine	whether	fur-
ther refugia exist, and to quantify the extent of admixture between 
European,	African	and	Asian	great	tit	populations.

3.2  |  Genomic landscapes of differentiation

It is likely that many, and perhaps the majority, of wild populations are 
characterised by highly heterogeneous patterns of differentiation 

across the genome (Ravinet et al., 2017). This is the case in European 
great tits – despite the extremely low average FST, we found genomic 
regions with very high levels of genomic structure (maximum FST for 
10-  and 500- kb windows was 0.98 and 0.07 respectively). To ex-
amine how landscapes of genomic divergence have formed along 
the post- glacial colonisation route of European great tits, we calcu-
lated windowed FST in 500- kb bins between each population and 
the proposed refugial population in Turkey. We found that FST varied 
markedly across the genome in all comparisons (Figure 4; Figure S7). 
Outlier regions (windows with standardised FST, hereafter zFST, >10) 
were found in all comparisons apart from Crete and Sardinia, in 
which overall levels of divergence were highest, with some outlier 
regions found across multiple comparisons (Figure 4). Our results 
suggest, therefore, that genomic islands of differentiation can and 
do arise even among recently separated populations.

Considering all populations, FST calculated in 500- kb windows 
was strongly negatively correlated with local variation in recom-
bination rate (Spearman correlation, r = −.50,	 p < .001).	 Although	

F I G U R E  3 Maximum	likelihood	trees	inferred	by	TreeMix,	allowing	(a)	zero,	(b)	one,	(c)	two	and	(d)	three	migration	events	(analysis	based	
on	the	populations	pooled	into	22	regions).	The	migration	events	(arrows)	are	coloured	according	to	their	weight	(red = higher	migration),	and	
horizontal	branch	lengths	are	proportional	to	the	amount	of	genetic	drift	that	has	occurred	along	the	branch.	A	population	of	the	great	tit's	
sister species, Parus minor, was used as an outgroup. Population details are given in Table S1.
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8 of 15  |     SPURGIN et al.

recombination rate and gene density were positively correlated, 
(r = .16,	p < .001),	FST was only weakly correlated with gene density 
in 500- kb windows (r = −.09,	p < .001),	and	this	correlation	became	
almost zero when calculated in 10- kb windows (r = −.01,	p < .001).	If	
recombination rate and gene density are fitted in a linear model, re-
combination rate (t = −8.46,	p < .001)	but	not	gene	density	(t = −0.35,	
p = .72)	 explain	 significant	 variation	 in	Fst measure in 500- kb win-
dows. Thus, it appears that the negative relationship between FST 
and recombination rate is not driven by gene density. Examining 
how the relationship between genomic differentiation and recom-
bination varied among populations revealed that FST was negatively 
related to recombination rate in almost all comparisons with Turkey 
(Figure 5). The relationship between FST and recombination rate was 
generally weak, but in a handful of populations this relationship was 
substantially stronger – most notably in the island populations of 
Corsica, Sardinia and Crete, and in the peripheral mainland popula-
tions of England, Scotland and Spain, which are the populations that 
are likely most susceptible to drift (Figure 5).

As	 a	 further	 examination	 of	 how	 allele	 frequency	 variation	
and haplotype structure may be shaped by neutral and adaptive 
processes, we compared FST and recombination rate with Rsb – a 
measure which aims to detect regions of the genome under positive 
selection by comparing extended haplotype homozygosity profiles 
between populations, and is expected to be less sensitive to vari-
ation in recombination rate because extended haplotypes should 
be present in both populations when recombination frequency is 
lower (Tang et al., 2007). Specifically, we compared the distributions 
of	these	statistics	in	500 kb	windows	using	three	populations	in	the	
Netherlands, Finland and Spain, with the aim of exploring how Rsb 
varies with recombination rate and with FST. We found that, across 
the genome, correlations between absolute Rsb and recombination 
rate were only slightly weaker (Spearman rank r	between	−.25	and	
−.20)	 compared	 to	 those	 between	 FST and recombination for the 
same pairwise comparisons (r	between	−.36	and	−.20),	and	that	the	
regions of high FST in these comparisons tended to be in these same 
regions of low recombination and high Rsb (Figure S8). Notably, 

F I G U R E  4 Landscapes	of	relative	genomic	differentiation	in	European	great	tit	populations.	zFST across the genome is averaged in 500- kb 
windows, with each panel displaying a pairwise comparison with the proposed refugial population in Turkey. Red lines represent FST outliers 
(windows with mean FST values at least 10 standard deviations greater than the global mean for that comparison) shared across more than 
two comparisons (solid red lines), or specific to one or two comparisons (dashed red lines). Mean, untransformed FST values are given in the 
top- right of each panel, and are fully displayed in Figure S7.
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    |  9 of 15SPURGIN et al.

though, there were several cases where windows with extreme Rsb 
values occurred in regions of high recombination, and most high 
FST regions in high recombination regions were also Rsb outliers 
(Figure S8). Below we explore the possibility that such regions are 
strong candidates for recent adaptive evolution.

On the one hand, background selection is a key driver of genomic 
differentiation in birds (Delmore et al., 2018; Hejase et al., 2020; 
Van Doren et al., 2017; Vijay et al., 2017), and other organisms 
(Comeron, 2017; Shang et al., 2023), but is not expected to play a 
major role in driving islands of differentiation over the timescales 
(tens of thousands of years) relevant to this study (Burri, 2017; Samuk 
et al., 2017). On the other hand, differential effects of drift operating 
across the genome could contribute substantially to the highly het-
erogeneous patterns of differentiation observed in European great 
tits. Our finding that the relationship between recombination rate 
and FST is strongest in populations experiencing the greatest levels 
of drift (e.g. islands; Figure 5) is consistent with this – low recom-
bining regions have reduced effective population size and increased 
rates of lineage sorting due to drift. Drift has been suggested to be 
a driver of heterogeneous genomic landscapes in other systems 
(Campagna et al., 2015; Ma et al., 2018; Sendell- Price et al., 2021), 

and our study suggests that it may play a key role in shaping genomic 
structure in widespread, continental species.

Outlier regions of very high differentiation (zFST > 10)	 often	
occurred in areas of the genome with low recombination rates 
(Figure 5, Table S2) and the recombination rate of outlier regions 
was marginally significantly lower than the genome- wide average 
(Wilcoxon test, W = 6721.5,	p = .054).	Of	the	11	outlier	regions,	nine	
were found in only one or two comparisons, while the other two 
were found in 12 and 10 comparisons, respectively (Table S2). We 
hereafter refer to outlier regions found in one or two comparisons 
as ‘population- specific’ outlier regions, and to those found in more 
than two comparisons as ‘shared’ regions. Both shared outliers were 
in regions of very low recombination. However, some outliers were 
in regions of moderate or high recombination rate (Table S2).

Regions of high differentiation that are not shared among popu-
lations could potentially arise as a result of recent drift, but are also 
candidate regions for recent positive selection (Burri, 2017). Several 
lines of evidence suggest that this may be the case in European 
great tits. Firstly, population- specific regions tended to occur in re-
gions of higher recombination than shared outliers, although low 
sample size prevents a formal statistical analysis of this. Second, 

F I G U R E  5 Genomic	differentiation	and	recombination	rate	variation	in	European	great	tit	populations.	Each	point	is	the	mean	of	a	500-	
kb window, with each panel displaying a pairwise comparison with the proposed refugial population in Turkey. Coloured points represent FST 
outliers (mean standardised FST values of zFST > 10)	shared	across	more	than	two	comparisons	(red),	or	specific	to	one	or	two	comparisons	
(dark	blue).	Solid	and	dotted	lines	represent	median	and	99%	quantiles	of	FST windows from bins of 0.1 log cM/Mbp. Spearman rank 
correlation coefficients are reported.
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population- specific outliers tended to be found in the most periph-
eral European great tit populations, with three found in Scotland, and 
two in England, Spain and Finland; the remaining outlier regions were 
found in comparisons involving the Czech Republic, Russia, Vlieland 
(Netherlands) and Belgium (Table S2). Notably, these populations are 
not the lowest in genetic diversity and therefore drift effects are not 
necessarily stronger in these peripheral populations. Third, the Rsb 
tests, which indicate which population has undergone a selective 
sweep, also tend to find evidence of positive selection in the more pe-
ripheral population, as expected under an adaptive evolution scenario 
(Figure S8). This directionality cannot be assessed with FST, because 
it is a combined measure of allele frequency differences. Of course, 
across the genome, both positive selection and linked background 
selection are likely to be operating. Observational and experimental 
research shows that adaptation at range edges is a key feature shap-
ing divergence among recently colonised and expanding populations 
(Hill et al., 2011; Sexton et al., 2009; Weiss- Lehman et al., 2017). 
Population- specific regions appeared less likely to be in regions of 
low recombination than shared regions (Figure 5), although the small 
number of regions precluded testing this hypothesis formally. Thus, 
it is likely that genomic architecture plays a key role in determining 
how both selection and drift have shaped genomic variation across 
the recent evolutionary history of European great tits.

To further explore how selection may have shaped variation in 
FST outlier regions, we estimated levels of nucleotide and haplotype 
diversity within these regions. Nucleotide diversity (πSNP) in out-
lier regions varied from 0.21 to 0.48, and diversity in these regions 
was significantly lower than the genome- wide average (Wilcoxon 
test, W = 5287.5,	 p = .001;	 Figure S9A). However, there appeared 
to be little difference in nucleotide diversity between shared and 
population- specific regions (Figure S9A). Haplotype diversity varied 
substantially among regions, with haplotype richness ranging from 
72 to 1033. Both haplotype richness and marker density in shared 
regions tended to be lower than those in population- specific regions 
(Figure S9B),	consistent	with	lower	recombination	frequency.	A	de-
tailed examination of haplotype structure in one shared and one 
population- specific region is displayed in Figure S10. The population- 
specific	outlier	region	(to	Finland,	situated	on	chromosome	1A)	was	
characterised by a complex structure, with a single haplotype at high 
frequency in Finland compared to other populations, indicating a 
population- specific selective sweep and high background diversity 
(Figure S10). It is unclear whether this haplotype is related to a pre-
viously	described	large	inversion	polymorphism	on	Chromosome	1A	
(da Silva et al., 2019). In contrast, the shared region on chromosome 
2 was much less complex, demonstrating high frequency haplotypes 
that are found across a range of populations. Our data therefore sug-
gest that examining patterns of haplotype diversity in outlier regions 
may help to separate recent episodes of positive selection from drift 
and background selection (Figures S9 and S10).

Potential candidate genes found within shared and population- 
specific outlier regions are displayed in Table S2. Perhaps most nota-
ble among these is COL4A5, a gene found to be associated with bill 
length, and under selection between populations in England and the 

Netherlands, in a previous great tit study (Bosse et al., 2017). Here we 
found that the COL4A5 region is an FST outlier in England and Scotland, 
but not in any other European populations (Table S2). UK great tits 
have previously been described as a separate subspecies based on 
beak shape (Gosler, 1999), and our results here, combined with previ-
ous results, suggest that this divergence is the result of recent natural 
selection (Bosse et al., 2017).	Another	notable	candidate	gene	poten-
tially involved in beak morphology, and previously found to be under 
selection in UK great tits is BMPR1A, which plays a key role in palate 
development (Baek et al., 2011) and in this study was found in an out-
lier region in Scotland. Other candidate morphology and obesity genes 
in the population- specific outlier regions in the UK included PPP1CB, 
which may play a role in adipogenesis (Cho et al., 2015) and GHITM, 
which appears to have been subject to natural selection in human 
pygmy populations (Migliano et al., 2013). Thus, morphological and 
physiological traits may be involved in adaptation in great tits.

In addition to morphological candidates in the UK, we found dis-
tinct outlier regions in cold populations such as Scotland, Finland 
and Russia (Table S2), the outlier locus in the Russian population 
contained a candidate gene for thermal stress (CDKN1B) (Logan & 
Somero, 2011). Other genomic outlier regions contained potential 
candidate genes associated with malaria infection (MRPL33) (Videvall 
et al., 2015) and colour variation (SOX10) (Gunnarsson et al., 2011). 
This is thus far an exploratory analysis, and we are therefore reluc-
tant to speculate whether these candidate genes are genuine targets 
for natural selection, and more reluctant still to speculate as to how 
selection might be driving variation at these regions. Regardless, 
these candidates will provide useful starting points for future ge-
nomic and ecological investigation.

HapMap style projects have been hugely informative in shap-
ing our understanding of how natural selection operates in hu-
mans and other model species (International HapMap, 2005; Kirby 
et al., 2010). This study is one of the largest to date of genomic 
variation in a wild vertebrate, which has helped to reveal the evo-
lutionary history of great tits, and to identify candidate genes and 
traits that may have been involved in adaptation during and/or after 
postglacial range expansion. Further, this work will form the foun-
dation of many future analyses. Clearly, we have only touched on 
haplotype- based methods to infer adaptation here, and this will be 
the subject of future work. Environmental association approaches 
are also highly suited to detecting adaptation in widespread con-
tinental species (Coop et al., 2010; Frichot et al., 2013; Rellstab 
et al., 2015), and further work will test how variation in the environ-
ment has shaped patterns of genomic variation in great tits (Salmón 
et al., 2021). This combination of environmental and genomic data 
in species such as great tits, in which a wealth of ecological and ge-
nomic resources is available, is likely to generate interesting insights 
into the genetic and phenotypic basis of natural selection.
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