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Abstract

Background: The recent development of Physics-Augmented Neural Networks

(PANN) opens new opportunities for modeling material behaviors. These approaches

have demonstrated their efficiency when trained on synthetic cases. Objective: This

study aims to demonstrate the effectiveness of training PANN using real experimen-

tal data for modeling hyperelastic behavior. Methods: The approach involved two

uni-axial experiments equipped with digital image correlation and force sensors. The

tests achieved axial deformations exceeding 200% and presented non-linear responses.

Twenty loading steps extracted from one experiment were used to train the PANN. The

model architecture was optimized based on results from a validation dataset, utilizing

equilibrium gap loss computed on six loading steps. Finally, 544 loading steps from

the first experiment and 80 steps from a second independent experiment were used for

testing purposes. Results: The PANN model effectively captured the hyperelastic be-

havior across and beyond the training loads, showing superior performance compared

to the standard Neo-Hookean model when assessed using various evaluation metrics.

Conclusions: Training PANN with experimental mechanical data shows promising

results, outperforming traditional modeling approaches.

Keywords: Artificial Intelligence, Physics-informed AI, Constitutive modeling, PANN,

EUCLID, Digital Image Correlation

1 INTRODUCTION

Recent advancements in data-driven methods have been changing the way constitutive laws

are modeled and characterized in material sciences. The rise of these approaches, based on

data learning, is mainly due to two factors. First, the development of artificial intelligence

applied to the mechanical sciences allows the use of agile and efficient models capable of

representing complex behaviors [1]. The second factor is the recent development of modern

experimental mechanics, such as full-field measurements. This gives access to the collection

of large quantities of experimental data that can be used for model identification [2, 3].

Common challenges in learning constitutive behavior, such as physical inconsistency,

poor generalization, and data access, are addressed by combining machine learning mod-

els with physical information [4]. Different strategies have emerged in this context. First,
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methods such as ”data-driven identification” (DDI) (or referred to as ”model-free”) tech-

niques [5, 6, 7]. These approaches enforce compatible and balanced mechanical states and

identify a constitutive law from displacement and force measurements. A second category,

known as ”physics-informed” [8, 9, 10], involves embedding physical knowledge into the

neural network loss function used for the training model. This method combines a discrep-

ancy measure and a penalty for deviating from physical laws in the loss function. The third

strategy, often named ”Physics-Augmented Neural Network” emphasizes enforcing physical

knowledge within the model’s architecture itself. Various frameworks [11, 12, 13, 14, 15],

propose the integration of physical properties, such as thermodynamic constraints, into

the architecture. These latter techniques generally use Input-Convex Neural Networks [16]

(ICNN), which enforce the convexity of free energy. Other thermodynamically consistent ar-

chitectures exist, such as [17], in which a network is constructed to preserve the metriplectic

structure of dissipative systems (in the form of the so-called General Equation for the Non-

Equilibrium Reversible-Irreversible Coupling - GENERIC). It can be highlighted that recent

data-driven techniques bridge the gap between physics-augmented and DDI approaches [18].

Initially, mechanical tests relied on simple measurements (e.g., a strain gauge and an

extensometer). This situation significantly changed in the 2000s, with an increasing amount

of data being regularly collected during experimental mechanics tests [2]. This is mainly due

to the use of quantitative image processing methods based on increasingly high-resolution

images or volumes. Digital Image Correlation (DIC) [19, 20], or Digital Volume Correlation

(DVC) [21, 22] involves measuring a displacement field between a reference image taken,

for example, at the beginning of the test and an image in a deformed configuration. Using

global DIC [23], the measured displacement field is expressed through a finite element mesh.

In addition to regularizing the problem, this allows for smooth interfaces with finite element

softwares to identify mechanical properties (e.g., Finite Element Model Updating [24]). The

richness of these measurements provides the kinematics data used to feed data-driven models.

While displacement fields, and hence deformation fields, are measurable, one of the

challenges with data-based methods is the need to collect a large number of stress fields.

Experimentally, as stress measurements are not directly accessible, they can be estimated

through auxiliary measurements, such as force measurements, and on all the free surfaces.

In practice, most tests are instrumented with simple and few force sensors (uni-axial or bi-

axial measurement cells). Recent developments have enabled the measurement of complex

multiaxial forces or force distributions [25]. In this context, moving away from the supervised

training framework, which depends on known stress labels, is crucial for developing truly

efficient and practically applicable data-driven constitutive models [26].

To overcome these limitations, a framework called Efficient Unsupervised Constitutive

Law Identification and Discovery (EUCLID) [27] was proposed. The method is termed

unsupervised, in the sense that it does not require stress data but only global reaction forces

and full-field displacement data, accessible through full-field measurements. The EUCLID

method includes a representation of the constitutive law that aims to map the displacement

measurement (derived into strains) to balanced stresses. This weak form of balance (internal

and at boundaries) allows for the autonomous identification of the constitutive law. In

addition to EUCLID, other frameworks are also based on this internal and boundary force

loss such as the DDI literature [7] and Equilibrium-based Convolution Neural Network

(ECNN) methods [28]. A modified constitutive relation error framework for learning PANN,

more robust to noise impact, has also been recently developed [29, 30]. In the ECNN

approach, the model consists of strain-to-stress mapping layers (with 1×1 kernels and Leaky
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ReLU activation functions, equivalent to a multi-layer perceptron). This constitutive model

does not contain physical knowledge.

Nowadays, the current approaches in the literature train PANNs from synthetic data.

These developments are hence restricted to numerical proof of concepts. The noise included

in the studies differs from real experimental noise (e.g., sometimes applied on the deforma-

tion or displacement fields) and other sensor uncertainty (e.g., force sensor axis uncertainty).

The quantity of data used in synthetic approaches can be tuned to train the model success-

fully. Finally, procedures are rarely blinded; by knowing the targeted model (knowing the

shape of the free energy surface, for example), the neural network architecture can hence

be adequately designed using the required deformation invariants. The closest study to the

current development in the literature is [28], where the authors validate their AI model from

DIC measurements in a compression test on rubber cubes. However, besides being a dif-

ferent constitutive model (without physical knowledge), the experiment is limited to small

deformations (under 5%). Multiple questions are still open for the experimental training of

highly constrained PANN models, architecture selection, and model validation. Therefore,

the identification of PANN from actual experimental data remains a challenge and has not

been studied in the literature beyond 1D applications [31, 32, 33, 34].

This article aims to train, validate, and test a PANN model within an NN-EUCLID

framework based on experiments performed on hyperelastic behavior. The trained constitu-

tive model is first optimized. 10 different architectures are evaluated and compared in terms

of equilibrium loss. The best model (the reference one) is compared with a traditional Neo-

Hookean model identified using the same framework. The first part of this article presents

the methodology of the training pipeline, including a PANN model, the DIC measurement

procedure, and the defined metrics. The second part is dedicated to the experimental setup

and deformation/force data collection. Finally, the different approaches are compared with

equilibrium gap metrics.

2 METHOD

This section presents the methodology of the EUCLID procedure (section 2.1) with two

types of models: a traditional hyperelastic law and a physics-augmented neural network.

Then, as the kinematics measurement constitutes a central piece of information, the DIC

technique is described (section 2.3). Finally, comparison metrics are proposed (section 2.4).

2.1 EUCLID framework

Consider displacement field data u(x) defined on spatial positions x. This displacement field

may come from DIC/DVC measurement procedures and is supposed to be known on the

sample surface. The displacement field is expressed using a finite element mesh, composed

of Nn nodes, with finite element shape functions Φ(x) such that:

u(x) =

Nn∑
i=1

ui
eΦ

i(x), (1)

with ui
e being the nodal displacement amplitudes. The deformation gradient field is then

approximated as follows:

F (x) = I +

Nn∑
i=1

ui
e∇Φi(x), (2)
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where I is the identity matrix and ∇ the gradient operator defined in Lagrangian specifi-

cations.

Considering a constitutive model M mapping deformation F onto first Piola-Kirchhoff

stress P (F ) = M [F ].

Let a sample be loaded with NR reaction forces Ri with i ∈ [1, NR], obtained with

external force sensors. The EUCLID framework consists of minimizing a loss function based

on the force balance residuals given by a first term Lint at all free nodes and a second term

LBC at the controlled boundary conditions. The Nn nodes of the finite element mesh can

hence be divided into an inner part Nint and the controlled boundary condition part NBC,

with Nn = Nint +NBC.

In case of negligible body forces, the nodal residual can be written by integrating the

stresses onto the reference domain Ω:

fi =

∫
Ω

Pij∇jΦdV =

∫
Ω

M[F ]ij∇jΦdV. (3)

The EUCLID framework proposes a first loss term minimizing the L2 norm on the nodal

force residuals (ensuring a balanced state).

Lint(t) =

Nint∑
i=1

[fi(t)]
2
, (4)

However, acquisition noise assumed white and Gaussian impacts the displacement measure-

ment (thus significantly the deformation) and may induce a bias when using the square of

each nodal force residual. To reduce the noise effect, it is here proposed to modify the loss

term considering the convolution of the internal nodal forces by Nσ Gaussian kernels G(σj)

with a characteristic length of σj . The sum over multiple Gaussian kernel lengths allows

not to be only focused on high frequencies that are highly impacted by the noise.

L̂int(t) =
1

Nσ

Nσ∑
j=1

Nint∑
i=1

[G(σj) ∗ fi(t)]2 . (5)

With large Gaussian kernels, the equilibrium is evaluated at larger scales. In practice, 3

preset kernel sizes are used in the following application corresponding to 1, 2, and 3 element

size. It should be noted that pre-processing the input DIC fields to mitigate the effects of

noise is a possible strategy [27]. However, this approach was not adopted in the current

study. The second term expects to balance the reaction forces

LBC(t) =

NR∑
j=1

[
Rj(t)−

NBC∑
i=1

fi(t)

]2

. (6)

The complete loss consists of a weighted sum of the two terms described above, with γ

a weighting factor [27]. The loss also sums all Nt temporal contributions such that:

Ll =
1

Nt

Nt∑
t

[
L̂int(t) + γLBC(t)

]
. (7)

The EUCLID method has been extended with the learning of neural-network constitutive

models and is referred to as NN-EUCLID [35]. In the latter, a weight factor was chosen:

γ = 10 to increase the boundary condition loss contribution.

The EUCLID framework with the described loss will be used to train different models:
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• a standard Neo Hookean material model (section 2.2.1).

• multiple PANN models able to satisfy physical constraints with various neural network

architectures (section 2.2.2).

2.2 Constitutive models

2.2.1 Traditional hyperelastic model

The standard model used as a reference is isotropic hyperelastic behavior following Neo-

Hookean materials (NH). This model is written MNH in the following. In this model variant,

the strain energy density function is written with the deformation invariants defined in plane

stress, with I1 = tr(C) and J = det(F ), with C = F T · F :

WNH =
µ

2
· (I1 − 3)− µ · log(J) + λ

2
· log(J)2, (8)

with µ and λ the Lamé coefficients.

2.2.2 PANN architecture model

The neural network model used in this application is a PANN,MPANN, designed for isotropic

hyperelastic applications. Its architecture is based on a neural network composed of dense

layers that take as inputs the deformation tensor F and outputs the first Piola-Kirchhoff

stresses P . Various physical constraints are implemented following reference papers in the

literature [12, 13, 14]:

• Manual definition of the deformation invariants before the first layer. The deformation

invariants are defined as I1 = tr(C), I2 = 1
2

(
tr(C)2 − tr(C2)

)
and J = det(F ), with

C = F T · F are used as input of the first layer.

• Thermodynamic consistency: the first Piola-Kirchhoff stress is obtained by derivation

of the strain energy density function W : P (F ) =
∂W (F )

∂F
. An intermediate output

of the Neural Networks is hence a scalar value W .

• Stability and Positivity of the potential is obtained by the polyconvexity with respect

to F and det(F ) by using the convex softplus activation functions for the hidden

layers: A(y) = log(1+ ey) and positive model weights ω > 0. Note that, for the initial

selection of deformation invariants, both J and −J are implemented to avoid clipping

to only positive values. The relationship between two layers can hence be written,

with ωi and bi the weights and bias of layer i, and zi−1 and zi the neuron values of

layers i− 1 and i:

zi = A(ωizi−1 + bi) (9)

• Normalization of the energy and stresses: P (F = 1) = 0, and W (F = 1) = 0. This

normalization is obtained by performing the forward pass of a non-deformed state

F = 1 into the model and subtracting it from the output energy and stresses. This

computation is performed at each batch.

A summary of the model architecture is presented in figure 1. The core architecture com-

prises a first hard-coded layer to compute the deformation invariants. This ”pre-processing”

is followed by Na dense hidden layers, each composed of Nb neurons and softplus activation
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Figure 1: PANN architecture composed of: Na hidden layers composed of Nb neurons

Model name # layers (Na) # neurons (Nb) # parameters

PANN 2(8) 2 8 145

PANN 2(16) 2 16 361

PANN 2(32) 2 32 721

PANN 5(8) 5 8 417

PANN 5(16) 5 16 1,233

PANN 5(32) 5 32 2,593

PANN 10(8) 10 8 1,345

PANN 10(16) 10 16 4,513

PANN 10(32) 10 32 9,793

PANN 5(64) 5 64 17,217

Table 1: Different tested PANN architectures

functions. The last top layer links the Nb neurons to the scalar energy value with a linear

activation function. Without knowing the true material behavior, the model architecture

has to be optimized. Model architecture optimization is a vast subject in neural networks.

This application evaluates different PANN architectures from the loss obtained on the val-

idation set. Table 1 and associated with models named PANN Na(Nb) shows the number

of tested hidden layers and neurons. Multiple architectures are tested, with Na ∈ {2, 5, 10}
hidden layers and Nb ∈ {8, 16, 32, 64} neurons per layer. This represents an extensive range

of model sizes, from 145 trainable parameters (weights and biases) up to 17k. In comparison,

it is important to recall that the chosen NH model comprises only two parameters.

The optimization is performed with an ADAM optimizer [36] with a learning rate fol-

lowing a predefined exponential decay schedule at each epoch k: lr(k) = 10−4 · 0.95(− k
112 ).

This corresponds to a start at 10−4 and a decrease of around 1/10 every 10k epoch. The

learning rate schedule was calibrated from the model with the largest number of parameters

and used for all other models. A significant gain in the convergence time could be achieved

by optimizing this schedule for each architecture.

Weights are initialized with random positive values (uniform distribution in [0-0.1]). For

the training process, each epoch is composed ofNt batches, each consisting of a single loading

step for a particular geometry. The loading steps are shuffled at the start of every epoch

to ensure variability. The neural network architecture is developed using the TensorFlow

library in Python.
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2.3 Digital image correlation

Both previous approaches require to have access to kinematics measurements. With plane

stress assumption, 2D full-field measurements can be carried out on the sample surface. A

global DIC approach [23] is used to measure the 2D displacement field. It consists of the

registration of an image f(x) in the reference configuration and a series of pictures g(x, t)

in the deformed configuration indexed by time t. The DIC algorithm minimizes the sum of

squared differences between the deformed image, corrected by the measured displacement

field at time t: u(x, t), and the reference image

Γ2
f (t) =

1

2σ2
f∥Ω∥

∑
x∈Ω

(g(x+ u(x, t), t)− f(x))
2
. (10)

Global DIC consists of describing the search kinematics by finite element shape functions

Φi(x) and degrees of freedom ue such that u(x, t) =
∑Nn

i=1 u
i
e(t)Φ

i(x), where x ∈ Ω are

the considered pixel coordinates in the region of interest and σf the standard deviation

(expressed in grey levels) of the Gaussian white noise assumed to affect each image indepen-

dently (including the reference one, which is responsible for the factor 2). The mesh chosen

for the DIC measurement (and the shape functions) Φ are the same as the one used in the

PANN procedure. This is one of the main advantages of global DIC, as it avoids applying

interpolation to match different kinematics supports. DIC measurements and PANN com-

putation are hence completely merged. In addition to the displacement field measurement,

brightness and contrast correction are also applied to compensate for the non-conservation

of the optical flow [37].

The minimization of this functional, with respect to the displacement, brightness, and

contrast degrees of freedom, is solved by successive linearizations and corrections using a

modified Gauss-Newton scheme. A multi-scale approach is performed, both in the kinemati-

cal model (with mechanical regularization [38]) and image downsizing [22]. The optimization

starts with coarse scales and finishes with raw full-resolution images without mechanical reg-

ularization. DIC is performed based on the DIC software Correli [39].

As DIC is a 2D measurement procedure, a plane stress assumption has to be made

concerning the depth behavior, with negligible stress in the depth direction.

2.4 Evaluation metrics

Specific error values can be designed to evaluate the quality of the identified model.

The first monitored error is the previously defined training loss Ll(t) on the training set,

validation, and test datasets. Based on the validation dataset, this loss will be used to select

the best PANN model from the different tested architectures.

The total loss can be split into two terms, called metrics in the latter, to simplify the

distinction with the training loss: Lint(t), and LBC(t). The first term represents the internal

equilibrium, and the second part represents the boundary condition error. Evaluating those

two metrics individually will give more information on the model performances.
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(a) Geometries and DIC meshes for experiment - “With Hole” (left) and experiment -

“No Hole” (right)

(b) Force stroke curves for experiment - “With Hole” (left) and experiment - “No Hole”

(right)

Figure 2: Samples, meshes, and force/displacement curves measured by the loading machine

for experiment - “With Hole” (a) and experiment - “No Hole” (b). The red circles in (b)

indicate the 20 training data and the black squares represent the validation data. All other

blue steps are used for the test.

3 DATA

3.1 Experiments

Two uni-axial tensile tests have been performed on a neoprene hyperelastic rubber material

with unknown a-priori properties as stored in uncontrolled environment conditions. The

loading sequences were performed on two different tested geometries: a sample with a hole

and a second full sample without a hole. In the “With Hole” test, the shape of the sample

was cut with a hole to enhance a heterogeneous loading and increase the mechanical content

of the measurement.

The imaged surface was covered with thin white paint speckles to create an image gradi-

ent used for the DIC measurement. As the sample color was initially black, no black paint

was used (allowing for a reduction in the projected paint quantity and thus reducing the

risk of paint cracking at large deformation). The shapes and appearances of the samples are

shown in figure 2(a).
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Figure 3: Experimental setup with the images at reference (step 1, R(0) = 0 N) and at the

end of the loading (step 581, R(581) = 36.70 N) for the experiment - “With Hole”.

The loaded surface was imaged using a PCO-edge camera with a telecentric lens (diam-

eter 125 mm) and LED panels. At this scale, each pixel has a resolution of 78 µm. The

electronic noise estimated standard deviation is: σf1 = 374 gray levels in the experiment -

“No Hole”, and σf2 = 340 gray levels in the experiment - “With Hole” for 16-bit GL images

and an image intensity covering most of the 65,536 possible gray level values). The uni-axial

testing machine was a thermo-regulated electro-mechanical INSTRON system equipped with

a 5 kN loading cell (estimated standard deviation σR = 0.020 N). The sample was contin-

uously loaded during the test with a displacement control. The stroke of the machine is

written v. The material was initially cycled ten times, at maximal load to reach a stabilized

behavior. The stabilized cycles appeared already at cycle 3.

Experiment - “With Hole” - The geometry contains a centered 10 mm diameter

hole. 30 images were taken in the reference unloaded state for DIC uncertainty quan-

tification. Then, the sample was continuously loaded, with a controlled displacement of 5

mm/min until reaching 50 mm, and an image acquisition every second, allowing for fine

temporal sampling. In total, 551+30 images were acquired during the experiment.

Experiment - “No Hole” - The first geometry corresponds to a standard uni-axial

sample (without hole) with an effective surface of 55×26 mm2 and a thickness of 2 mm.

The sample was loaded with a displacement control of 5 mm/min until a maximal value

of 67.5 mm and an image acquisition every 10 seconds. During experiment - “No Hole”,

a total of 81 images were acquired. It is important to note that in practice, both tests

were conducted on the same rubber sample. The first test, ”No Hole,” was performed first

chronologically. The “With Hole” test was conducted later, using the same experimental

setup but on a different day with different paint speckles. Consequently, the constitutive

behavior is very similar for the two experiments.

The first and final acquired images for experiment - “With Hole” are presented in figure 3

with the loading and acquisition global setup. The important sample deformation can be

seen in the second picture. Figure 4 shows the measured displacement field represented in

the deformed configuration of the final loading steps for the two experiments.
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Figure 4: Reference and final images for experiment - “With Hole” (left) and experiment -

“No Hole” (right) with the measured displacement field, expressed in pixels.

3.2 Data split

The dataset was split into different subsets to train, validate, and test the model. The

training set is used to learn the model weights. The validation set is to monitor the model

evolution, evaluate the under-/over-fitting, calibrate the hyperparameters, and potentially

select the best model (early stopping). Finally, the test data are used for the evaluation to

generalize on unseen loading conditions.

Experiment - “With Hole” was divided into training, validation, and test parts, while

experiment - “No Hole” was dedicated to the test. Table 2 presents a detail of the data

split.

Training: 20 loading steps in experiment - “With Hole”, with a regular force sampling in

[0 – 31.5] N were chosen for the training part, specifically steps [32, 35, 41, 47, 55, 64, 76,

89, 105, 124, 146, 171, 199, 231, 265, 303, 342, 381, 421, 465]. For an additional evaluation,

the model will also be trained with [3,6,10,20,40] training data, chosen with the same linear

sampling method.

Validation: 6 loading steps in experiment - “With Hole”, with a regular force sampling,

were chosen for the validation part. Selected steps are at steps [1, 51, 88, 155, 262, 394] and

correspond respectively to an applied force of [0, 6.75, 12.5, 18.25, 24.0, 29.75] N. This dataset

will be used to monitor the model training evolution, compare the different hyperparameters

(Na and Nb), and select the best reference model.

Test: The remaining 554 steps of experiment - “With Hole” were used for the validation

to verify the capacity of the model to generalize. It can be noted that the last steps were

only selected for the validation to evaluate the model’s ability to extrapolate with a higher

material state. The 80 data steps of experiment - “No Hole” were exclusively used for the

test. Having a distinct sample exclusively for the test allows the evaluation of the model to
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Experiment “With Hole” “No Hole”

Maximal stroke 50 mm 70 mm

Number of images 551 (+30 references) 81

Training steps 20 -

Validation steps 6 -

Test steps 554 80

Nodes number 1288 567

Element number (T3) 2422 1048

Table 2: Summary of the two experiments’ characteristics and data split

generalize on unseen data: different mechanical states, mesh, sample geometry, and paint

speckles.

The force/displacement curves (as measured by the machine) are presented in figure 2(b)

with a highlight on the different training (red dots), validation (black squares), and test steps

(blue).

4 RESULTS

4.1 DIC results

The DIC mesh was positioned pixel-wise from the images by applying image gray level

threshold techniques to follow the sample geometry precisely. This segmentation was per-

formed using a simple gray level threshold as the sample geometry can clearly be identified

from the black background. An accurate mesh positioning is required to evaluate the static

problem correctly. After the p̂ıxel-wise thresholding of the sample surface, the mesh was

generated with GMSH software [40] and an average element size of 25 mm for the geometry

of experiment - “No Hole” and 15 pixels for experiment - “With Hole”, corresponding re-

spectively to 567 nodes with 1048 T3 elements, and 1288 nodes with 2422 T3 elements. The

“With Hole” geometry was meshed with finer elements to better identify the heterogeneous

deformation state around the hole.

DIC was applied using the first image as the reference and all subsequent deformed ones.

It converged on all steps, leading to a final root mean square residual value starting at 1% of

the image gray level dynamic for the first steps (where the loading was low) and increasing

progressively to 2.6%. This residual field increase may be due to paint issues that may

not perfectly follow the material at the important deformation states. All measurements

allow for storing a {R,F } database. The displacement field on the nodes of the mesh

and deformation tensor, expressed for each element of step 421, is shown in figure 5. A

significant axial displacement of 350 pixels is measured (equivalent to 25 mm) with a large

gradient, leading to Fxx values reaching more than 2.5 (corresponding to 150 % of tension

deformation) around the hole. At the maximum loading, t = 580, the axial deformation

exceeded 200 %. It can be noted that this deformation amplitude is not classical (e.g.,

compared to 5% deformation in [28]) and allows exhibiting a complex non-linear behavior

with large displacements.

The deformation tensor can also be represented in the invariant space (I1, I2). Fig-
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(a) Displacement fields (b) Deformation tensor

Figure 5: DIC results for step 421 (R(421) = 31.2 N): (a) displacement field, expressed in

pixels and (b) deformation tensor.

Figure 6: Deformation dataset expressed in the (I1, I2) invariant space.

ure 6 presents the I1 and I2 invariants of the two tests as obtained by DIC. The green

markers represent experiment - “With Hole” for the testset with 1,402,338 points (number

of elements in all loading steps), red markers experiment - “With Hole” for the training

part (50,862 points), and the blue markers experiment - “With Hole” for the validation

part (14,532 points), and the gray markers experiment - “With Hole” for the test (80,696

points). Few outliers are visible in the graph. These are due to inaccurate displacement

field measurements (thus deformation) located at the hole’s edge or at the boundary con-

dition. Although it appears clearly in the graph, it corresponds to only a few elements

compared to the entire 1.4 million elements in the test of experiment - “With Hole”. For

future experiments and if the noise became too important, the filtering procedure could be

included as a post-processing of the DIC field to remove those outliers (as proposed in the

initial EUCLID framework [27]).

Figure 7 represents the data distribution for the different datasets. The distribution was
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Figure 7: Distribution of the data in the invariant space from the different datasets and

experiments. The color represents the occurrence, expressed in a log10 scale and computed

with a common bins grid.

computed from a common 40×40 equally sampled bins grid in [I1, I2] ∈ [{2, 11}, {2, 7.5}]
and the occurrence of points was displayed using a log10 color bar scale.. With much fewer

element numbers, experiment - “No Hole” also has a much smaller covered area. Training

and validation cover a similar area (although validation comprises only 6 steps and training

20). Finally, the test set of experiment - “With Hole” covers a large area in the (I1, I2) space.

Although experiment - “With Hole” was performed with a hole and in large displacements,

the informative content is essentially represented with 1D scattered beam manifolds. The

experiments are not highly multiaxial and do not exhibit complex mechanical states.

4.2 Model selection

The model was trained during 20k epochs with the training database of 20 loading steps

of experiment - “With Hole” and validated every 25 epochs with the 6 loading steps of

experiment - “With Hole”. The loss starts at values around 104 and converges to 121.

For comparison, the loss estimated on the 30-first unloaded DIC computation gives 4.2 (std

0.22). For the model ”PANN 5(16)”, the training took approximately 10 minutes on a laptop

with an 8 Gb GPU unit (Nvidia RTX-A2000 Mobile) per considered training step. Thus,

it corresponds to approximately 3h30 for the 20 considered loading steps. The convergence

curve on the training and validation sets for the PANN 5(16) model, considered the reference

one, is presented in log-scale in Figure 8. The first significant loss decrease happens in 2500

epochs (thus 50k model back-propagations). Then, the slope is reduced, and the final 2.5k-

12k epochs allow for a reduction from 160 to 121. Finally, from 12k to 20k epoch, the loss
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Figure 8: Convergence of the training loss (blue) and validation loss (red) for the reference

PANN 5(16) model.

(a) Training loss (b) Validation loss

Figure 9: Final training and validation losses for the different model architectures composed

of Na hidden layers and Nb neurons.

remains steady.

Model architecture selection The training and validation loss results for the different

model architectures are presented in Figure 9. Those results correspond to the loss at the

last training epoch. Although it is a common practice to select the best model from the

validation set (early stopping), all validation curves were essentially monotonic (without

considering high-frequency variations at each epoch) with a final stabilized and minimal loss

value.

• Na = 2: Models composed of only two hidden layers have higher equilibrium loss than

the other architectures, regardless of the number of neurons.

• Na = 5: The lowest loss values are obtained with 5 hidden layers. The best architecture

(with respect to the loss criterion) is obtained with 5 hidden layers and 16 or 32

neurons per layer, model PANN 5(16). When increasing the number of neurons to 64

(not shown in the figure), the model score does not improve (training: 146, validation

152). For this last architecture, convergence was very noisy.

• Na = 10: The performances do not increase with more hidden layers.
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Figure 10: Converged model loss with the PANN 5(16), computed on the training and

validation dataset, from different training dataset sizes.

In the latter, the model PANN 5(16), composed of 5 hidden layers and 16 neurons per

layer (with 1233 trainable parameters), will be considered as the reference model and will

be compared with the NH model.

To evaluate the variations due to the stochastic training, the reference model was trained

5 times from scratch. The standard deviation computed on the 5 final losses is 2.8.

Number of training data The evaluation of the model learning (PANN 5(16)) with a

different number of training data is evaluated [3, 6, 10, 20, 40]. For each evaluation, the

model is trained from scratch. Results are presented in the figure 10 for the training and

validation data. Note that while the training data changes, the validation dataset is the same

for all evaluations to compare results. With few training data (< 10), the model performs

well on the training steps yet presents a significant error on the validation data. With more

training steps, the training and validation show similar results and stabilize around 125. For

the following section, 20 training data were used.

4.3 Comparison PANN 5(16) with NH

The EUCLID procedure was applied to identify the two material parameters of the NH

model. At convergence, the obtained parameters were ENH = 1.74 MPa and νNH = 0.471.

The final converged value of the loss was 299. This equilibrium loss is much higher than the

previous PANN results.

For analysis purposes, the PANN model was trained with synthetic data generated from

the identified NH behavior, with the geometry and boundary conditions extracted from the

actual experiment. The PANN is able to reproduce the NH behavior with a converged loss

of 0.1. This training was performed to verify if the chosen PANN model could at least

reproduce the NH model. This training was then removed, and all later training started

from scratch.

The first Piola-Kirchhoff stresses extracted for the two models are presented in Figure 11.

The two models predict the shear components Pyx and Pxy with similar shapes and am-

plitudes. Large differences can be seen in the fields Pxx and Pyy. For the first one, the

amplitudes differ with higher values for the NH model. An important predicted axial force

difference is hence expected from the two models. For the field Pyy, the NH model presents
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(a) Stresses with the NH model MNH(F ) (b) Stresses with the PANN model MPANN(F )

Figure 11: Stresses predicted for step 500, expressed in MPa.

incorrect behavior on the large compression area around the hole as it predicts positive stress

values.

The equilibrium metrics at every loading step of the test sets for both models are pre-

sented in Figure 12 and 13, respectively, for the internal metrics and boundary condition

metric. First, the metrics evolve smoothly, without significant discontinuity between the

steps close to the trained ones. This suggests that the model does not completely overfit the

trained data and is able to generalize the behavior. At the end of experiment - “With Hole”,

some steps show discontinuous high values for both models when the loading is important.

As the NH model is also impacted, the reason comes from the input deformation fields. In-

accurate DIC measurements pollute those steps and may correspond to outlier deformation

element values that can be visible in Figure 7. The first outliers in the inner part appear at

around 35 mm and at the boundary condition at around 50 mm. After the identification of

the inaccurate (or converged) nodes from the DIC results, the associated outlier elements

could be removed, considering a new nodal chain defining the boundary conditions and a

smaller mesh for the EUCLID than the DIC.

For experiment - “No Hole”, the internal loss is low for both models (under 50). Most

of the total loss is represented by the boundary condition part. For experiment - “With

Hole”, the internal part increases with the loading. After approximately 31.5 mm (thus

after the training loads), the PANN internal error becomes higher than the NH one. This

may highlight an issue in extrapolating after the trained steps. However, the boundary

condition loss part shows lower values for the PANN model compared to the NH model.

Finally, the last steps (around 50 mm) show important boundary condition metrics value.

It may also be due to inaccurate DIC measurement on nodes at the boundary condition, as

it happens for both the PANN and NH models.

Considering the experiment - “No Hole”, the reaction force-displacement curves can be

plotted with both models. In Figure 14, the black line represents the measured forces, and

the green and blue markers are the NH and PANN models, respectively. This plot gives

similar information to the BC loss in Figure 13(a). The R2 score value for the test set of

the experiment - “With Hole” is 0.95, and 0.97 for the NH model. The score computed on

the experiment - “No Hole” is 0.98 for the PANN, and 0.86 for the NH model.

16



(a) Experiment - “With Hole” (b) Experiment - “No Hole”

Figure 12: Internal metric, Lint, evaluated on the test sets for the different models:

PANN 5(16) and NH. The yellow area corresponds to loadings beyond the maximal training

load.

(a) Experiment - “With Hole” (b) Experiment - “No Hole”

Figure 13: Boundary condition metric, γLBC, evaluated on the test sets for the different

models: PANN 5(16) and NH. The yellow background corresponds to loadings beyond the

maximal training load.

5 DISCUSSION

Model selection The current study evaluates a PANN constitutive model in learning the

hyperelastic behavior of a real experiment. Without knowing the true material behavior, a

specific model architecture optimization has to be performed.

First, the dataset was split into training, validation, and test parts. One experiment was

selected exclusively for the test to evaluate the model’s capacity to generalize on completely

unseen data and sample geometry. Different model architectures have been evaluated and

compared through the use of the equilibrium loss on the validation set. The different tested

architectures presented a large range of model sizes, from small architectures: PANN 2(8)

with only 145 trainable parameters up to PANN 5(64) with 17,217 trainable parameters.

It can be seen that architecture plays an important role in learning, as highlighted by very

different efficiencies (almost a factor of two between the best and worst tested models).

Adding more layers and neurons does not seem to improve the model yet does not result in

a specific overfit (at least monitored by the chosen validation steps). Noise sensitivity may
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(a) Experiment - “With Hole” (b) Experiment - “No Hole”

Figure 14: Global force-displacement curves with the ground truth (black curve), the NH

and PANN models.

play an important role when the model is composed of too many parameters [41]. From real

or synthetic data, a specific focus on the optimal network architecture optimization [42, 43],

is an exciting perspective [44]. The model PANN 5(16) was selected as a reference model.

Trained 5 times, the final loss results presented a standard deviation of 2.8.

From an initial pre-evaluation, the chosen PANN 5(16) model is well adapted to mimic

the NH behavior when trained with unnoisy data generated with the NH model. This shows

that the PANN model has the capacity to learn the NH law and may have the agility to

adapt to more complex behavior. As in the real training, the PANN did not converge to the

exact NH model, it shows that it learned a different behavior. The pre-training on the NH

behavior was not considered and all models were retrained from scratch to avoid the risk

that the fine-tuning did not fall the solution in a specific local minimum.

Finally, the influence of the number and richness of training data was evaluated with the

training of the model from different dataset sizes. When the model is trained with too little

data (< 10), it learns the training data but fails to generalize the behavior on the validation

set. This is an example of overfitting, and it highlights the necessity of having a separate

validation dataset for the monitoring of the performances. With more training data (> 20),

the model performances do not improve, and overfitting is reduced. The mechanical content

in the 15-20 selected steps is enough to generalize on the validation data. Selecting the

training and validation data is an important topic that was treated here with linear force

sampling. An important perspective is a deeper study of the training/validation data split

selection and test design [45, 46].

The results underscore the importance of carefully controlling the datasets used for the

training, validation, and test. The mechanical content in those subsets has to be informative

enough for the training to learn the constitutive model from a large range of mechanical

states and challenging enough for the test to provide an accurate evaluation. Although

performed with two geometries and large deformations, the two experiments used in the

analysis do not exhibit complex stress/strain multi-axial states, thus limiting the potential

for learning. Collecting vast amounts of data from simple mechanical tests alone is not

enough; instead, emphasizing the informative mechanical content of that data is crucial for

the effective training of the network.

Comparison with standard models When testing the learned behavior, three main

test subsets can be identified:
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• Test data from experiment - “With Hole” for loads in between the training loads (e.g.,

0 < R < 31.5 N). The model’s efficiency on those data shows the capacity of the PANN

to interpolate between probed and trained data states.

• Test data from experiment - “With Hole” for loads beyond the training loads (e.g.,

R > 31.5 N). The results of the PANN in this part highlight the model’s capacity

to extrapolate outside the training loads yet on a similar test and sample geometry.

These load ranges are presented with the yellow background in Figure 12 and 13.

• Test data from experiment - “No Hole”, unseen during the training. As low error

can be observed, it shows the capacity of the model to generalize with different data,

loadings, and geometries.

Experiment - “No Hole” presents low internal error with both models. While experiment

- “With Hole” deforms heterogeneously with the hole, experiment - “No Hole” is more

uniform. The later internal deformation state is quite homogeneous, leading more easily

to a balanced internal solution. This internal loss is, hence, not very informative for the

identification/validation of models. The interesting metric of experiment - “No Hole” is the

boundary condition metric, showing if the behavior has been well captured for elements at

the boundary. With this loss, the PANN model outperforms the NH one for high loads.

The R2 score computed on the boundary condition also shows that the PANN model leads

to lower errors. Experiment - “With Hole” highlights better results for the PANN model in

the training range (0 < R < 31.5 N). For higher loads, the internal error of the NH model is

lower. The internal error of the PANN increases slowly after the trained steps, it may show

the beginning of inaccuracy in predicting after the trained load.

The text draws special attention to the distinction between boundary and internal errors

which, however, remain closely coupled. Notably, reducing Young’s modulus to values as low

as zero could minimize or completely remove internal errors at the cost of increased boundary

errors. Having a lower internal NH error compared to PANN while showing an important

boundary condition error may show that the material stiffness is not correctly identified by

the NH model. Overall, the PANN model shows a strong capacity to learn this hyperelastic

behavior with metrics that compete with and outperform traditional approaches.

When compared in the invariant space plot (Figure 6), the invariant surface covered by

experiment - “No Hole” is contained in the one of experiment - “With Hole”. It is hence

expected a good model generalization on experiment - “No Hole”. However, as the current

metrics result from the integration of the nodal force errors, it is difficult to compare the

metrics of experiment - “No Hole” and experiment - “With Hole” together as the geome-

tries and meshes are not the same. Designing a more robust loss and metrics based on

noise/uncertainty quantification is an interesting perspective.

Limits and perspectives The current procedure suffers from different limitations. First,

the whole PANN procedure is constrained by a single force measurement (and simple geom-

etry without many free boundaries). Including additional force sensors, with more complex

and instrumented testing machines, for example [25], will provide richer data collection and

a better multiaxial state characterization.

Second, it is essential to collect accurate measurements from the DIC. In the presented

experiment, the deformation was very high (up to 200% for experiment - “With Hole”),

thus representing a real challenge for measurement procedures. As in the geometry of

experiment - “With Hole”, large deformations are localized around the hole, corresponding
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to high DIC uncertainties. Particular attention was paid to positioning the mesh pixel-

wise on the sample edge. Yet, as the sample and the background are not very contrasted,

an error in the constitutive model may come from an incorrect mesh positioning. Paint

sprayed on the surface may also degrade at this deformation range and introduce DIC

errors. A perspective on the measurement side is also to use 3D measurements (DVC [22]

that would give access to richer training data (and depth deformation), and avoid using

plane stress assumptions. As already identified by pioneer papers [35], measurement noise

impacts both the inference and, more importantly, the training procedure. Noise also affects

the model selection. Compensating the noise bias in the evaluation loss is an important

aspect. Training the PANN with more developed losses and less sensitivity to noise, with

experimental data (such as mCRE, for example [30]), is a clear opportunity.

The use of PANN as a constitutive law in finite element simulations may require special

attention to other metrics, such as a non-zero tangent operator allowing to avoid vanish-

ing gradients during the finite element convergence. This aspect may necessitate further

investigations on the PANN architecture side (e.g., choice of activation functions), as well

as specific research on optimal learning data spaces.

One could argue that a more sophisticated hyperelastic model would probably better

match the experimental behavior. However, the goal of this paper was not to perfectly

identify the traditional model of the tested material but to train an AI model and appreciate

the results compared to a standard approach. The results are promising as they show that

an AI model can be trained and can generalize on new loading conditions.

Finally, training the PANN using the NN-EUCLID framework is a long process. The

current optimization was not adapted to each model architecture but was selected once to

ensure weight convergence. As such, no specific convergence speed tendency was observed for

the different model architectures (with respect to the depth and number of trainable parame-

ters). Adapting the learning rate to each model size and applying pre-training strategies may

speed up the procedure. With faster convergence time, finer hyperparameter optimization

could be carried out.

6 CONCLUSION

This study presents the application of a thermodynamics-augmented neural network learning

real hyperelastic behavior. Through the use of two uni-axial experiments instrumented

by digital image correlation and force sensors, the PANN model was trained within an

EUCLID framework and validated. The experiments, which achieved axial deformations of

over 200% and showcased marked non-linear behavior, provided robust training, validation,

and test datasets. 26 loading steps from one experiment were employed for training and

validation, while an extensive set of 635 loading steps from both experiments was used

for the test. Dealing with real material data, the true behavior was not accessible, so

a first model architecture selection was proposed. Comparative analysis of our model with

different metrics highlighted the PANN approach’s capability in modeling material behavior,

particularly when extrapolating beyond the training load amplitudes, indicating the model’s

robustness and predictive accuracy.

The scope of the present paper is limited to hyperelastic behavior. Yet, a growing trend

is to represent also history-dependent material behavior with neural networks [47, 48, 49, 50,

29, 51] and training such kind of networks with experimental data remains today a challenge.
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[11] M Fernández, M Jamshidian, T Böhlke, K Kersting, and O Weeger. Anisotropic hy-

perelastic constitutive models for finite deformations combining material theory and

data-driven approaches with application to cubic lattice metamaterials. Computational

Mechanics, 67(2):653–677, 2021.

[12] Dominik K Klein, Mauricio Fernández, Robert J Martin, Patrizio Neff, and Oliver

Weeger. Polyconvex anisotropic hyperelasticity with neural networks. Journal of the

Mechanics and Physics of Solids, 159:104703, 2022.

[13] Faisal As’ ad, Philip Avery, and Charbel Farhat. A mechanics-informed artificial neu-

ral network approach in data-driven constitutive modeling. International Journal for

Numerical Methods in Engineering, 123(12):2738–2759, 2022.

[14] Lennart Linden, Dominik K Klein, Karl A Kalina, Jörg Brummund, Oliver Weeger, and
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