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Abstract—Passive acoustic monitoring (PAM) is crucial for
bioacoustic research, enabling non-invasive species tracking and
biodiversity monitoring. Citizen science platforms like Xeno-
Canto provide large annotated datasets from focal recordings,
where the target species is intentionally recorded. However, PAM
requires monitoring in passive soundscapes, creating a domain
shift between focal and passive recordings, which challenges deep
learning models trained on focal recordings. To address this,
we leverage supervised contrastive learning to improve domain
generalization in bird sound classification, enforcing domain
invariance across same-class examples from different domains.
We also propose ProtoCLR (Prototypical Contrastive Learning
of Representations), which reduces the computational complexity
of the SupCon loss by comparing examples to class prototypes
instead of pairwise comparisons. Additionally, we present a new
few-shot classification benchmark based on BirdSet, a large-scale
bird sound dataset, and demonstrate the effectiveness of our
approach in achieving strong transfer performance.1

Index Terms—Supervised Contrastive Learning, Domain Gen-
eralization, Few-shot Learning, Bioacoustics.

I. INTRODUCTION

Passive Acoustic Monitoring (PAM) is a non-invasive
method for studying wildlife through sound. By using acoustic
recorders, researchers can gather data on animal behavior,
migration, and population trends without disturbance [1]. PAM
is useful for monitoring endangered species, offering long-
term insights for conservation.

In recent years, deep learning models have emerged as a
powerful tool to process and analyze complex bioacoustic
data [2]. A key source of training data for these models
comes from citizen science platforms like Xeno-Canto [3],
which contains over one million annotated vocalizations from
more than 10,000 species, primarily birds. These citizen-
led initiatives have significantly expanded the availability of
labeled wildlife sound data, enabling the development of more
robust and accurate deep learning models [4].

However, a challenge arises from the difference between
data collected on platforms like Xeno-Canto and PAM record-
ings. In citizen science platforms, recordings are typically
focal—where the recorder is aimed directly at the species of
interest. In contrast, PAM systems passively capture sounds
within natural soundscapes, leading to recordings that contain
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a mix of species vocalizations and background environmental
noise. This difference in recording conditions creates a domain
shift, complicating the ability of models trained on focal data
to generalize to soundscape recordings in PAM. In practice,
we require models that can perform well across diverse and
potentially unseen environments.

Supervised contrastive learning (SupCon) [5], a supervised
learning framework for training robust feature extractors, has
demonstrated strong generalization capabilities for transfer
learning in bioacoustics, particularly in few-shot classifica-
tion [6] and detection [7]. However, these studies have been
limited to settings where both training and testing rely on
focal recordings, and therefore do not address the domain shift
challenge associated with testing on PAM recordings when
models are trained on focal recordings.

Domain Generalization (DG) [8] aims to develop models
that learn robust features that are domain-invariant, i.e. ca-
pable of generalizing to new unseen domains without prior
knowledge or access to target domain data during training.

SupCon offers a promising approach for DG. In SupCon,
the objective is to learn an embedding space where same-class
examples are pulled together and different-class examples are
pushed apart. This clustering can promote domain-invariance
when sufficient domain diversity is present in the dataset,
allowing the model to focus on features that are domain-
invariant. In contrast, its self-supervised counterpart Sim-
CLR [9] lacks this explicit mechanism for domain-invariance,
as it relies solely on augmentations to create positive pairs.
Without label information, SimCLR requires carefully de-
signed augmentations that account for domain shift [10].

Despite its effectiveness, SupCon is computationally ex-
pensive due to the need for pairwise similarity calculations
between all examples. To address this, we introduce Proto-
CLR (Prototypical Contrastive Learning of Representations),
a more efficient variant. By analyzing SupCon’s gradient and
drawing inspiration from the generalization capabilities of
prototypical networks [11] in few-shot learning, ProtoCLR
replaces pairwise comparisons with a prototypical contrastive
loss that compares examples to class prototypes, retaining the
original objective while significantly reducing computational
complexity.

We propose a new few-shot classification benchmark based
on the BirdSet [12] dataset to evaluate the generalization ca-
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pabilities of models trained on Xeno-Canto’s focal recordings
and tested on diverse soundscape datasets. This benchmark
is designed to assess how well models can generalize across
domains in challenging few-shot scenarios. We validate our
proposed loss ProtoCLR on this benchmark, demonstrating its
effectiveness in improving DG in bird sound classification.

In this work, we make the following contributions:
• We establish a large-scale few-shot benchmark for bird

sound classification using BirdSet datasets, evaluating
model generalization from focal to soundscape record-
ings.

• We introduce ProtoCLR, a novel supervised contrastive
loss that reduces computational complexity of SupCon by
using class prototypes instead of pairwise comparisons.

II. RELATED WORK

Nolasco et al. [13] reformulate bioacoustic sound event
detection using a few-shot learning approach to recognize
species from a few labeled examples, making it suitable for
rare species but limited to single-species detection per task.
Heggan et al. [14] introduce MetaAudio, a few-shot bench-
mark for audio classification, including BirdCLEF 2020 [15],
which focuses on generalizing to new classes but only includes
focal recordings.

To address the generalization challenge from focal to sound-
scape recordings, the BIRB [16] benchmark focuses on few-
shot retrieval, retrieving labeled sounds from large, unlabeled
datasets. BirdSet [12] emphasizes transfer learning, evaluating
models across various downstream classification tasks.

DG [8] has emerged as a critical approach to tackle domain
shift, where the test data distribution differs from the training
data. It aims to learn robust, domain-invariant representations
using only source domain data, without requiring access to
target domain data during training [8]. DG methods typically
focus on learning domain-invariant representations, using tech-
niques like domain alignment [17], meta-learning [18], and
data augmentation [19]. These approaches help the model learn
features that remain consistent across varying domains. In
bioacoustics, DG is especially important due to the difficulty in
collecting annotated soundscape recordings compared to focal
data [12], [16].

Invariant learning has gained attention, where models are
trained to learn features that remain invariant across differ-
ent variations in data, such as augmented versions in self-
supervised learning [9], [20]–[22] or same-class examples in
supervised learning [5]. This approach has proven effective for
learning robust features in bird sound classification [6].

III. METHOD

A. Supervised Contrastive Loss (SupCon)

Given a batch with two views (transformations) of each
example, let I denote the set of indices of all examples in the
batch, P (i) represent the set of indices of positive examples
for examples i, and A(i) = I \ {i} represent the set of all
other indices excluding i. For an example i, let zi be its l2-
normalized embedding and τ the temperature parameter.

The SupCon [5] loss is defined as:

LSupCon =
∑
i∈I

−1

|P (i)|
∑

p∈P (i)

log
exp (zi · zp/τ)∑

a∈A(i) exp (zi · za/τ)
,

(1)
The gradient of SupCon loss for an example i with respect

to its embedding zi is (please refer to [5] for more details):

∇ziℓ
SupCon
i =

1

|P (i)|
∑

p∈P (i)

1

τ
zp −

1

τ

∑
a∈A(i) Siaza∑
a∈A(i) Sia

, (2)

where Sia = exp(zi · za/τ) is the similarity between zi and
za.

This gradient consists of two terms: a positive term
1

|P (i)|
∑

p∈P (i)
1
τ zp pulling the embedding zi towards its class

centroid and a negative term −1
τ

∑
a∈A(i) Siaza∑
a∈A(i) Sia

pushing it away
from other examples.

B. Prototypical Contrastive Loss (ProtoCLR)

Motivated by the gradient of SupCon, we propose Proto-
CLR (Prototypical Contrastive Learning of Representations),
which introduces class-level centroids into contrastive learn-
ing. The centroid for each class y in the batch is computed
as cy = 1

|C(y)|
∑

i∈C(y) zi, where C(y) is the set of indices

of examples with label y and |C(y)| is its size. We define the
ProtoCLR loss as:

LProtoCLR =
∑
i∈I

−1

|P (i)|
log

exp (zi · cyi
/τ)∑

y∈Y exp (zi · cy/τ)
, (3)

where cyi
is the centroid of the class to which example i

belongs, and Y is the set of all classes in the batch.
Similarly to SupCon, the gradient for ProtoCLR is:

∇ziLProtoCLR
i =

1

τ
cyi

− 1

τ

∑
y∈Y Siycy∑
y∈Y Siy

, (4)

where Siy = exp(zi · cy/τ) is the similarity between zi and
cy .

The positive term remains the same as in the gradient of
SupCon, pulling the embeddings zi towards the centroids of
their respective classes. The difference is the negative term
−1
τ

∑
y∈Y Siycy∑
y∈Y Siy

: in ProtoCLR, the embeddings are pushed
away from the weighted average of the centroids as opposed
to the individual embeddings in SupCon.

C. ProtoCLR vs SupCon

In order to comprehensively assess the efficacy of Proto-
CLR, we conduct a comparative analysis with SupCon.

1) Complexity: SupCon has a computational cost of O(N2)
due to computing dot products between all pairs of examples
in a batch of size N , independent of the number of classes C.
In contrast, ProtoCLR reduces this to O(N×C) by computing
dot products with class prototypes. Since C is usually smaller
than N , ProtoCLR is more efficient, particularly for large
batches.



2) Variance: SupCon relies on pairwise comparisons within
the same class, which can lead to higher variance due to intra-
class variability. In contrast, ProtoCLR compares embeddings
zi with class prototypes cyi

, reducing variance as the prototype
variance Var(cyi

) decreases by N2
yi

, where Nyi
is the number

of examples in class yi. This leads to lower noise and more
stable gradients in ProtoCLR:

Var(cyi) =
Var(

∑
j∈yi

zj)

N2
yi

.

3) Near Convergence Equivalence: Near convergence, both
SupCon and ProtoCLR promote intra-class compactness with
embeddings clustering tightly around class centroids: zi ≈
cyi for all i ∈ I . In SupCon, the negative can be rewritten
as:

Siaza
Sia

≈ exp(zi · za/τ)za
exp(zi · za/τ)

≈ exp(zi · cya
/τ)cya

exp(zi · cya
/τ)

≈ Siya
cya

Siya

.

(5)
Thus, SupCon and ProtoCLR converge to similar strategies,
ensuring intra-class compactness and inter-class separability
in the final learned representations.

IV. EXPERIMENTS

A. Few-Shot Classification Benchmark

The BirdSet benchmark [12] comprises two tasks: multi-
label classification, where each audio recording is segmented
into 5-second intervals to detect the presence of one or
more species (or none), and multi-class classification, where
individual bird events are detected using peak detection and
bambird [23], a tool for identifying bird events in audio
recordings, with each event containing a single species. In line
with the MetaAudio framework, we focus on the multi-class
classification task to define a few-shot evaluation for assessing
the generalization capabilities of pre-trained models [24].
BirdSet offers two training sets: XCL (Xeno-Canto Large)
with focal recordings across nearly 10,000 species, and XCM
(Xeno-Canto Medium), a specialized subset of XCL with
recordings from 411 species represented in the test datasets.
The validation and test datasets contain soundscape recordings.
The benchmark is detailed in Table II.

Following BioCLIP [25], we sample k-shot learning tasks
by randomly selecting k examples for each class and obtain the
audio embeddings from the audio encoder of the pre-trained
models. We then compute the average feature vector of the k
embeddings as the training prototype for each class. All the
examples left in the dataset are used for testing.

To make predictions, we employ SimpleShot [26] by apply-
ing mean subtraction and L2-normalization to both centroids
and test feature vectors. We then select the class whose
centroid is closest to the test vector as the prediction. We repeat
each few-shot experiment 10 times with different random
seeds and report the mean and standard deviation accuracy
in Table I.

B. Reference Systems

To compare our domain-invariant pre-training approach
(SupCon and ProtoCLR), we train reference systems using
cross-entropy (CE) loss as a supervised baseline and SimCLR
as a self-supervised contrastive baseline. Additionally, we
evaluate large-scale, state-of-the-art models in bioacoustics:
the encoder of BioLingual [27], an HT-SAT transformer pre-
trained on AudioSet and fine-tuned using contrastive language-
audio training to align animal sounds with text captions
describing the class across a large collection of data including
Xeno-Canto, iNaturalist, Animal Sound Archive, . . . etc; and
the encoder of Perch [16], an EfficientNet-B1 [28] trained on
Xeno-Canto for species classification, as well as taxonomic
ranks genus, family, and order.

C. Pre-training Details

We train all models with CvT-13 [29], an efficient trans-
former architecture, on XCM and XCL datasets for 100 epochs
using the AdamW optimizer with a batch size of 256, with a
weight decay of 1×10−6. Following Moummad et al. [6], we
apply the augmentations found to be effective for bird sound
representations: circular time shift [30], SpecAugment [31],
and spectrogram mixing [32]. These models are trained with
a projector of dimension 128. For the CE loss, we only
apply circular time shift and SpecAugment as augmentations,
excluding Spectrogram Mixing, as it prevented the model from
converging. The learning rate for CE and ProtoCLR is set to
5× 10−4, while for SupCon and SimCLR, we use a learning
rate of 1× 10−4. We tune hyperparameters by monitoring k-
NN accuracy on the POW dataset.

D. Results and Discussion

Table I presents the performance of different models on one-
shot and five-shot bird sound classification tasks. ProtoCLR
pre-trained on XCM consistently outperforms others in both
tasks, with SupCon close behind. Additionally, ProtoCLR is
more computationally efficient; for one training epoch with a
batch size of 256, SupCon computes 80.4B MACs, while Pro-
toCLR computes only 28.3B. Notably, ProtoCLR significantly
outperforms CE on average (75.0 vs. 46.2). On the other hand,
SimCLR performs the worst on XCM, likely due to domain
shift. Incorporating unsupervised domain generalization tech-
niques [10] could enhance SimCLR’s generalization ability.

Pre-training on the larger XCL dataset negatively impacts
the performance of ProtoCLR, SupCon, and CE models. This
may be due to XCL’s broader class diversity (9,736 classes)
compared to XCM (411 classes) that only contains the target
classes, which leads to a loss of discriminative capacity
on the target classes. XCL also has a higher coefficient of
variation (1.43 v 0.43) and Gini coefficient (0.62 vs 0.24),
indicating greater class imbalance, which ProtoCLR may be
more sensitive to than SupCon.

When pretrained on XCL, SupCon and ProtoCLR outper-
form CE in one-shot learning but not in five-shot learning,
where SupCon surpasses ProtoCLR. Additionally, SupCon



Val Test

Model POW PER NES UHH HSN NBP SSW SNE Mean

Random Guessing 2.08 0.75 1.12 3.70 4.76 1.96 1.23 1.78 2.17

One-Shot Classification

BioLingual 39.6±4.6 33.8±1.5 41.2±4.0 59.2±4.6 50.3±9.8 44.8±3.1 39.9±4.0 41.6±0.4 43.8
Perch 39.4±3.0 41.7±0.8 45.0±3.6 59.3±8.1 46.5±7.3 48.1±2.9 40.5±4.7 40.7±8.6 45.1

XCM Pre-training

CE 43.6±3.5 41.8±1.4 45.2±2.7 67.2±6.5 58.8±4.9 34.4±2.9 37.5±3.2 41.3±3.6 46.2
SimCLR 15.5±3.2 12.4±0.9 14.9±1.4 27.2±4.7 22.0±3.4 15.1±1.3 12.0±1.5 14.3±1.8 16.6
SupCon 69.3±4.4 75.3±2.1 72.8±4.0 81.2±8.4 74.8±7.1 58.4±3.9 62.5±4.5 62.6±4.1 69.6
ProtoCLR 72.3±4.8 79.0±2.2 79.1±2.9 83.4±6.2 82.2±6.2 65.2±3.5 69.6±3.5 69.6±5.9 75.0

XCL Pre-training

CE 32.3±2.9 27.6±1.9 34.1±2.5 54.5±7.4 44.8±4.4 31.6±1.8 27.7±2.1 30.4±2.6 35.3
SimCLR 15.0±1.9 12.8±0.8 15.3±1.6 27.6±5.7 19.6±3.6 15.4±1.3 12.7±1.9 15.1±2.3 16.7
SupCon 35.4±5.5 36.1±2.1 37.1±3.5 58.7±4.2 45.1±5.2 60.7±4.1 40.0±3.0 44.4±4.6 44.7
ProtoCLR 30.7±3.2 28.9±1.5 32.3±2.6 51.5±4.5 39.4±4.4 50.6±3.4 33.5±3.5 38.6±4.1 38.2

Five-Shot Classification

BioLingual 65.8±0.9 58.8±0.5 66.0±0.7 77.5±1.5 72.0±2.9 70.7±0.5 65.4±0.8 64.7±1.7 67.6
Perch 67.3±1.2 68.7±0.7 71.8±0.6 82.0±1.8 78.7±1.6 79.0±0.5 69.8±1.0 72.1±1.0 73.7

XCM Pre-training

CE 79.8±0.9 80.7±0.6 82.6±0.8 91.2±1.4 88.6±1.0 63.3±1.0 74.9±1.1 78.1±1.4 79.9
SimCLR 28.8±1.4 27.3±0.7 30.0±1.2 47.1±3.5 38.3±1.7 28.3±1.1 25.0±1.2 28.6±2.1 31.7
SupCon 83.8±0.5 87.7±0.2 86.4±0.3 90.2±0.8 88.6±0.7 77.1±0.4 80.8±0.7 80.9±1.0 84.4
ProtoCLR 87.5±0.4 89.9±0.2 89.2±0.3 91.8±0.8 92.2±0.5 81.0±0.6 85.0±0.6 85.8±0.8 87.8

XCL Pre-training

CE 65.8±1.3 65.3±0.7 71.3±1.0 86.6±1.8 79.1±1.7 64.6±1.3 64.1±1.1 67.5±1.6 70.5
SimCLR 30.0±1.4 28.3±0.9 31.0±1.0 49.5±3.4 38.0±1.7 30.2±1.0 26.7±1.4 29.2±1.8 32.8
SupCon 58.3±1.2 57.8±0.7 60.6±0.8 76.4±1.7 69.5±2.2 77.2±0.5 60.2±1.0 62.9±1.0 65.3
ProtoCLR 52.3±1.7 51.2±0.7 54.2±1.3 73.1±1.1 63.0±2.1 71.8±0.9 53.0±1.2 55.9±1.4 59.3

TABLE I
TOP-1 ACCURACY FOR ONE-SHOT AND FIVE-SHOT CLASSIFICATION. ALL REPORTED RESULTS ARE THE AVERAGE OF TEN RUNS. FOR OUR MODELS, THE

RESULTS ARE FURTHER AVERAGED OVER THREE CHECKPOINTS. THE HIGHEST ACCURACIES ARE HIGHLIGHTED IN BOLD, AND THE SECOND HIGHEST
ARE UNDERLINED.

Split Dataset # of recordings # of 5s examples # of classes

Train XCL 528,434 1,401,478 9,736
XCM 89,798 189,880 411

Val POW 14,911 51,394 48

Test

PER 16,802 65,479 132
NES 16,117 58,251 89
UHH 3,626 12,980 27
HSN 5,460 17,940 21
NBP 24,327 76,446 51
SSW 28,403 92,514 81
SNE 19,390 64,978 56

TABLE II
BIRDSET CLASSIFICATION BENCHMARK.

performs comparably to BioLingual on both one-shot and five-
shot tasks. Perch slightly outperforms CE on XCL, suggesting
that incorporating taxonomic ranks as auxiliary tasks could be
a promising direction for future research.

These results indicate that ProtoCLR and SupCon achieves
strong few-shot performance especially in one-shot learning
scenarios.

V. CONCLUSION

In this work, we addressed the challenge of domain gen-
eralization for bird sound classification in few-shot scenar-
ios, focusing on the domain shift from focal to soundscape
recordings. We proposed a new few-shot benchmark derived
from the BirdSet dataset to evaluate generalization capabilities
of models trained on focal recordings and tested on sound-
scape recordings. Additionally, we introduced ProtoCLR, an
alternative to SupCon inspired by prototypical networks, with
reduced computational complexity. Few-shot evaluation under
two pre-training scenarios—one with recordings limited to test
classes and another with a larger, more diverse set—showed
that pre-training on the set containing only test classes leads
to better transfer performance.

Future work could explore techniques to scale to larger
class sets without compromising performance, as well as
investigate domain adaptation methods, particularly source-
free adaptation, which is suited for few-shot bioacoustics when
source data is unavailable or too costly to retrain on.
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