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Clustering

Data Xn×p = (xij) a matrix of numeric values

Each individual i belongs to a unique cluster Ci ∈ {1, ...,K}.

Aim identify Ci for each i based on individual pro�les (xi )1≤i≤n

Methods

Distance-based Model-based

• k-means

• fuzzy C-means

• hierarchical clustering

• partitioning around medoids

• gaussian mixture models

• mixture of multivariate

t-distributions

• mixture of skew normal

distributions
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Clustering with missing values

However, X is frequently incomplete... xi = (xobsi , xmiss
i )

Ad-hoc methods

• removing incomplete
observations

• removing incomplete
variables

• single imputation

Direct methods

• k-means (Chi et al., 2016; Honda et al., 2011;
Wagsta�, 2004)

• fuzzy C-means (Zhang et al., 2016; Hathaway
and Bezdek, 2001)

• gaussian mixture (Miao et al., 2016; Marbac
et al., 2019; McCaw et al., 2022)
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k-POD (Chi et al., 2016)

Chi et al. (2016) proposed a direct method for k-means clustering

k-means

arg min
A∈H,B

∥ X− AB ∥2F

k-POD

arg min
A∈H,B

∥ PΩ (X)−PΩ (AB) ∥2F

• H set of membership matrices (n × K), BK×p matrix of centers coordinates

• ∥ . ∥F Frobenius norm

• Ω ⊂ {1, . . . , n} × {1, . . . , p} → subset of the indices for observed entries

• PΩ projection operator so that [PΩ(X)]ij =

{
xij if (i , j) ∈ Ω
0 otherwise

The criterion is optimised by alternating imputation by bk and kmeans
clustering

Available in the kpodclustr R package
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FCM by optimal completion strategy (Hathaway and Bezdek, 2001)

fuzzy c-means

argmin
Γ,Bn∑

i=1

K∑
k=1

γαki || xi − bk ||22

fuzzy c-means OCS

argmin
Γ,B,Xmiss

n∑
i=1

K∑
k=1

γαki ∥ (xobsi , xmiss
i )− bk ∥22

with ΓK×n = (γki ) degrees of membership; α fuzzi�cation parameter

The criterion is optimised by alternating FCM and imputation by weighted
centers

γα
ki ← 1

/
K∑

ℓ=1

(
∥ xi − bk ∥22
∥ xi − bℓ ∥22

) 1

α−1

bkj ←

(
n∑

i=1

γα
kixij

)/(
n∑

i=1

γα
ki

) xmiss
ij ←

(
K∑

k=1

γα
kibkj

)/(
K∑

k=1

γα
ki

)
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Ignorable-GMM (Marbac et al., 2019)

Gaussian mixture models (GMM)

f (x ;θ) =
K∑

k=1

πk fk (x ;θk) θ = (θk)1≤k≤K ,θk = (µk ,Σk)

Log-likelihood GMM

n∑
i=1

log
K∑

k=1

πk

p∏
j=1

fkj (xij ;θkj)

Log-likelihood ignorable-GMM

n∑
i=1

log
K∑

k=1

πk
∏
j∈Oi

fkj (xij ;θkj)

Oi ⊆ 1, . . . , p the subset of variables indices that are observed for

individual i

The criterion is optimised by using an EM algorithm

Available in the VarSelLCM R package
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Direct methods: pros and cons

Direct methods provide an elegant way to address missing values

However, the approach

• is not versatile

• has not been developed for all clustering methods

Multiple Imputation (MI)

• a popular method to address missing values

• could be potentially used for any clustering method
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Multiple imputation (Rubin, 1987)

1 Generate a set of M parameters (ζm)1≤m≤M of an imputation
model to generate M plausible imputed data sets

f
(
Xmiss |X obs , ζ1

)
. . . . . . . . . f

(
Xmiss |X obs , ζM

)
(F̂ û′)ij (F̂ û′)1ij + ε

1

ij (F̂ û′)2ij + ε
2

ij
(F̂ û′)3ij + ε

3

ij (F̂ û′)Bij + ε
B
ij

2 Fit the analysis model on each imputed data set: ψ̂m, V̂ar
(
ψ̂m

)
3 Combine the results using Rubin's rules

1 ψ̂ = 1

M

∑M
m=1

ψ̂m

2 T = 1

M

∑M
m=1

V̂ar
(
ψ̂m

)
+ 1

M−1

∑M
m=1

(
ψ̂m − ψ̂

)2
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Challenges in clustering

MI is not tailored for cluster analysis

• How to impute the incomplete data set?

• How to assess a �variability� accounting for missing values?

• How to �average� partitions?

Some works on the �averaging� step

• by stacking (Plaehn, 2019)

• by using consensus clustering methods (Faucheux et al., 2020;
Bruckers et al., 2017; Basagana et al., 2013; Aschenbruck et al.,
2022)

Aim: highlighting how imputation, analysis and pooling steps

should be carried out
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Imputation model for clustering: the issue
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JM-DP (Kim et al., 2014)
Joint Modeling based on Dirichlet Process mixture of products of multivariate normal distributions

Based on a Bayesian formulation

µk |Σk ∼ N
(
µ0, h

−1Σk

)
Σk ∼ W−1 (df ,G )

with diag(G ) = (g1, ..., gp) gj ∼ G (a0, b0)

πk = vk
∏
ℓ<k

(1− vℓ)

with

{
vk ∼ Beta (1, α) and α ∼ G(aα, bα) for k < K
vK = 1

• parameters: ζ = (π,µ,Σ)

• hyperparameters: h, µ0, df , a0, b0, aα, bα

(ζm)1≤m≤M is generated using a Data-Augmentation algorithm
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Properties

JM-DP

• accounts for the heterogeneity

• accounts for the heteroscedasticity

• the number of clusters is only bounded

Modeling assumptions

• based on the normality assumption

Available in the DPImputeCont (Kim, 2020) and clusterMI (Audigier, 2024) R

packages
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Fully conditional speci�cation

Instead of specifying one joint distribution f (X ; ζ), a conditional

distribution is speci�ed for each (incomplete) variable f
(
Xj |X−j ; ζ j

)
Ex : f

(
Xj |X−j ; ζ j

)
= N (X−jβ, σ

2) ζ j = (β, σ)

To impute the mth data set

• initialize xmiss
i for all i

• for j in 1 ... p

a generate ζ j based on observed individuals on Xj

b impute Xmiss
j according to f

(
Xj |X−j ; ζ j

)
• repeat until convergence
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FCS-homo (Audigier et al., 2021)

Addressing the issue by using regres-
sion models including the class vari-
able W as explanatory variable
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FCS-homo

• generating Xmiss
j given W is performed using regression models

including a intercept speci�c to each cluster

f
(
Xj |X−j ,W ; ζ j

)
= N (X−jβ + µw , σ

2) ζ j = (β, σ,µw )

• generating W given X by linear discriminant analysis

P (W = w |X ; ζW ) ∝ exp(δw ,x) ζW = (π,µ,Σ)
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Properties

FCS-homo

• addresses the cluster structure

• assumes homoscedastic regression models

• required a pre-de�ned number of clusters

Can be easily modi�ed

• to account for heteroscedasticity (van Buuren, 2011)

• to improve sparsity (Zahid and Heumann, 2019)

• to address outliers (Templ et al., 2011)

• to use semi-parametric models (Morris et al., 2014)

• ...

Available in the R package clusterMI (Audigier, 2024)
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Analysis

Aim: From each each imputed data set Xm, compute a partition Ψm as
well as an associated instability measure Vm

• Ψm can be obtain
by any clustering
algorithm

• Vm assesses how the Voronoi tessellation
varies with the train sample for any clustering
algorithm

Following Fang and Wang (2012)

• generate C bootstrap pairs
(
Xc , X̃c

)
1≤c≤C

from X

• perform cluster analysis from(
Xc , X̃c

)
1≤c≤C

to obtain
(
Ψc , Ψ̃c

)
• classify individuals of X from Ψc and Ψ̃c to

obtain
(
Ψ′

c , Ψ̃′
c

)
• assess the instability V = 1

C

∑C
c=1

δ(Ψ′
c ,Ψ̃

′
c )

n2

Figure: Instability (V) according
to the number of clusters (K)
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Partitions pooling

Ψm the partition from
(
X obs ,Xmiss

m

)
, which average Ψ̂ for (Ψm)1≤m≤M?

With complete data Jain (2017) extended to partitions
• the expected mean • the mean estimate

arg min
Ψ∈Pn,K

∫
Pn,K

δα(Ψ⋆,Ψ)dπ(Ψ⋆)

with δ a dissimilarity, α ∈ N, Pn,K the set of
partitions of n observations in K clusters

arg min
Ψ∈Pn,K

J∑
j=1

δα(Ψ,Ψj) (1)

with (Ψj)1≤j≤J a set of observed parti-
tions

After MI

Ψ̂ = arg min
Ψ∈Pn,K

M∑
m=1

δα(Ψ,Ψm) (median partition problem)

Properties

• Theoretically appealing, but solving (1) is highly challenging

• Iterative algorithms are required (Vega-Pons and Ruiz-Shulcloper, 2011)
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Mirkin-based methods

δ chosen as the number of disagreements between partitions

δ (Ψ,Ψ′) =
∑

(i,i′) δii′ δii′ =


1 if i and i ′ belong to the same cluster

in one partition and not in the other
0 otherwise

Two methods can be exhibited

1 BOK: the space of solutions is constrained to (Ψm)1≤m≤M instead of Pn,K

2 SAOM: the BOK solution is improved by using stochastic relabeling of
individuals

Properties

• The error for the BOK solution does not exceed two times the error of
the optimal partition (Filkov and Skiena, 2004)

M∑
m=1

δ(ΨBOK ,Ψm) ≤ 2

M∑
m=1

δ(Ψopt ,Ψm)

• SAOM provides a better solution, but computationally intensive
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NMF-based methods

Non negative matrix factorization is powerful method widely used for
solving many optimization problems

Principle

• consider the Mirkin distance for δ

• rewrite the optimization problem in terms of connectivity matrices
(Um)1≤m≤M instead of partitions (Ψm)1≤m≤M

argmin
Ψ∈PK

n

M∑
m=1

δ(Ψ,Ψm) ⇐⇒ argmin
U∈U

∥ Ū−U ∥2F

with Ū = 1

M

∑M
m=1

Um

Properties

• can be solved using various algorithms (Lee and Seung, 2001; Li et al., 2007)

• monotone convergence

• no label switching problem, various choices for Km are available
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Instability after MI (Audigier and Niang, 2022)

Following Fang and Wang (2012), the within instability can be assessed
by

1

M

M∑
m=1

Vm

while the between instability can be computed by averaging the
proportions of disagreements

1

M2

M∑
m=1

M∑
m′=1

δ (Ψm,Ψm′) /n2

the total instability T is

T =
1

M

M∑
m=1

Vm +
1

M2

M∑
m=1

M∑
m′=1

δ (Ψm,Ψm′) /n2
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Properties

Based on a simulation study

• pooling partitions using NMF-based methods is less time

consuming and more accurate than Mirkin-based methods

• a larger value for M improves the partition accuracy (M ≈ 20)

• T provides an accurate estimate for the number of clusters

with missing values
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Simulation design: data generation

Complete data generation

• A base-case con�guration: GMM with K = 3 components

µ1 = (0, 0, 0, 0,∆,∆, 0,∆2)

µ2 = (0, 0, 0, 0,−∆,−∆,−∆, 0)

µ3 = (0, 0, 0, 0,−∆,∆,∆,−∆2)

Σk =


I4 0

0
1 ρ ρ ρ
ρ 1 ρ ρ
ρ ρ 1 ρ
ρ ρ ρ 1


nk = 250 (for all k in {1, 2, 3}), ∆ = 2 ρ = 0.3

• 10 other con�gurations varying: the separability between clusters, the number of
clusters, the cluster size, the balance between clusters sizes and the
heteroscedasticity.

Missing data generation

• MCAR: P(rij = 0) = τ ∀i , j
• MAR: P(rij = 0) = Φ(aτ + xi1) ∀j ̸= 1

• τ ∈ {10%, 25%, 40%}
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Evaluation

For each incomplete data set (200 per con�guration), 3 clustering
methods are applied: k-means, fuzzy c-means, clustering by GMM

MI1 is compared to competitive direct methods

• k-POD (Chi et al., 2016, The American Statistician) implemented
in the kpodclustr R package

• FCM by optimal completion strategy (Hathaway and Bezdek,
2001, IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics))

• Ignorable-GMM (Marbac et al., 2019, Journal of Classi�cation)
implemented in the VarSelLCM R package

Criteria: Adjusted Rand Index

1(JM-DP, M = 20, pooling by NMF)
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Results: base-case, MAR
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Results: base-case, MCAR

MCAR 10%MCAR 25%MCAR 40%

fulldirect MI fulldirect MI fulldirect MI

0.00

0.25

0.50

0.75

1.00

A
R

I

Method

full

direct

MI

model−I kmeans

MCAR 10%MCAR 25%MCAR 40%

fulldirect MI fulldirect MI fulldirect MI

0.00

0.25

0.50

0.75

1.00

A
R

I

Method

full

direct

MI

model−I cmeans

MCAR 10%MCAR 25%MCAR 40%

fulldirect MI fulldirect MI fulldirect MI

0.00

0.25

0.50

0.75

1.00

A
R

I

Method

full

direct

MI

model−I gmm

27 / 32



Introduction MI for clustering Simulation study Conclusion References

Summary

Based on simulated data under mixture model distribution

• MI outperforms direct methods for kmeans and fuzzy c means

• MI and direct methods provide similar ARI for GMM

• Di�erences between MI and direct method highlighted for

kmeans with more separated clusters

• Similar results by modifying the number of clusters, the cluster

size, the balance between clusters sizes and the

heteroscedasticity
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Real data sets

Data

Variables Size of cluster

n p Type Number for which K Silhouette (min) (max)

Shapiro rejects Index

normality

wine 178 13 Real 7 3 0.57 48 71

ovarian 216 100 Real 64 2 0.50 95 121

iris 150 4 Real 1 3 0.52 50 50

glass 214 9 Real 9 2 0.56 51 163

breast cancer 699 9 Discrete 9 2 0.59 241 458

• Gaussian assumption
seems not observed

• p large

• nk small compared to p

• partitions not obvious

Simulation design

Data sets generation

• 25% missing values (MCAR or
a MAR mechanism)

• 200 missing data patterns per
mechanism

Data sets analysis

• missing values are addressed by MI
(FCS-homo, M = 20)

• cluster analysis by k-means, fuzzy
c-means or GMM

• pooling using NMF
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Real data, MCAR
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Real data, MAR
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Take-home message

MI is a competitive method for addressing missing values in clustering

• for model-based or distance-based methods

• good performances on real data

In practice

• A suitable imputation model is required

• A large value for M is recommended

• The number of clusters can be easily estimated

• Mixed data can be handled

• Available in the clusterMI R package

Some perspectives

• Investigating other imputation models dedicated to large data sets

• Developing indices for clustering with missing values
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