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Introduction
e0

Clustering

Data X,xp = (xj) a matrix of numeric values
Each individual i belongs to a unique cluster C; € {1, ..., K}.

Aim identify C; for each i based on individual profiles (x;j)1<i<n

Methods
Distance-based Model-based
® k-means ® gaussian mixture models
¢ fuzzy C-means ® mixture of multivariate
° t-distributions

hierarchical clustering
® mixture of skew normal

® partitioning around medoids TR
distributions
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Clustering with missing values

However, X is frequently incomplete... x; = (x5, xis)
Ad-hoc methods Direct methods
® removing incomplete ® k-means (Chi et al., 2016; Honda et al., 2011,
observations Wagstaff, 2004)
® removing incomplete ® fuzzy C-means (Zhang et al., 2016; Hathaway
variables and Bezdek, 2001)
® single imputation ® gaussian mixture (Miao et al., 2016; Marbac

et al., 2019; McCaw et al., 2022)
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k-POD (Chi et al., 2016)

Chi et al. (2016) proposed a direct method for k-means clustering

k-means k-POD
arg min || X — AB |2 arg min || Pq (X)—Pq (AB) |2
Ac?,B AcH

)

® H set of membership matrices (n x k), Bxxp matrix of centers coordinates

|l . ||F Frobenius norm

Qc{1,....,n} x{1,...,p} — subset of the indices for observed entries

xij if (i,j) €Q

® Pq projection operator so that [Po(X)]; = { 0 otherwise

The criterion is optimised by alternating imputation by bx and kmeans
clustering

Available in the kpodclustr R package
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FCM by optimal completion strategy (Hathaway and Bezdek, 2001)

fuzzy c-means fuzzy c-means OCS
argmin argmin
n k B r,B,Xmiss
a i 2 obs miss 2
E Vii || xi = bi |[2 E Vi [ (%772, %) = b |12
i=1 k=1 i=1 k=1

with Tkxn = (Vi) degrees of membership; a fuzzification parameter

The criterion is optimised by alternating FCM and imputation by weighted
centers

Z(II xi — by ||z>f1
|Xr_b€ Hz

K K
X (Zw?;bkj>/(2w?;>
by ¢ (ZW?M)/(ZW?) =t =t
i=1 i=1
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lgnorable-GMM (Marbac et al., 2019)

Gaussian mixture models (GMM)

(x:0) = Zﬂkfk x; 0k) 0 = (ek)lgkgK 0k = (1, Zk)

Log-likelihood GMM Log-likelihood ignorable-GMM
Z/OgZ?TkakJ X,J ij) Z/OgZﬂ‘kakj X,J ij
i=1 i=1 = JjE€O;

O; C1,...,p the subset of variables indices that are observed for
individual 7

The criterion is optimised by using an EM algorithm
Available in the VarSelLCM R package
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Direct methods: pros and cons

Direct methods provide an elegant way to address missing values

However, the approach

® s not versatile

® has not been developed for all clustering methods
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Direct methods: pros and cons

Direct methods provide an elegant way to address missing values

However, the approach

® s not versatile

® has not been developed for all clustering methods

Multiple Imputation (Ml)
® a popular method to address missing values

e could be potentially used for any clustering method
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Multiple imputation (Rubin, 1987)

@ Generate a set of M parameters (,,);<,,<p Of an imputation
model to generate M plausible imputed data sets

f(Xmiss‘Xobs’gl) f<Xmi55‘XDb5>CM>
. | | I | |
M M M M M
e g u g g u g
n m m m m
I.. I.. I.. l.. I..
n . = . " = u
] ] ] ] ]
= = = = = = = =

® Fit the analysis model on each imputed data set: 17)m7\75r (ﬂzm)

© Combine the results using Rubin’s rules
A 1M 8
o 1/) = M Zm:l 1’/)m
LM o~ [ L v N
O T =52 my Var (L/)m) + W1 om=1 ('l/)m - @’7)
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Challenges in clustering

Ml is not tailored for cluster analysis
® How to impute the incomplete data set?
® How to assess a “variability” accounting for missing values?

® How to “average” partitions?

Some works on the “averaging” step
® by stacking (Plaehn, 2019)

® by using consensus clustering methods (Faucheux et al., 2020;
Bruckers et al., 2017; Basagana et al., 2013; Aschenbruck et al.,
2022)

Aim: highlighting how imputation, analysis and pooling steps
should be carried out
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Outline

@ Introduction

® Ml for clustering
Imputation
Analysis
Pooling

© Simulation study
Simulated data
Real data

O Conclusion

10/32



M1 for clustering
®00000

complete data

incomplete data

Imputation model for clustering: the issue

imputed data

® cluster 1
® cluster 2
cluster 3

® cluster 1
® cluster 2

cluster 3
® missing

® cluster 1
® cluster 2
cluster 3
imputed

T T T T T
2 4 6 e 10

T T
e 10

8 10
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JM-DP (Kim et al., 2014)

Joint Modeling based on Dirichlet Process mixture of products of multivariate normal distributions
Based on a Bayesian formulation
Pl Zk ~ N (po, M 12x) =y ~ W (df, G)
with diag(G) = (g1,---,8p) & ~ G (a0, bo)
me=vie [ (1= w)

<k

with { vk ~ Beta(1,a) and a ~ G(aa, ba) for k < K
vk =1

® parameters: ¢ = (7, i, 2)
® hyperparameters: h, wo, df, ag, bo, aa, ba
(Cm)1<me<p is generated using a Data-Augmentation algorithm
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Properties

JM-DP

® accounts for the heterogeneity
® accounts for the heteroscedasticity

® the number of clusters is only bounded
Modeling assumptions
® based on the normality assumption

Available in the DPImputeCont (Kim, 2020) and clusterMI (Audigier, 2024) R

packages
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Fully conditional specification

Instead of specifying one joint distribution f (X; (), a conditional
distribution is specified for each (incomplete) variable £ (X;|X_j; ¢;)

B £ (XX ¢) = N(XjB,0%) ¢ =(B,0)

To impute the mth data set

® initialize x™° for all i

e forjinl..p
a generate (; based on observed individuals on X;
b impute X/™** according to f (X;|X_;; ;)

® repeat until convergence
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FCS-homo (Audigier et al., 2021)

imputed data

-4 N o *.
Apste ,}ﬁ >
Addressing the issue by using regres- . ﬁ 2

sion models including the class vari-
able W as explanatory variable

® cluster 1
® cluster 2
cluster 3
imputed

FCS-homo

® generating Xf"’ss given W is performed using regression models
including a intercept specific to each cluster

f()<J|X_J7 W’CJ) :N(X_J‘,B+I,I,W7O'2) CJ = (/gagay’w)
e generating W given X by linear discriminant analysis

P(W =w[X;Cy) xexp(dwx) (= (mnX)
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Properties

FCS-homo
® addresses the cluster structure
® assumes homoscedastic regression models

® required a pre-defined number of clusters

Can be easily modified
® to account for heteroscedasticity (van Buuren, 2011)
® to improve sparsity (Zahid and Heumann, 2019)
® to address outliers (Templ et al., 2011)

® to use semi-parametric models (Morris et al., 2014)

Available in the R package clusterMI (Audigier, 2024)
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Analysis

Aim: From each each imputed data set X,,,, compute a partition WV, as
well as an associated instability measure V/,

e U, can be obtain e \/_ assesses how the Voronoi tessellation
by any clustering varies with the train sample for any clustering
algorithm algorithm

Following Fang and Wang (2012)

® generate C bootstrap pairs (XC,)N(C)
from X

e perform cluster analysis from =

(Xc, )N(c> to obtain (\UC, \TJC) / N
1<c<C ‘E

1<c<C

e classify individuals of X from W, and V. to
obtain (W’C,\I;’C)
® assess the instability V = & ZC 1 5(‘“;2‘”, <)
Figure: Instability (V) according

to the number of clusters (K) 17 /32
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Partitions pooling

W, the partition from (X°*, X7}, which average W for (Vim)1<mem?

With complete data Jain (2017) extended to partitions

® the expected mean ® the mean estimate
arg min/ 5 (W, W) dm (W) arg min»_6%(W,¥;) (1)
VEP, k P,k VEPnK 1o

with d a dissimilarity, @ € N, Py« the set of with (V;);_;_, a set of observed parti-
partitions of n observations in K clusters tions
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Partitions pooling

W, the partition from (X°*, X7}, which average W for (Vim)1<mem?

With complete data Jain (2017) extended to partitions

® the expected mean ® the mean estimate
arg min/ 5 (W, W) dm (W) arg min»_6%(W,¥;) (1)
ver,x JP, « VEPnK o1
with d a dissimilarity, @ € N, Py« the set of with (V;);_;_, a set of observed parti-
partitions of n observations in K clusters tions o
After Ml
N M
V= arg minz §*(V,V,,)  (median partition problem)
\UEP,,,K m—1
Properties

® Theoretically appealing, but solving (1) is highly challenging
® |terative algorithms are required (Vega-Pons and Ruiz-Shulcloper, 2011)
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Mirkin-based methods

0 chosen as the number of disagreements between partitions
1 if i and i’ belong to the same cluster
JUASE Z(i,i’) Oiir S = in one partition and not in the other
0 otherwise

Two methods can be exhibited
@ BOK: the space of solutions is constrained to (V1) ., -, instead of P, x

@® SAOM: the BOK solution is improved by using stochastic relabeling of
individuals

Properties

® The error for the BOK solution does not exceed two times the error of
the optimal partition (Filkov and Skiena, 2004)

M M
> 5(Waok, Vi) <2 6(Wopt, Vi)
m=1 m=1

® SAOM provides a better solution, but computationally intensive
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NMPF-based methods

Non negative matrix factorization is powerful method widely used for
solving many optimization problems
Principle

® consider the Mirkin distance for §

® rewrite the optimization problem in terms of connectivity matrices
(Um)i<m<n instead of partitions (V,,); e

M
argmin » §(V,V,)) <= argmin || U — U |2
VePK T Ueu

Properties

® can be solved using various algorithms (Lee and Seung, 2001; Li et al., 2007)

® monotone convergence

® no label switching problem, various choices for K, are available
20/ 32
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Instability after M| (Audigier and Niang, 2022)

Following Fang and Wang (2012), the within instability can be assessed
by

1M
w2 Vm
m=1
while the between instability can be computed by averaging the
proportions of disagreements

1 M M
7 SN (Wi V) /0

m=1m’'=1

the total instability T is

1 M 1 M M )
T:M;vaFWZ > (Vi Vo) /n

m=1m’'=1
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Properties

Based on a simulation study

® pooling partitions using NMF-based methods is less time
consuming and more accurate than Mirkin-based methods

® a larger value for M improves the partition accuracy (M = 20)

e T provides an accurate estimate for the number of clusters
with missing values
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Simulation design: data generation

Complete data generation

® A base-case configuration: GMM with K = 3 components

) 0

p1 = (0,0,0,0,A,A,0,A%) 1 p p p
= O p 1 p p

K2 = (0’07070’_A7_A’_A70) 1
> p P p
ps = (0,0,0,0,—A,A, A, —A?) oo p 1

ng = 250 (for all kin {1,2,3}), A=2p=0.3

® 10 other configurations varying: the separability between clusters, the number of
clusters, the cluster size, the balance between clusters sizes and the
heteroscedasticity.

Missing data generation
® MCAR: P(rj=0)=r7 Vi, j
® MAR: P(rj =0) = ®(ar + xj1) Vj#£1
® 7€ {10%,25%,40%}
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Evaluation

For each incomplete data set (200 per configuration), 3 clustering
methods are applied: k-means, fuzzy c-means, clustering by GMM

MI! is compared to competitive direct methods

e k-POD (Chi et al., 2016, The American Statistician) implemented
in the kpodclustr R package

* FCM by optimal completion strategy (Hathaway and Bezdek,
2001, /EEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics))

¢ Ignorable-GMM (Marbac et al., 2019, Journal of Classification)
implemented in the VarSelLCM R package

Criteria: Adjusted Rand Index

1(JM-DP, M = 20, pooling by NMF)
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Results: base-case, MAR

model-I kmeans model-I cmeans model-I gmm
MAR 10% MAR 25% MAR40% MAR 10% MAR 25% MAR 40% MAR10% MAR 25% MAR 40%

“Thaeek FRR A FRIRE e T PR T TR
AN . -

IR - -
<" i -direct

; =R

0.25

0.00
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Results: base-case, MCAR

model-I kmeans model-I cmeans model-I gmm
VICAR 10%VICAR 25% VICAR 40% WCAR 10% VICAR 25% VICAR 40% VCAR 10%VICAR 25% VICAR 40%
1‘001-_1.-?1- IJ—-;IT T T $-r TT-T-T+EL_HT

NI NS (L

Method

=g

& 050
< - direct

=R

0.25

0.00
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Summary

Based on simulated data under mixture model distribution
e Ml outperforms direct methods for kmeans and fuzzy ¢ means
e MI and direct methods provide similar ARI for GMM

e Differences between MI and direct method highlighted for
kmeans with more separated clusters

e Similar results by modifying the number of clusters, the cluster
size, the balance between clusters sizes and the
heteroscedasticity
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Real data sets

Data
Vet sworame © (aussian assumption
n P Type Number for which K Silhouette (min) (max)
Shapiro rejects Index seems not Observed
normality
wine 178 13 Real 7 3057 8 71 ®p Iarge
ovarian 216 100 Real 64 2 050 95 121
iris 150 4  Real 1 3 052 50 50 ® ny small compared top
glass 214 9 Real 9 2 056 51 163
breast cancer 699 9 Discrete 9 2 059 241 458 ° partItIOnS nOt ObViOUS
Simulation design
Data sets generation Data sets analysis

® 25% missing values (MCAR or  ® missing values are addressed by MI
a MAR mechanism) (FCS-homo, M = 20)

® 200 missing data patterns per o cluster analysis by k-means, fuzzy
mechanism c-means or GMM

® pooling using NMF
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Real data, MCAR

kmeans kmeans kmeans kmeans kmeans

iris ovarian wine glass cancer
1.00-
0.75- =-+= —_— =
0.50- i ®  p—— t
* —— T
0.25- +
0.00- ——
cmeans cmeans cmeans cmeans cmeans
iris ovarian wine glass cancer

$ -T-_I_ - direct
- ==

gmm gmm gmm gmm gmm

ARI
+
i
|
-+
LA
L0

iris ovarian wine cancer

glass

00-

_ ==

BT g T o -
25-

00- :

cooor
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Real data, MAR

kmeans kmeans kmeans kmeans kmeans

iris ovarian wine glass cancer
1.00-
0.75- -I- + — -
0.50- + + —
0.25- —_ B
0.00- —

cmeans cmeans cmeans cmeans cmeans

iris ovarian wine glass cancer
1.00- - Method
0.75- - °

& o50- + - —= * + $ + - - direct
<< —— .
0.25- § EEEH MI
0.00-
gmm gmm gmm gmm gmm

iris ovarian wine glass cancer
1.00-
0.75- + % +
0.50- } =f= — .;. E%E =B
0.25- —— s
0.00- s
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Take-home message

Ml is a competitive method for addressing missing values in clustering
® for model-based or distance-based methods
e good performances on real data
In practice
e A suitable imputation model is required
® A large value for M is recommended
® The number of clusters can be easily estimated
® Mixed data can be handled
® Available in the clusterMI R package
Some perspectives
® Investigating other imputation models dedicated to large data sets
e Developing indices for clustering with missing values
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https://CRAN.R-project.org/package=clusterMI

References

References |

Aschenbruck, R., Szepannek, G., and Wilhelm, A. F. X. (2022). Imputation strategies
for clustering mixed-type data with missing values. Journal of Classification,
40(1):2-24.

Audigier, V. (2024). clusterMI. R package version 1.2.1.

Audigier, V. and Niang, N. (2022). Clustering with missing data: which equivalent for
Rubin's rules? Advances in Data Analysis and Classification.

Audigier, V., Niang, N., and Resche-Rigon, M. (2021). Clustering with missing data:
which imputation model for which cluster analysis method?

Basagana, X., Barrera-Gomez, J., Benet, M., Anto, J. M., and Garcia-Aymerich, J.
(2013). A Framework for Multiple Imputation in Cluster Analysis. American
Journal of Epidemiology, 177(7):718-725.

Bruckers, L., Molenberghs, G., and Dendale, P. (2017). Clustering multiply imputed
multivariate high-dimensional longitudinal profiles. Biometrical Journal,
59(5):998-1015.

Chi, J. T., Chi, E. C., and Baraniuk, R. G. (2016). k-pod: A method for k-means
clustering of missing data. The American Statistician, 70(1):91-99.

Fang, Y. and Wang, J. (2012). Selection of the number of clusters via the bootstrap
method. Comput. Stat. Data Anal., 56(3):468-477.

32/32



References

References I

Faucheux, L., Resche-Rigon, M., Curis, E., Soumelis, V., and Chevret, S. (2020).
Clustering with missing and left-censored data: A simulation study comparing
multiple-imputation-based procedures. Biometrical Journal, n/a(n/a).

Filkov, V. and Skiena, S. (2004). Integrating microarray data by consensus clustering.
International Journal on Artificial Intelligence Tools, 13(04):863-880.

Hathaway, R. J. and Bezdek, J. C. (2001). Fuzzy c-means clustering of incomplete
data. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
31(5):735-744.

Honda, K., Nonoguchi, R., Notsu, A., and Ichihashi, H. (2011). Pca-guided k-means
clustering with incomplete data. In 2011 IEEE International Conference on Fuzzy
Systems (FUZZ-IEEE 2011), pages 1710-1714.

Jain, B. J. (2017). Consistency of mean partitions in consensus clustering. Pattern
Recognition, 71:26 — 35.

Kim, H. J. (2020). DPImputeCont. R package version 1.2.2.

Kim, H. J., Reiter, J. P., Wang, Q., Cox, L. H., and Karr, A. (2014). Multiple

imputation of missing or faulty values under linear constraints. Journal of Business
& Economic Statistics, 32(3):375-386.

32/32



References

References Il

Lee, D. and Seung, H. S. (2001). Algorithms for non-negative matrix factorization. In
Leen, T., Dietterich, T., and Tresp, V., editors, Advances in Neural Information
Processing Systems, volume 13. MIT Press.

Li, T., Ding, C., and Jordan, M. . (2007). Solving consensus and semi-supervised
clustering problems using nonnegative matrix factorization. In Proceedings of the
2007 Seventh IEEE International Conference on Data Mining, ICDM '07, page
577-582, USA. IEEE Computer Society.

Marbac, M., Sedki, M., and Patin, T. (2019). Variable selection for mixed data
clustering: application in human population genomics. Journal of Classification,
pages 1-19.

McCaw, Z. R., Aschard, H., and Julienne, H. (2022). Fitting gaussian mixture models
on incomplete data. BMC bioinformatics, 23(1):1-20.

Miao, W., Ding, P., and Geng, Z. (2016). Identifiability of normal and normal mixture
models with nonignorable missing data. Journal of the American Statistical
Association, 111(516):1673-1683.

Morris, T. P., White, I. R., and Royston, P. (2014). Tuning multiple imputation by
predictive mean matching and local residual draws. BMC medical research
methodology, 14(1):75.

32/32



References

References IV

Plaehn, D. (2019). Revisiting french tomato data: Cluster analysis with incomplete
data. Food Quality and Preference, 76:146 — 159.

Rubin, D. (1987). Multiple Imputation for Non-Response in Survey. Wiley, New-York.

Templ, M., Kowarik, A., and Filzmoser, P. (2011). lterative stepwise regression
imputation using standard and robust methods. Computational Statistics & Data
Analysis, 55(10):2793 — 2806.

van Buuren, S. (2011). Multiple imputation of multilevel data. In The Handbook of
Advanced Multilevel Analysis, chapter forthcoming. Routledge, Milton Park, UK.

Vega-Pons, S. and Ruiz-Shulcloper, J. (2011). A survey of clustering ensemble
algorithms. IJPRAI, 25(3):337-372.

Wagstaff, K. (2004). Clustering with missing values: No imputation required. In
Banks, D., McMorris, F. R., Arabie, P., and Gaul, W., editors, Classification,
Clustering, and Data Mining Applications, pages 649-658, Berlin, Heidelberg.
Springer Berlin Heidelberg.

Zahid, F. M. and Heumann, C. (2019). Multiple imputation with sequential penalized
regression. Statistical Methods in Medical Research, 28(5):1311-1327. PMID:
29451087.

Zhang, L., Lu, W,, Liu, X., Pedrycz, W., and Zhong, C. (2016). Fuzzy c-means
clustering of incomplete data based on probabilistic information granules of missing
values. Knowledge-Based Systems, 99:51-70.

32/32



	Introduction
	MI for clustering
	Simulation study
	Conclusion
	References

