Conclusion

V. Audigier, N. Niang

CNAM, CEDRIC-MSDMA, Paris

29èmes Rencontres de la SFC, September 12th, 2024

Clustering

Data $X_{n \times p} = (x_{ij})$ a matrix of numeric values

Each individual *i* belongs to a unique cluster $C_i \in \{1, ..., K\}$.

Aim identify C_i for each i based on individual profiles $(\mathbf{x}_i)_{1 \leq i \leq n}$

Methods

Distance-based

- k-means
- fuzzy C-means
- hierarchical clustering
- partitioning around medoids

Model-based

- gaussian mixture models
- mixture of multivariate t-distributions
- mixture of skew normal distributions

However, **X** is frequently incomplete... $\mathbf{x}_i = (\mathbf{x}_i^{obs}, \mathbf{x}_i^{miss})$

Ad-hoc methods

Introduction

- removing incomplete observations
- removing incomplete variables
- single imputation

Direct methods

- k-means (Chi et al., 2016; Honda et al., 2011; Wagstaff, 2004)
- fuzzy C-means (Zhang et al., 2016; Hathaway and Bezdek, 2001)
- gaussian mixture (Miao et al., 2016; Marbac et al., 2019; McCaw et al., 2022)

k-POD (Chi et al., 2016)

Chi et al. (2016) proposed a direct method for k-means clustering

k-means

k-POD

$$\underset{\mathbf{A}\in\mathcal{H}.\mathsf{B}}{\arg\min} \parallel \mathbf{X} - \mathbf{A}\mathbf{B} \parallel_{F}^{2} \qquad \underset{\mathbf{A}\in\mathcal{H}.\mathsf{B}}{\arg\min} \parallel P_{\Omega}(\mathbf{X}) - P_{\Omega}(\mathbf{A}\mathbf{B}) \parallel_{F}^{2}$$

- \mathcal{H} set of membership matrices $(n \times \kappa)$, $\mathbf{B}_{K \times p}$ matrix of centers coordinates
- || . || Frobenius norm
- $\Omega \subset \{1,\ldots,n\} imes \{1,\ldots,p\} o$ subset of the indices for observed entries
- P_{Ω} projection operator so that $[P_{\Omega}(\mathbf{X})]_{ij} = \left\{egin{array}{l} x_{ij} & ext{if } (i,j) \in \Omega \\ 0 & ext{otherwise} \end{array}
 ight.$

The criterion is optimised by alternating imputation by b_k and kmeans clustering

Available in the **kpodclustr** R package

FCM by optimal completion strategy (Hathaway and Bezdek, 2001)

fuzzy c-means

fuzzy c-means OCS

with $\Gamma_{K \times n} = (\gamma_{ki})$ degrees of membership; α fuzzification parameter

The criterion is optimised by alternating FCM and imputation by weighted centers

$$\gamma_{ki}^{\alpha} \leftarrow 1 / \sum_{\ell=1}^{K} \left(\frac{\| \mathbf{x}_{i} - \mathbf{b}_{k} \|_{2}^{2}}{\| \mathbf{x}_{i} - \mathbf{b}_{\ell} \|_{2}^{2}} \right)^{\frac{1}{\alpha - 1}} \\
b_{kj} \leftarrow \left(\sum_{i=1}^{n} \gamma_{ki}^{\alpha} x_{ij} \right) / \left(\sum_{i=1}^{n} \gamma_{ki}^{\alpha} \right) \\$$

$$x_{ij}^{miss} \leftarrow \left(\sum_{k=1}^{K} \gamma_{ki}^{\alpha} b_{kj} \right) / \left(\sum_{k=1}^{K} \gamma_{ki}^{\alpha} \right) \\$$

Ignorable-GMM (Marbac et al., 2019)

Gaussian mixture models (GMM)

$$f(x; \theta) = \sum_{k=1}^{K} \pi_k f_k(x; \theta_k) \qquad \theta = (\theta_k)_{1 \le k \le K}, \theta_k = (\mu_k, \Sigma_k)$$

Log-likelihood GMM

Log-likelihood ignorable-GMM

$$\sum_{i=1}^{n} \log \sum_{k=1}^{K} \pi_{k} \prod_{j=1}^{p} f_{kj}(x_{ij}; \theta_{kj}) \qquad \sum_{i=1}^{n} \log \sum_{k=1}^{K} \pi_{k} \prod_{j \in O_{i}} f_{kj}(x_{ij}; \theta_{kj})$$

 $O_i \subseteq 1, \ldots, p$ the subset of variables indices that are observed for individual i

The criterion is optimised by using an EM algorithm

Available in the VarSelLCM R package

Direct methods: pros and cons

Direct methods provide an elegant way to address missing values

However, the approach

- is not versatile
- has not been developed for all clustering methods

Multiple Imputation (MI)

- a popular method to address missing values
- could be potentially used for any clustering method

Direct methods: pros and cons

Direct methods provide an elegant way to address missing values

However, the approach

- is not versatile
- has not been developed for all clustering methods

Multiple Imputation (MI)

- a popular method to address missing values
- could be potentially used for any clustering method

Multiple imputation (Rubin, 1987)

① Generate a set of M parameters $(\zeta_m)_{1 \leq m \leq M}$ of an imputation model to generate M plausible imputed data sets

$$f\left(X^{miss}|X^{obs},\zeta_{\mathbf{1}}\right)$$
 ... $f\left(X^{miss}|X^{obs},\zeta_{M}\right)$

- 2 Fit the analysis model on each imputed data set: $\hat{\psi}_m, \widehat{\mathrm{Var}}\left(\hat{\psi}_m\right)$
- 3 Combine the results using Rubin's rules

$$\mathbf{1} \hat{\boldsymbol{\psi}} = \frac{1}{M} \sum_{m=1}^{M} \hat{\boldsymbol{\psi}}_{m}$$

2
$$T = \frac{1}{M} \sum_{m=1}^{M} \widehat{\text{Var}} \left(\hat{\psi}_m \right) + \frac{1}{M-1} \sum_{m=1}^{M} \left(\hat{\psi}_m - \hat{\psi} \right)^2$$

Challenges in clustering

MI is not tailored for cluster analysis

- How to impute the incomplete data set?
- How to assess a "variability" accounting for missing values?
- How to "average" partitions?

Some works on the "averaging" step

- by stacking (Plaehn, 2019)
- by using consensus clustering methods (Faucheux et al., 2020; Bruckers et al., 2017; Basagana et al., 2013; Aschenbruck et al., 2022)

Aim: highlighting how imputation, analysis and pooling steps should be carried out

Introduction

Outline

- Introduction
- 2 MI for clustering Imputation Analysis Pooling
- 3 Simulation study Simulated data Real data
- 4 Conclusion

Imputation model for clustering: the issue

JM-DP (Kim et al., 2014)

Joint Modeling based on Dirichlet Process mixture of products of multivariate normal distributions

Based on a Bayesian formulation

$$egin{aligned} \mu_k | \Sigma_k &\sim \mathcal{N}\left(\mu_0, h^{-1}\Sigma_k
ight) \quad \Sigma_k &\sim \mathcal{W}^{-1}\left(df, G
ight) \ & ext{with } diag(G) = (g_1, ..., g_p) \ g_j &\sim \mathcal{G}\left(a_0, b_0
ight) \ &\pi_k = v_k \prod_{\ell < k} \left(1 - v_\ell
ight) \end{aligned}$$

- parameters: $\zeta = (\pi, \mu, \Sigma)$
- hyperparameters: h, μ_0 , df, a_0 , b_0 , a_{α} , b_{α}

 $(\zeta_m)_{1 \leq m \leq M}$ is generated using a Data-Augmentation algorithm

Introduction

Properties

JM-DP

- accounts for the heterogeneity
- accounts for the heteroscedasticity
- the number of clusters is only bounded

Modeling assumptions

based on the normality assumption

Available in the **DPImputeCont** (Kim, 2020) and **clusterMI** (Audigier, 2024) R packages

Fully conditional specification

Instead of specifying one joint distribution $f(X;\zeta)$, a conditional distribution is specified for each (incomplete) variable $f(X_j|X_{-j};\zeta_j)$

Ex:
$$f(X_j|X_{-j};\zeta_j) = \mathcal{N}(X_{-j}\beta,\sigma^2)$$
 $\zeta_j = (\beta,\sigma)$

To impute the *m*th data set

- initialize \mathbf{x}_{i}^{miss} for all i
- for j in 1 ... p
 - a generate ζ_i based on observed individuals on X_i
 - b impute X_i^{miss} according to $f(X_j|X_{-j};\zeta_i)$
- repeat until convergence

Introduction

FCS-homo (Audigier et al., 2021)

Addressing the issue by using regression models including the class variable W as explanatory variable

FCS-homo

Simulation study

• generating X_i^{miss} given W is performed using regression models including a intercept specific to each cluster

$$f(X_j|X_{-j}, W; \zeta_j) = \mathcal{N}(X_{-j}\beta + \mu_w, \sigma^2) \quad \zeta_j = (\beta, \sigma, \mu_w)$$

 \bullet generating W given X by linear discriminant analysis

$$\mathbb{P}(W = w | X; \zeta_W) \propto exp(\delta_{w,x}) \qquad \zeta_W = (\pi, \mu, \Sigma)$$

FCS-homo

- addresses the cluster structure
- assumes homoscedastic regression models
- required a pre-defined number of clusters

Can be easily modified

- to account for heteroscedasticity (van Buuren, 2011)
- to improve sparsity (Zahid and Heumann, 2019)
- to address outliers (Templ et al., 2011)
- to use semi-parametric models (Morris et al., 2014)
- •

Available in the R package clusterMI (Audigier, 2024)

Analysis

Aim: From each each imputed data set X_m , compute a partition Ψ_m as well as an associated instability measure V_m

- Ψ_m can be obtain by any clustering algorithm
- V_m assesses how the Voronoi tessellation varies with the train sample for any clustering algorithm

Following Fang and Wang (2012)

- generate C bootstrap pairs $\left(\mathbf{X}_c, \tilde{\mathbf{X}}_c\right)_{1 \leq c \leq C}$ from \mathbf{X}
- perform cluster analysis from $\left(\mathbf{X}_{c}, \tilde{\mathbf{X}}_{c}\right)_{1 \leq c \leq C}$ to obtain $\left(\Psi_{c}, \tilde{\Psi}_{c}\right)$
- classify individuals of **X** from Ψ_c and $\tilde{\Psi}_c$ to obtain $\left(\Psi_c',\tilde{\Psi}_c'\right)$
- assess the instability $V=rac{1}{C}\sum_{c=1}^Crac{\delta(\Psi_c',\tilde{\Psi'}_c)}{n^2}$

Figure: Instability (V) according to the number of clusters (K) 17/32

Partitions pooling

 Ψ_m the partition from (X^{obs}, X_m^{miss}) , which average $\widehat{\Psi}$ for $(\Psi_m)_{1 \leq m \leq M}$?

With complete data Jain (2017) extended to partitions

• the expected mean

$$\mathop{\mathsf{arg~min}}_{\Psi \in \mathcal{P}_{n,K}} \int_{\mathcal{P}_{n,K}} \delta^{\alpha}(\Psi^{\star},\Psi) d\pi(\Psi^{\star})$$

• the mean estimate $\underset{\Psi \in \mathcal{P}_{n,K}}{arg \ min} \sum_{i=1}^{n} \delta^{\alpha}(\Psi, \Psi_{j}) \qquad (1)$

with δ a dissimilarity, $\alpha \in \mathbb{N}$, $\mathcal{P}_{n,K}$ the set of with $(\Psi_j)_{1 \leq j \leq J}$ a set of observed partipartitions of n observations in K clusters tions

After MI

$$\widehat{\Psi} = \underset{\Psi \in \mathcal{P}_{n,K}}{\text{min}} \sum_{m=1}^{M} \delta^{\alpha}(\Psi, \Psi_m) \quad (\textit{median partition problem})$$

Properties

- Theoretically appealing, but solving (1) is highly challenging
- Iterative algorithms are required (Vega-Pons and Ruiz-Shulcloper, 2011)

Partitions pooling

 Ψ_m the partition from (X^{obs}, X_m^{miss}) , which average $\widehat{\Psi}$ for $(\Psi_m)_{1 \leq m \leq M}$?

With complete data Jain (2017) extended to partitions

the expected mean

$$\underset{\Psi \in \mathcal{P}_{n,K}}{\text{arg min}} \int_{\mathcal{P}_{n,K}} \delta^{\alpha}(\Psi^{\star}, \Psi) d\pi(\Psi^{\star})$$

with δ a dissimilarity, $\alpha \in \mathbb{N}$, $\mathcal{P}_{n,K}$ the set of with $(\Psi_j)_{1 \leq j \leq J}$ a set of observed partipartitions of n observations in K clusters tions

After MI

$$\widehat{\Psi} = \underset{\Psi \in \mathcal{P}_{n,K}}{\min} \sum_{m=1}^{M} \delta^{\alpha}(\Psi, \Psi_m) \quad \text{(median partition problem)}$$

Properties

- Theoretically appealing, but solving (1) is highly challenging
- Iterative algorithms are required (Vega-Pons and Ruiz-Shulcloper, 2011)

Mirkin-based methods

 δ chosen as the number of disagreements between partitions

$$\delta\left(\Psi,\Psi'\right) = \sum_{(i,i')} \delta_{ii'} \qquad \qquad \delta_{ii'} = \begin{cases} 1 & \text{if } i \text{ and } i' \text{ belong to the same cluster} \\ & \text{in one partition and not in the other} \\ 0 & \textit{otherwise} \end{cases}$$

Two methods can be exhibited

- 1 BOK: the space of solutions is constrained to $(\Psi_m)_{1 \le m \le M}$ instead of $\mathcal{P}_{n,K}$
- 2 SAOM: the BOK solution is improved by using stochastic relabeling of individuals

Properties

 The error for the BOK solution does not exceed two times the error of the optimal partition (Filkov and Skiena, 2004)

$$\sum_{m=1}^{M} \delta(\Psi_{BOK}, \Psi_{m}) \leq 2 \sum_{m=1}^{M} \delta(\Psi_{opt}, \Psi_{m})$$

SAOM provides a better solution, but computationally intensive

NMF-based methods

Non negative matrix factorization is powerful method widely used for solving many optimization problems

Principle

ullet consider the Mirkin distance for δ

MI for clustering

 rewrite the optimization problem in terms of connectivity matrices $(U_m)_{1 < m < M}$ instead of partitions $(\Psi_m)_{1 < m < M}$

$$\underset{\Psi \in \mathcal{P}_{\kappa}^{K}}{\operatorname{argmin}} \sum_{m=1}^{M} \delta(\Psi, \Psi_{m}) \Longleftrightarrow \underset{\mathbf{U} \in \mathcal{U}}{\operatorname{argmin}} \parallel \bar{\mathbf{U}} - \mathbf{U} \parallel_{F}^{2}$$

with
$$\bar{\mathbf{U}} = \frac{1}{M} \sum_{m=1}^{M} \mathbf{U}_{m}$$

Properties

- can be solved using various algorithms (Lee and Seung, 2001; Li et al., 2007)
- monotone convergence
- no label switching problem, various choices for K_m are available

Instability after MI (Audigier and Niang, 2022)

Following Fang and Wang (2012), the within instability can be assessed by

$$\frac{1}{M} \sum_{m=1}^{M} V_{m}$$

while the **between instability** can be computed by averaging the proportions of disagreements

$$\frac{1}{M^2} \sum_{m=1}^{M} \sum_{m'=1}^{M} \delta\left(\mathbf{\Psi}_{m}, \mathbf{\Psi}_{m'}\right) / n^2$$

the total instability T is

$$T = \frac{1}{M} \sum_{m=1}^{M} \frac{\mathbf{V_m}}{\mathbf{V_m}} + \frac{1}{M^2} \sum_{m=1}^{M} \sum_{m'=1}^{M} \delta\left(\mathbf{\Psi_m}, \mathbf{\Psi_{m'}}\right) / n^2$$

Properties

Based on a simulation study

 pooling partitions using NMF-based methods is less time consuming and more accurate than Mirkin-based methods

- a larger value for M improves the partition accuracy ($M \approx 20$)
- T provides an accurate estimate for the number of clusters with missing values

Outline

Introduction

- Introduction
- MI for clustering Imputation Analysis Pooling
- Simulation study Simulated data Real data
- 4 Conclusion

Simulation design: data generation

Complete data generation

Introduction

A base-case configuration: GMM with K=3 components

$$n_k = 250$$
 (for all k in $\{1, 2, 3\}$), $\Delta = 2$ $\rho = 0.3$

10 other configurations varying: the separability between clusters, the number of clusters, the cluster size, the balance between clusters sizes and the heteroscedasticity.

Missing data generation

• MCAR:
$$\mathbb{P}(r_{ii} = 0) = \tau$$
 $\forall i, j$

• MCAR:
$$\mathbb{P}(r_{ij} = 0) = \tau$$
 $\forall i, j$
• MAR: $\mathbb{P}(r_{ij} = 0) = \Phi(a_{\tau} + x_{i1})$ $\forall j \neq 1$

• $\tau \in \{10\%, 25\%, 40\%\}$

Conclusion

Introduction

For each incomplete data set (200 per configuration), 3 clustering methods are applied: k-means, fuzzy c-means, clustering by GMM

MI¹ is compared to competitive direct methods

- k-POD (Chi et al., 2016, The American Statistician) implemented in the kpodclustr R package
- FCM by optimal completion strategy (Hathaway and Bezdek, 2001, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics))
- Ignorable-GMM (Marbac et al., 2019, Journal of Classification) implemented in the VarSelLCM R package

Criteria: Adjusted Rand Index

 $^{^{1}(}JM-DP, M = 20, pooling by NMF)$

Results: base-case, MAR

Results: base-case, MCAR

<u>'Su</u>mmary

Based on simulated data under mixture model distribution

- MI outperforms direct methods for kmeans and fuzzy c means
- MI and direct methods provide similar ARI for GMM
- Differences between MI and direct method highlighted for kmeans with more separated clusters
- Similar results by modifying the number of clusters, the cluster size, the balance between clusters sizes and the heteroscedasticity

Real data sets

Data

	Varia bles						Size of cluster	
	п	p	Туре	Number for which Shapiro rejects normality	K	Silhouette Index	(min)	(max)
wine	178	13	Real	7	3	0.57	48	71
ovarian	216	100	Real	64	2	0.50	95	121
iris	150	4	Real	1	3	0.52	50	50
glass	214	9	Real	9	2	0.56	51	163
breast cancer	699	9	Discrete	9	2	0.59	241	458

- Gaussian assumption seems not observed
- p large
- n_k small compared to p
- partitions not obvious

Simulation design

Data sets generation

- 25% missing values (MCAR or a MAR mechanism)
- 200 missing data patterns per mechanism

Data sets analysis

- missing values are addressed by MI (FCS-homo, M = 20)
- cluster analysis by k-means, fuzzy c-means or GMM
- pooling using NMF

Real data, MAR

Take-home message

MI is a competitive method for addressing missing values in clustering

- for model-based or distance-based methods
- good performances on real data

In practice

- A suitable imputation model is required
- A large value for M is recommended
- The number of clusters can be easily estimated
- Mixed data can be handled
- Available in the clusterMI R package

Some perspectives

- Investigating other imputation models dedicated to large data sets
- Developing indices for clustering with missing values

References I

Introduction

- Aschenbruck, R., Szepannek, G., and Wilhelm, A. F. X. (2022). Imputation strategies for clustering mixed-type data with missing values. *Journal of Classification*, 40(1):2–24.
- Audigier, V (2024) clusterMI R package version 1.2.1.
- Audigier, V. and Niang, N. (2022). Clustering with missing data: which equivalent for Rubin's rules? Advances in Data Analysis and Classification.
- Audigier, V., Niang, N., and Resche-Rigon, M. (2021). Clustering with missing data: which imputation model for which cluster analysis method?
- Basagana, X., Barrera-Gomez, J., Benet, M., Anto, J. M., and Garcia-Aymerich, J. (2013). A Framework for Multiple Imputation in Cluster Analysis. *American Journal of Epidemiology*, 177(7):718–725.
- Bruckers, L., Molenberghs, G., and Dendale, P. (2017). Clustering multiply imputed multivariate high-dimensional longitudinal profiles. *Biometrical Journal*, 59(5):998–1015.
- Chi, J. T., Chi, E. C., and Baraniuk, R. G. (2016). k-pod: A method for k-means clustering of missing data. *The American Statistician*, 70(1):91-99.
- Fang, Y. and Wang, J. (2012). Selection of the number of clusters via the bootstrap method. *Comput. Stat. Data Anal.*, 56(3):468-477.

Introduction

ererences ii

- Faucheux, L., Resche-Rigon, M., Curis, E., Soumelis, V., and Chevret, S. (2020). Clustering with missing and left-censored data: A simulation study comparing multiple-imputation-based procedures. *Biometrical Journal*, n/a(n/a).
- Filkov, V. and Skiena, S. (2004). Integrating microarray data by consensus clustering. *International Journal on Artificial Intelligence Tools*, 13(04):863–880.
- Hathaway, R. J. and Bezdek, J. C. (2001). Fuzzy c-means clustering of incomplete data. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 31(5):735-744.
- Honda, K., Nonoguchi, R., Notsu, A., and Ichihashi, H. (2011). Pca-guided k-means clustering with incomplete data. In 2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011), pages 1710–1714.
- Jain, B. J. (2017). Consistency of mean partitions in consensus clustering. Pattern Recognition, 71:26 – 35.
- Kim, H. J. (2020). DPImputeCont. R package version 1.2.2.
- Kim, H. J., Reiter, J. P., Wang, Q., Cox, L. H., and Karr, A. (2014). Multiple imputation of missing or faulty values under linear constraints. *Journal of Business & Economic Statistics*, 32(3):375–386.

Introduction

- Lee, D. and Seung, H. S. (2001). Algorithms for non-negative matrix factorization. In Leen, T., Dietterich, T., and Tresp, V., editors, Advances in Neural Information Processing Systems, volume 13. MIT Press.
- Li, T., Ding, C., and Jordan, M. I. (2007). Solving consensus and semi-supervised clustering problems using nonnegative matrix factorization. In Proceedings of the 2007 Seventh IEEE International Conference on Data Mining, ICDM '07, page 577-582, USA. IEEE Computer Society.
- Marbac, M., Sedki, M., and Patin, T. (2019). Variable selection for mixed data clustering: application in human population genomics. Journal of Classification, pages 1-19.
- McCaw, Z. R., Aschard, H., and Julienne, H. (2022). Fitting gaussian mixture models on incomplete data. BMC bioinformatics, 23(1):1-20.
- Miao, W., Ding, P., and Geng, Z. (2016). Identifiability of normal and normal mixture models with nonignorable missing data. Journal of the American Statistical Association, 111(516):1673-1683.
- Morris, T. P., White, I. R., and Royston, P. (2014). Tuning multiple imputation by predictive mean matching and local residual draws. BMC medical research methodology, 14(1) 75.

data. Food Quality and Preference, 76:146 - 159.

Conclusion

Introduction

Plaehn, D. (2019). Revisiting french tomato data: Cluster analysis with incomplete

- Rubin, D. (1987). Multiple Imputation for Non-Response in Survey. Wiley, New-York.
- Templ, M., Kowarik, A., and Filzmoser, P. (2011). Iterative stepwise regression imputation using standard and robust methods. Computational Statistics & Data Analysis, 55(10):2793 - 2806.
- van Buuren, S. (2011). Multiple imputation of multilevel data. In The Handbook of Advanced Multilevel Analysis, chapter forthcoming. Routledge, Milton Park, UK.
- Vega-Pons, S. and Ruiz-Shulcloper, J. (2011). A survey of clustering ensemble algorithms. IJPRAI, 25(3):337-372.
- Wagstaff, K. (2004). Clustering with missing values: No imputation required. In Banks, D., McMorris, F. R., Arabie, P., and Gaul, W., editors, Classification, Clustering, and Data Mining Applications, pages 649-658, Berlin, Heidelberg. Springer Berlin Heidelberg.
- Zahid, F. M. and Heumann, C. (2019). Multiple imputation with sequential penalized regression. Statistical Methods in Medical Research, 28(5):1311-1327. PMID: 29451087
- Zhang, L., Lu, W., Liu, X., Pedrycz, W., and Zhong, C. (2016). Fuzzy c-means clustering of incomplete data based on probabilistic information granules of missing values. Knowledge-Based Systems, 99:51-70.