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Abstract

End-to-end neural diarization models have usually relied on a
multilabel-classification formulation of the speaker diarization
problem. Recently, we proposed a powerset multiclass formu-
lation that has beaten the state-of-the-art on multiple datasets.
In this paper, we propose to study the calibration of a pow-
erset speaker diarization model, and explore some of its uses.
We study the calibration in-domain, as well as out-of-domain,
and explore the data in low-confidence regions. The reliabil-
ity of model confidence is then tested in practice: we use the
confidence of the pretrained model to selectively create train-
ing and validation subsets out of unannotated data, and com-
pare this to random selection. We find that top-label confidence
can be used to reliably predict high-error regions. Moreover,
training on low-confidence regions provides a better calibrated
model, and validating on low-confidence regions can be more
annotation-efficient than random regions.
Index Terms: speaker diarization, calibration, powerset classi-
fication

1. Introduction
The speaker diarization task can be defined as taking an audio
excerpt and answering the question “who spoke when?”, with-
out concern for the exact identities of the speakers. Solving this
task provides the exact beginning and end of each speaker turn,
which proves very useful when combined with other tasks out-
put such as transcribed text.

Classifiers usually provide some notion of “confidence”
along with the predicted output. In an ideal world, confidence
would always be linked to the epistemic or aleatoric uncertainty.
However, deep learning classifiers are famously overconfident
and predict high probabilities for unknown classes and classes
where the model is wrong [1]. Despite these limitations, model
output probabilities are still one of the only tools available to
estimate uncertainty contained in the predictions of deep learn-
ing models. This has led to a number of different usages: out-
of-domain detection [2], semi-supervised learning [3], or active
learning.

Research on the calibration of End-to-end Neural Diariza-
tion (EEND) models and its application is lacking. The goal of
this paper is to study the calibration of the powerset speaker
diarization model proposed in [4], and to use model confi-
dence to select data of interest for training and validation pur-
poses. We study in detail the calibration of the model on in-
domain and out-of-domain data, and observe what kind of data
is represented in low confidence predictions. Moreover, we
study the selection of low-data validation and training set with
confidence-based strategies.

2. Model calibration
In a multiclass setting, a model is deemed “top-label-calibrated”
if the maximum of its output scores (the score of the predicted
class) is equal to the probability of it being the correct pre-
diction. For example, a top-label-calibrated model outputting
probabilities (c1, c2, c3) = (0.7, 0.1, 0.2) has a 70% chance of
being correct about c1 being the correct class. Stricter defini-
tions of calibration exist, such as classwise-calibrated [5] and
jointly-calibrated [6], but they are out of the scope of this paper.

There is no easy way to guarantee a degree of model cal-
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Figure 1: Calibration error as a function of the DER of the pow-
erset segmentation model. In-domain datasets (top figure) are
plotted with blue circles, out-of-domain datasets (bottom figure)
are plotted with red diamonds. To give a frame of reference, the
blue circles of in-domain datasets are also overlayed in trans-
parency on the bottom figure.
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Figure 2: Best and worst in-domain calibration, measured by
ECE. The left column is a classical reliability diagram, a perfect
ECE would mean no “difference to mean confidence“ in every
bin, resulting in a diagonal plot. The right column is the same
plot but with DER instead of classification error.

ibration in deep learning. Models are not designed to achieve
top-label-calibration, and tend to be naturally overconfident [1].
There are two main ways to approach top-label-calibration: en-
courage better calibration during training, and post-hoc cali-
bration methods [7]. Training-time calibration methods are di-
verse and encompass regularization methods [8] or loss modifi-
cations [9]. Simple post-hoc calibration methods work well [1],
but are very sensitive to data shift: calibrating on a domain
will only help on data that is part of, or very close to this do-
main [10]. This means that it is extremely difficult to design a
model that is calibrated on any data it encounters: “top-label-
calibration” is not free and has huge annotation cost.

We study the “top-label-calibration” of the local speaker di-
arization model proposed in [4]. To do so, we trained a standard
powerset PyanNet model with classes for at most 2 simultane-
ous speakers, and up to 3 distinct speakers in 5s chunks. The
model is trained until convergence after 89 hours of training on
a single NVIDIA V100 GPU. We rely on a compound train-
ing dataset made of the concatenation of the training subsets of
AISHELL-4 [11], AliMeeting [12], AMI [13], AVA-AVD [14],
CallHome [15], Displace [16], Ego4D [17], MSDWild [18],
MagicData-RAMC [19], REPERE [20], and VoxConverse [21].
Any of the test subsets from the compound dataset is consid-
ered as “in-domain”. We use the 11 distinct sub-domains of
DIHARD 3 [22] dataset as “out-of-domain” datasets (i.e. that
have never been seen during training).

In the spirit of reproducible research, all relevant model
checkpoints, metrics, metadata and code are available at
github.com/FrenchKrab/IS2024-powerset-calibration.

2.1. Metrics

In-domain performance is assessed with two metrics: diariza-
tion error rate (DER) and expected calibration error (ECE).

0.1
4

0.2
3

0.3
1 0.4 0.4

9
0.5

7
0.6

6
0.7

4
0.8

3
0.9

1 1.0

Confidence bins

0.0

20.0

40.0

60.0

80.0

100.0

Cl
as

sif
ica

tio
n 

er
ro

r (
%

)

0.00 0.24 1.42 3.34
6.32 6.49 6.96 8.20

11.80

55.21

Accuracy: 83.68% ; ECE: 1.37%
Classification error
Data distribution
Difference to mean confidence

0.1
4

0.2
3

0.3
1 0.4 0.4

9
0.5

7
0.6

6
0.7

4
0.8

3
0.9

1 1.0

Confidence bins

0.0

20.0

40.0

60.0

80.0

100.0

Di
ar

iza
tio

n 
er

ro
r r

at
e 

(%
)

0.00 0.24 1.42 3.34
6.32 6.49 6.96 8.20

11.80

55.21

DER: 16.47% (7.98% / 5.95% / 2.54%)
False alarm
Miss
Confusion
Data distribution

DIHARD cts (test)

0.1
4

0.2
3

0.3
1 0.4 0.4

9
0.5

7
0.6

6
0.7

4
0.8

3
0.9

1 1.0

Confidence bins

0.0

20.0

40.0

60.0

80.0

100.0

Cl
as

sif
ica

tio
n 

er
ro

r (
%

)

0.02 0.59
2.61

5.14
7.44 7.72 8.42 9.92

14.13

44.01

Accuracy: 64.26% ; ECE: 16.63%
Classification error
Data distribution
Difference to mean confidence

0.1
4

0.2
3

0.3
1 0.4 0.4

9
0.5

7
0.6

6
0.7

4
0.8

3
0.9

1 1.0

Confidence bins

0.0

20.0

40.0

60.0

80.0

100.0

Di
ar

iza
tio

n 
er

ro
r r

at
e 

(%
)

0.02 0.59
2.61

5.14
7.44 7.72 8.42 9.92

14.13

44.01

DER: 39.70% (11.43% / 21.19% / 7.08%)
False alarm
Miss
Confusion
Data distribution

DIHARD meeting (test)

Figure 3: Reliability diagram and binwise DER distributions
for the best and worst calibrated domains in DIHARD.

To compute ECE, model predictions are grouped by their
confidence into different bins. As the powerset model outputs
softmax probabilities, we define the confidence as the probabil-
ity of the predicted class. ECE is defined as:

ECE =

B∑
i=0

prop(bi) · |acc(bi)− conf(bi)|

Where prop(bi) is the proportion of predictions in bin bi, and
acc(bi) and conf(bi) the average accuracy and confidence in bi.
Multiple binning schemes and distances |acc(bi) − conf(bi)|
can be used. In our experiments and figures, we use N = 10
bins uniformly distributed in [ 1

class count ; 1], and the L1 distance.
We experimented with Adaptive ECE (where all bins contain
the same number of samples), and varied the bin size from 10
to 20, but we did not find any meaningful differences and hence
we do not report the different variants.

The DER is a standard speaker diarization metric defined as

DER =
False alarm + Missed detection + Speaker confusion

Total speech

It is commonly expressed in percentages but can go over 100%
as false alarm can exceed the total duration of speech.

Since our focus is the local segmentation model working on
5 seconds chunks only, we disregard the usual subsequent steps
of the diarization pipeline (embedding extraction and cluster-
ing) [23]. Metrics are directly computed on the (sliding) out-
puts of the local segmentation model after each window has
been aligned with the reference. We call this “local DER” and
it should not be compared to the values of DER that are usually
reported in the literature.

2.2. In-domain and out-of-domain calibration

The ECE and DER on the test subsets of all datasets are shown
in Figure 1. We observe some correlation between DER and
ECE: domains with higher DER tend to have higher ECE as
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Figure 4: Composition of the diarization error rate when sam-
pling 5 seconds chunks, lowest confidence chunks are selected
first. The dashed lines show the composition of the DER on the
whole test set.

well. On in-domain datasets, the ECE goes up to 4.3% on AVA-
AVD with a DER of 35%, the worst performing dataset DER-
wise and ECE-wise. However, most out-of-domain datasets are
badly calibrated, only 4 out of 11 are under 4.3% ECE. And, un-
surprisingly, the DER is also worse on out-of-domain datasets.

The left row of Figure 2 shows reliability diagrams on a
couple of in-domain datasets. On AISHELL, the model has
nearly perfect calibration (the best out of all tested in-domain
datasets): the model confidence matches its average accuracy
very well. Even though AVA-AVD is the in-domain dataset
where the model has the worst calibration, it is still fairly low
with only 4.30%. However, we can see a trend where the
mis-calibration comes mainly from model overconfidence: the
model makes too many errors in high confidence bins.

Figure 3 shows the same plot for out-of-domain datasets.
The “meeting” plot displays how the model is overconfident in
all bins, which is usually the expected pattern in deep neural net-
works. We observe a very high “missed detection” rate, which
suggests that the model is not sensitive enough to detect the
speech and fails to reflect any uncertainty in its output probabil-
ities. The distribution of errors (false alarm, missed detection,
speaker confusion) does not depend on the ECE but rather on
the mismatch between the domain and the pretrained model’s
training data.

2.3. Analysis of low-confidence regions

Previous figures provide insights into framewise calibration and
confidence. However one of the main challenges of speaker
diarization is the temporal aspect of the prediction. While in
image classification it makes sense to discard or select individ-
ual data samples, in speaker diarization it does not always make
sense to only keep or select individual frames of data. This
is especially true in use-cases involving human annotators, as
they need the preceding audio context to make sense of a spe-
cific frame. Consequently, in the following figures all selected
data is made of continuous chunks of at least 7.5 seconds. We
select in priority regions where the average confidence is the
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Figure 5: Composition of the data categorized in nonspeech,
speech and overlap, when sampling 5 seconds chunks like in
Figure 4. Dashed lines show the average distribution on the
whole test set.

lowest (i.e “low-confidence regions”) and study model perfor-
mance and class distribution on them.

In Figure 4, we look at the two best (CTS, Socio-field)
and worst (Meeting, Restaurant) calibrated domains. The fig-
ure shows the diarization error rate when selecting x seconds of
data. In both CTS and socio-field, the DER in low-confidence
regions for x ∈ [0, 1200] seconds is significantly higher than
the DER computed on the whole domain. In Meeting and
Restaurant, this difference is less significant. Nonetheless, even
in the worst calibrated dataset, DER on low-confidence regions
stays significantly higher than the average on the domain. This
observation is encouraging, as it appears that even when the
model is badly calibrated on a domain, low-confidence still
strongly correlate with low performance.

Figure 5 shows input data distribution in the same datasets
on the same low-confidence regions. We divide the data
into three categories: “nonspeech” when no speaker is active,
“speech” when only one speaker is active, and “overlap”’ when
at least two speakers are active simultaneously. In both well-
and badly-calibrated datasets, we observe that low-confidence
data contains significantly more overlap than the rest of the
classes. This can be expected as overlapped speech is diffi-
cult, and remains one of the main sources of error in speaker
diarization.

3. Annotation-efficient domain adaptation
Although speaker diarization models are getting better and bet-
ter, applying a pretrained state-of-the-art speaker diarization
model on unseen data might not output what we expect. This
could be because the model has not yet seen or generalized to
this specific kind of data: acoustic conditions, speech type, lan-
guage. Or it could simply be because annotation standards vary
a lot between datasets [23], and the ones learnt by the model
might not fit the needs of the user. In any case, if one wants



optimal performance on a new dataset, one will need to specify
what is expected from the model. This usually means annotat-
ing (at least some of) the data, which is a very costly process,
requiring up to dozens of person-hours to label a few hours of
audio.

In this part, we borrow from active learning the idea of fo-
cusing the human annotation effort to low-confidence regions
of the data. This choice is motivated by the results obtained in
subsection 2.3 where we observe a high DER on low-confidence
regions.

We treat DIHARD 3 eleven distinct datasets as “unlabeled”
for these experiments (artificially withholding annotations). We
simulate the human annotation process with an “oracle labeler”
which provides the withheld annotations when requested. Our
goal is to improve the DER while using as little oracle annota-
tions as possible.

3.1. Finding a minimal training subset

In active learning the learning process is usually iterative, but
here we limit the research to a single iteration: we select the rel-
evant data to annotate, label the (withheld) selected regions, re-
train the model on this new data, and finally evaluate the model
performance. The selected regions are 7.5 seconds long to mir-
ror the process described in subsection 2.3. We test two ways to
select the regions to label:
• Random: the data used to train the model is selected at ran-

dom (our baseline).
• Worst confidence: the regions where the average confidence

of the model is the lowest are selected (like in subsection 2.3).
We can make some interesting observations on the results

that are summarized in Figure 6. First, for all domains but we-
bvideo, 30 seconds of training data is enough to significantly
improve the DER. The improvement can be quite important in-
domains like socio-lab or court. Webvideo behaves this way
probably because it is not a homogeneous domain, but a col-
lection of heterogeneous YouTube videos, hence the need for
more data. More importantly, we can observe that the query-
ing strategy does not have a strong impact on the DER either
way. At equal annotation budget, we can expect a similar DER.
However, the confidence-based selection obtains better ECE on
almost all domains.
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Figure 6: Evolution of DER and ECE when varying the size
of the training dataset. Each marker corresponds to a dataset
duration: ▲=30s, ■=2min30s, ⋆=20min.

3.2. Finding a minimal validation subset

One limitation of retraining the model for domain adaptation is
the need for a validation set. Without a validation set, we might
choose a checkpoint where the model has overfitted, which is
very likely on low amounts of data.

However, we also need the validation set to be as small
as possible if we want the model retraining to effectively be
annotation-efficient (as the last subsection used oracle valida-
tion). We need to find the smallest validation subset that selects
the same best checkpoint as the full validation set.

This task proves to be difficult, even if we allow suboptimal
selection of checkpoint (i.e. we allow a small relative difference
in DER between the best checkpoint selected from a small val-
idation set, and the real best checkpoint selected from the full
validation set).

To evaluate it, we use a fixed set of checkpoints, compute
the DER on validation subsets of various lengths, using ran-
dom and low-confidence selection, and observe how good they
approximate the full set. We estimate that between 2 and 5 min-
utes of data are required to reliably select a checkpoint with less
than 10% of relative difference in DER to the best checkpoint.
More data is needed if we want to approach more closely the se-
lection of the full validation set. Interestingly, random selection
of regions yields a better minimal validation set at low annota-
tion budget (under 5 minutes), but is outclassed by the selection
of low-confidence regions when the budget increases.

4. Conclusion
In this paper, we studied the calibration and performance of the
powerset speaker diarization model on 12 datasets seen during
training, as well as the 11 domains composing DIHARD 3. We
found that the model is well calibrated on in-domain datasets,
while calibration on out-of-domain datasets is generally worse.
Despite this, we observed that diarization error rate on predicted
low-confidence regions is always significantly higher than the
average on the dataset.

We then simulated the annotation of low-confidence regions
on out-of-domain datasets to constitute small training sets. We
observed that such sets offer no significant advantage or disad-
vantage to random region selection in terms of DER, but prove
to be better calibrated. Selection of a minimal validation set
proves to be a difficult task, but selection of low-confidence re-
gions seems to improve its efficiency given a high enough an-
notation budget.

These results lead us to believe that top-label confidence
can be reliably used to find regions of the data where powerset
speaker diarization model performs badly. Uses include out-
of-domain detection, semi-supervised learning, and especially
active learning. The improvement in calibration after domain
adaptation is very encouraging and lead us to believe that ac-
tive learning with iterative retraining and selection of new low-
confidence regions using the better calibrated model might take
full advantage of this property.
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