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ABSTRACT

This paper deals with the study of dynamic instabilities

within rotating assemblies due to internal damping effects. In
order to consider realistic mechanical properties, in terms of
internal damping, a rheological model is associated to a
general finite element beam approach, including transversal
shear.
After a description of the theoretical background (choice of
internal damping model and equation of motion), an
application illustrates the ability of the proposed model. The
influence of damping on frequencies and on instability
thresholds is investigated using a parametric study. Results are
compared to those obtained from an analytical approach as
well as from experiments.

1. INTRODUCTION

An accurate modeling of damping characteristics is
fundamental in the design of rotating machines for providing
an idea about safe speed ranges of rotation. Over the last few
years, many studies of rotor dynamic systems have focused on
predicting critical speeds, natural frequencies, unbalance
responses and, in particular, stability thresholds.
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Damping is one of the most difficult issues for
structural dynamic predictions. The way damping, coming
from different sources, shall be considered within a finite
element model is not easy. Furthermore, damping is often
introduced to control vibrations and designers need methods to
optimize the choice of devices or materials providing the
proper behavior.

Damping may be classified into the following groups
(Osinski (1998)):

* Internal damping associated to all possible ways
of energy dissipation related to the internal
structure of a vibrating body. It refers to various
microscopic phenomena including magnetic
effects, thermal effects, and atomic contractions.

*  Structural damping. This designation includes
energy dissipation occurring at contact surfaces
of joints.

*  Friction in sliding joints. This can be observed in
joint with distinct relative motion, namely in
solid bearings, guide poles.

* Hydrodynamic and aerodynamic damping
induced by motion of a vibrating structure in a
liquid or in a gas.

These damping effects are modeled using two
mechanisms: viscous and hysteretic damping. The main
difference between both types of damping is that the energy
dissipated per cycle by viscous damping is frequency (spin
speed) dependent, whereas the energy dissipated by hysteretic
damping is not.

Internal viscous damping is well known. Hysteretic
damping is often substituted by an equivalent viscous damping
for harmonic motions, according eq.(1) within rotating frame
(Wettergren (1994)).
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where n is the loss factor, wis the natural frequency, Q is the
speed of rotation, k is the stiffness and c,, is the viscous
equivalent damping.

All damping types associated to the non-rotating parts of the
structure have a usual stabilizing effect. On the other hand
damping associated to rotating parts can trigger instability in
supercritical ranges.

The study of spinning shafts with internal damping was first
investigated by Newkirk (1924). Although he observed that
rotor-disk systems would experience violent whirling at the
first natural frequency at speeds above the first critical speed.
Kimball (1925) showed that internal damping destabilizes the
whirling motion when the rotation speed of the rotor exceeds
the first critical speed. Since then, many researchers have
studied the influence of internal damping (material, dry
friction) as well as external damping (different kind of
bearings, squeeze-film, etc.) on the stability of rotating
structures. Chatelet (2002), Mazzei (2003) used an analytical
method to study the combined effects of internal damping and
external damping. Classical results for steel rotors were
obtained, showing that rotor stability is improved by
increasing the damping provides by the bearings, whereas
increasing internal damping may reduce the instability
threshold. However, most of this research deals with metallic
rotating structures and studies remain purely numerical.

Ehrich (1964), Forrai (1996, 2000) and Nelson (2000)
performed a sensitivity analysis from a finite element
modeling. They proved that the stability threshold speed
coincides with the first forward critical speed regardless of the
magnitude of internal damping. They noted that the rotational
speed at which the rotor becomes unstable is governed by the
ratio of internal and external damping. Addition of external
damping can raise the threshold at which the motion will
become unstable.

Ce 2
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where ¢, is external damping, ¢; internal damping, Qy, is the
instability threshold and Q,,, the first critical speed.

Chen (1990) and Ku (1998) presented a finite element analysis
including combined effects of transverse shear deformation
and internal viscous and hysteretic damping. They concluded
from a numerical application that hysteretic internal damping
leads to the destabilization of forward modes at all spin
speeds, whereas viscous internal damping results to the
destabilization of forward modes only when the spin speed
becomes higher than the critical speed. Backward modes are
always stable whatever the amount of internal damping. The
same conclusion was given by Melanson (1998) who shows
that internal hysteretic damping has always destabilizing
effects at every speed. These conclusions were discussed by

Genta (2004) who demonstrated that an error is made when
considering, as Dimentberge (1961) and Lund (1974), that
hysteretic damping of rotating elements is destabilizing at any
speed (even subcritical). Genta writes “the fact that it is
impossible that any form of rotating damping (including
hysteretic damping) is destabilizing in the whole speed range
can be shown by a simple reasoning: when the speed tends to
zero, the rotor becomes a stationary structure, and damping
cannot trigger any form of instability or, with a different
phrasing, at very low speed there is not enough energy to
sustain vibration, particularly in the presence of energy
dissipation due to internal (hysteretic) damping”.

In this paper a theoretical background of rotordynamics is first
outlined and a finite element beam model is developed for the
study of whirl speeds and stability of rotor-bearing systems. In
addition to gyroscopic effects, the combined effects of
transversal shear and internal damping are considered in order
to determine all the elementary matrices associated to the
beam element. Finally, an application, including both
numerical and experimental results, is provided to illustrate
the proposed model and explain the instability of coupled
system due to internal damping.

2. FINITE ELEMENT MODEL AND EQUATIONS OF
MOTION

Let’s consider a spinning uniform beam in a fixed frame as
shown in Figure 1.

gt
O TR /
<

R
AN

—a
. 4

Figure 1: A spinning beam in its fixe frame

2.1 Finite Element Model and Equations Of
Motion

Lagrange’s equations are used for the derivation of the
equations of motion, which can be expressed for a system with
non-conservative forces as follows(Lalanne (1998)):

d oT, 9T U _ ®)

= Fd.
dt (
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where 7 and U are the kinetic and potential energies
respectively, Fd; is the generalized forces vector, N



(1<i< N) the number of degrees of freedom and d; are the
generalized independent coordinates. The expression for
kinetic energy is:

“4)

where p is the mass density, S the cross-sectional area, I
the transverse moment of inertia, J the polar moment of
inertia, Q the rotational speed, I the length of the beam, u and
w respectively the transverse deflections in the ox and oz
direction while ) and 6 are the corresponding bending angles.

The general expression for the strain energy of the shaft in
bending is:

U =

[hﬂ@w ©

Stress and strain are related via the rheological model of
Kelvin-Voigt adapted to linear viscoelastic solids. The
standard linear model is given by the following relationships
between the stress 0 et the strain € which can be split into
elastic stress (classical Hooke’s law) and dissipative stress
function of the speed of deformation (Nashif (1985)):

DN | —

o =FEe+ Ef (6)

where E is the Young’s elastic modulus et 3 represents the
mechanical damping characteristic of material. The above
relation can be written in with transverse shear stresses as
following:

T=Gy+ GBY @)

where G the shear modulus, T the shear stress, y the shear
strain.

The continuous displacement field at material point B on
the rotor cross-section without warping function (Figure 2) can
be written as follows:

u, (2,9,2) = w(y)

Figure 2:Coordinate of the geometric center and
arbitrary point B on the shaft

Hence, the deformation field has the following form:

a0 oY ©
Eyy - _Za_y + xa_y
ow
= =gy
ou
Yya = P+ ay

Beam theory assumes that o,,=0,,=0,,=0. Hence, the
stress-strain relation can be written as follows:
: 10
yEyy + Eyeyy (10)
{U } = Tyz = yz’Y'yz + Gyzﬂ’yyz

oy = Eye,

where, E,, Gy, and Gy are respectively the Young's modulus

and transversal shear moduli, and E,3 G, and G,/[3 are
respectively the damped Young's modulus and damped
transversal shear moduli according to the rotor axis y.

Then the stress vector can be split into elastic stress {0},
and dissipative stress {0%}:

(r)={o), +1), o

Using equation (9), the two parts of equation (11) can be
written as follows:
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where 0,y and 0%, are the normal cross-section stresses, Ty,

* *
, Ty, and 7., , 7, are the transversal shear stresses.

Using the equation (5), the elastic energy of the rotor is:

(14)
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The virtual dissipative work due to internal dissipation
has the following expression:

0 (15)
W = ff(aljy&yy + T;z‘S'sz + TZEMW )dey
S

Then equation (14) can be explicitly written as a function
of the displacement field components (equations (9) and (12)):

l " (16)
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The virtual work may also be expressed as a function of
the displacement field components using equations (9) and

(13).
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which can be written explicitly as follows:

(18)
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The application of Lagrange’s equations to the kinetic
energy, potential energy and virtual work, leads to the
following equation of motion in the fixed frame:

M{d}+[C; + C@)]{d} (19)
K + K (@Q{d} = {F(1)}

where [M] is the symmetric mass matrix, [C(Q)] the
global asymmetric matrix including an antisymmetric
gyroscopic matrix (function of Q speed of rotation) and a
frequently asymmetric matrix owing to the characteristics of
bearing, [K] is the elastic stiffness matrix that is frequently
asymmetric owing to the characteristics of bearings, [C;] and
[Ki(Q)] are respectively the internal damping matrix and the
stiffness matrix (function of the rotation speed) associated to
internal damping (3. {F(t)} is the generalized force vector and

[d] [ ]and [d] are respectively the nodal acceleration,

velocity and displacement. The associated elementary
matrices, mass stiffness gyroscopic and internal damping, are
given in appendix A.

The Campbell diagram (evolution of natural frequency as
a function of rotational speed) and stability regions are then
determined from the solution of the eigenvalue problem
obtained after reduction by the pseudo modal method (Lalanne
(1999)).

{d} = [o]{p} (20)

where [¢] is constituted by the mode shapes of the
conservative system at rest (Q=0), { p} are the generalized
modal coordinates.

Then, equation (19) is written under following relation:

tmi{p} + e + (NP} + [K(Q) + k[{p} ={f(®)} @D

with [m], [c] and [k] are the classical generalized modal
matrices. As all elements of the finite element model are
supposed to have the same material properties, they are
characterized by the same internal damping

In order to determine the internal damping matrices, it is
necessary to estimate the mechanical damping characteristic 8
Here, classically, this parameter is obtained from the material
hysteretic damping 7}, known experimentally under harmonic



motion. Hysteretic damping is then transformed into an
internal equivalent viscous damping as shown in equation (1).
Such transformation is frequency dependent.

3. VALIDATION-EXPERIMENTAL AND
NUMERICAL APPLICATIONS

In order to illustrate the influence of internal and
external damping within rotordynamic analyses, instability
thresholds are determined from an experimental set up
developed at the LMA of Marseille, France Montagnier
(2005).

The experimental device shown in Figure 3 is used to study
the stability of shafts made of different materials.

Figure 3: Testing machine for high- speed tubes

To allow supercritical behavior, it is necessary to introduce
external damping. Passive dissipation is introduced at bearing
levels with viscoelastic supports (Figure 4). Bearings are
classical ball bearings. Viscoelastic support work in shear to
obtain symmetric behavior. The bearing characteristics are
presented in table 1 and table 2.

Figure 4: Viscoelastic support (natural rubber)

A hollow shaft model supported by two bearings at the ends is
considered as shown in Figure 5 (Montagnier and Hochard
(2005)):
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i

Figure 5: Rotor model

The equivalent internal viscous damping is given by term c;.
Viscoelastic supports (Figure 5) are supposed to be symmetric
(same stiffness and damping in all directions in Oxz plane).
The viscoelastic model consists of a stiffness k;, and a viscous
damping c.. Bearings are supposed to be infinitely rigid (mass
m,). The material properties and the isotropic bearing stiffness
and damping characteristics of the Aluminum and PVC rotors
considered are summarized in Table 1 and Table 2. These
values were estimated directly from a high-speed rotor test
bench.

Instability is studied for both Aluminum and PVC tubes via
parametric study of the bearing-shaft system. Various lengths,
ranging between 0.5m and 3m are considered for the
Aluminum tube and between 0.4m and 1.4m for the PVC tube.
They are characterized by a low stiffness and a high damping.
These characteristics tend to decrease the instability threshold.

The values of external damping (viscous damping c, =
100 N/m/s) are given by a damping factor &, = 3.5% whereas
the values for internal damping are introduced in the FE
program and relation n;=2&; , with &; characterized in Tables 1
and 2. Solution of the equation of motion (eq. 21 ) gives the
frequencies of the coupled system as well as the instability
thresholds of the associated modes.

Table 1: Data of Aluminum rotor.

Young modulus E GPa 69
Mass density p kg/m’ 2700
Length of tube L m 1.64
External radius R, m 0.025
Internal radius R; m 0.02298
Internal damping factor & % 0.2
External damping factor | &, % 35
Bearing Mass b kg 2.817
Support Rigidity K, N/m 564.10°




Table 2: Data of PVC rotor

Young modulus E GPa 2.2
Mass density p kg/m’ 1350
External radius R, m 0.025
Internal radius R; m 0.0215
Internal damping factor | §; % 1.25
External damping factor | &, % 3.5
Bearing Mass m, kg 2.608
Support Rigidity K N/m 567.10°

Parametrical studies are performed on the Aluminum and PVC
rotors

Figure 6 and Figure 7 show respectively the evolution of
frequencies of the system as well as instability thresholds, with
respect to the length of the rotor L. Legends are as follows: F
represents the i" frequency of the coupled system; SI;
represents the i associated instability threshold.

Internal damping induces the destabilization of forward
modes, only when the spin speed becomes higher than the
critical speed. Backward modes are always stable (see
appendix B)

When comparing these instability cards, it appears
that the instability zone (grey) of the Aluminum rotor is
smaller than the stability zone of the PVC rotor. The
difference is due to the internal material damping &; which is
more important for PVC than for Aluminum (see Table 1 and
Table 2).
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Figure 6: Frequencies and instability thresholds for Aluminum Tube
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Figure 7: Frequencies and instability thresholds of PVC Tube: numeric and experimental.

Experimental results obtained at the LMA are plotted in
Figure 7 too. They are symbolized by a “circle O for the first
experimental frequency and by a “star ¥¢” for the associated
instability thresholds. Four experimental tests were performed
for PVC tubes of lengths 0.6m, 0.8m, 0.9m and Im. The
experimental instability was detected at the first critical speed.
Tendencies shown by experimental results are in good
agreement with theoretical results and the first frequency
identified matches very well.

The observation of Figure 7 also shows two instability
zones merging at a length L near 1.44m for Aluminum tube and
0.8m for PVC. In fact, this zone corresponds to the zone where
the system is the most coupled (flexible tube on flexible
foundations). Coupling of the system is quantified by
comparing the frequency of the flexible rotor mounted on rigid
bearings (noted Q;) with the frequency of the rigid rotor
mounted on flexible bearings (noted wy;). An increase of the
zone of stability is also observed at this point where those
frequencies are equal.

The frequencies associated to the rigid rotor may be
estimated from the following relation (Montagnier (2005)):

(22)

Won = m,

"t e (1))

where k; is the bearing stiffness, m, the mass of the tube and n
the mode number. These two first frequencies are denoted in
the following F., and F,, (frequencies of rigid rotor with
flexible bearings).

The frequencies of the tube supported by rigid bearings
may be estimated from the well known analytical equation:

L m g [ET @)
Q,L—(l)\/;

Where E is the Young’s modulus, I the area moment of inertia
of the beam cross-section about the neutral axis y, p is the mass
per unit volume, / the length of rotor, S the cross-sectional area
of the beam and n is the mode number, with 1 <7 < N . The
first two frequencies are denoted in the following Fy,; and F,
(frequencies with rigid bearings and flexible rotor).



When zooming the coupling zone (Figure 8 and Figure 9), a
significant evolution is observed for the resulting natural
frequencies of the coupled system.

The evolution of frequency and instability thresholds associated
to the mostly coupled system are explained as follows. For this
particular length of rotor, bearings are highly responding and
then provide more external damping to the system, increasing
stability.

Frequency [Hz]

1.1 12 13 14 15 16 17

L [m]
Figure 8: Zoom of coupling zone of coupled and
uncoupled systems for Aluminum Tube
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Figure 9: Zoom of coupling zone of coupled and
uncoupled systems for PVC Tube

Such behavior has also been observed by Dutt (1992) who
shows that a proper selection of the value of support parameters
can increase significantly instability threshold for a system on
viscoelastic supports. Viscoelastically damped support gives the
highest values of instability threshold compared with either
viscously or elastic supports.

4. CONCLUSION
This work deals with the stability analysis of an internally
damped rotating shaft. A modeling based on a Finite Element
method considers internal damping using a Kelvin-Voigt
rheological model. An experimental bench is used for the

validation of the method.

A parametrical analysis demonstrates the influence of
internal/external damping on frequencies and instability
thresholds for a coupled system.

Validation is achieved from a PVC material tube.

The developed method and associated experimental test bench
shall now be used to study the dynamic stability of composite
rotors for different configurations of wall thickness.
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Appendix A:

The shaft is modeled with beam finite elements with two
nodes, then eight degrees of freedom, four displacements and
four slopes. The nodal displacement vector is:

24
d:[“1,W1591,¢’15u2,W25Hz,l/’z]t ( )

Mass matrix:

M, 0 0 M, M; 0 0 My| (25)

M, M, 0 0 M, -My 0
Mg 0 0 My My 0

__ pL Mg —My 0 0 My

" 840(1+a) M0 0 M,
M, M, 0
Mg 0

| sym Mg |

where

M,
My, = 5(108+2524 +1404?

1

29 = SL(26+63a +354

= S(312 +5884 +280a2) +100281
(84-420a)1

= -5 144 +77a +354%) - =

My =S 02 (8 +14a +7a%) +1(112 +140a +280a*)

10081
L2

(84 420a)1

)
My, = =S 07 (6 +14a +7a) =1 (28 +140a -1404*)
’)-

Gyroscopic matrix:

o ¢ ¢ o o0 -¢ ¢ o0

_ pl 0 0 C, -C;; 0
30L(1+a)2 0 G -G 0
0 0 -C,
0 Cy
|anti  sym 0
where
C,=-72

C, =-L(6-30a)
C, = ~L* (8 +10a +20a” )
Cy =1’ (2+10a -10a*)

Stiffness matrix

[12 0 0 -6L -12 0 0 6L |
0 12 6L 0 0 -12 6L 0
0 6L (4+a) 0 0 6L (2-a)l’ 0
_El |6L 0 0 (4+a)® 6L 0 0 (2-a)?
TU+a)f| 120 0 6L 2 0 0 6L
0 -12  -6L 0 0 12 6L 0
0 6L (2-4)I° 0 0 6L (4+d)L 0
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Internal damping matrices:

EIp
T +b)E

EIj
A

where:

0
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0 —6L
0 2 -
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0 6L
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0

Appendix B: Physical rotordynamics instability

G

(32)

(33)

As shown in Figure 10, when the rotor spins slower than
the orbit natural frequency, rotor internal damping causes an
orbital disturbance to decay (stable motion) (Adams 2001).

Figure 10: forward precession with Q<

Conversely, when the rotor and its internal damping mechanism
rotate faster (at higher frequency) than the orbit natural
frequency (Figure 11), the rotor internal damping "pulls"
tangentially in the direction of orbiting and thereby imparts
energy to the orbital vibration mode, causing the mode to
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Figure 11: forward precession with Q>

But with backward precession, the speed of the mode is always
negative and the internal damping generates a positive
tangential force in the opposite direction of the mode speed so
that will drag the mode and will decrease the orbit of the
motion so the motion is stable (Figure 12).

Figure 12: backward precession
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