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ON HECKE AND ASYMPTOTIC CATEGORIES FOR COMPLEX REFLECTION GROUPS

ABEL LACABANNE, DANIEL TUBBENHAUER AND PEDRO VAZ

Abstract. Generalizing the dihedral picture for G(M,M,2), we construct Hecke algebras (and categories)
and asymptotic counterparts. We think of these as associated with the complex reflection group G(M,M,N).

Contents

1. Introduction 1
2. Some slN combinatorics 5
3. Asymptotic G(M,M,N) 11
4. Nhedral Hecke algebras and categories 15
5. Appendix: Some more technical things 22
References 33

1. Introduction

Weyl groups are among the most important objects in algebra, as they govern the representation theory
of their associated reductive group. Weyl groups are real reflection groups and special cases of complex
reflection groups, and it is an interesting question what kind of ‘reductive group’ is associated with a
complex reflection group. These ‘reductive groups’ are believed to exist in a certain sense, and they were
famously named by Broué–Malle–Michel [BMM99] after the Greek island Spetses: such a ‘reductive group’
is called a spets.

We cannot provide a definitive answer to what spetses are, but recent developments indicate that Soergel bi-
modules, also known as Hecke categories, can often serve as a replacement whenever an associated geometric
or Lie theoretic picture is missing.

In this paper, we focus on the complex reflection groups of type G(M,M,N) for M ≥ N and suggest that
they have an associated Hecke algebra and category. These arise from Chebyshev polynomials associated with
root systems, have Kazhdan–Lusztig (KL) type combinatorics, include asymptotic categories, are related to
Calogero–Moser (CM) families, and encode Fourier matrices for G(M,M,N).

1A. From dihedral group to the main results. The dihedral group G(M,M, 2) of order 2M is one of
the simplest examples of a complex reflection group that is not a Weyl group (unless M is small), yet it still
exhibits behavior typically associated with objects from Lie theory.

Let us list a few of these, all of which are for the middle cell:
(A) The KL basis is determined by the coefficients of the Chebyshev polynomials [dC06,Eli16a,Tub22],

and the Chebyshev polynomials determine the characters of the simple representations of SL2.

(B) The Drinfeld centers of the asymptotic categories associated to the dihedral Hecke algebras are modular
categories whose S-matrices coincide with the so-called Fourier matrices [RT23], the base change
between ‘unipotent characters’ and ‘unipotent character sheaves’, constructed in the 90s [Lus94] in
an ad hoc fashion. Hence, one can think of these centers as ‘unipotent character sheaves’, matching
[Lus15] which proposed ‘unipotent character sheaves’ associated to Coxeter groups that encode the
Fourier matrices.

(C) The simple representations of the (complexified) asymptotic Hecke algebra are given by the KL family
associated to the cell [Lus87].

(D) The Z≥0-representations of the dihedral group, or the 2-representations of the dihedral Hecke category,
are indexed by ADE Dynkin diagrams [KMMZ19,MT19]. This is closely related to (but does not
quite match) with three different objects: irreducible conformal field theories (CFT for short) for
SU2 [Pas87], subgroups of quantum SU2 [KO02,Ost03] and module categories of the SL2 Verlinde
category [Ost03].
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2 A. LACABANNE, D. TUBBENHAUER AND P. VAZ

In this paper, we generalize all the above to the case N ≥ 2 (for N = 1 the group G(M,M,N) is trivial and
we from now on assume that N > 1). The outline is as follows.

(a) Generalizing (A). We define a certain subalgebra T∞ of the Hecke algebra of affine type AN−1, and
then a finite dimensional quotient Te, the Nhedral Hecke algebra of level e, obtained from T∞
by annihilating certain KL basis elements. This algebra is immediately truncated to the analog of the
aforementioned middle cell. As we will show, the algebra T∞ has its own KL theory and representation
theory akin to the dihedral Hecke algebra. Its KL basis is determined by the coefficients of the
Chebyshev polynomials associated with simple representations of SLN .

(b) Generalizing (B). There is a categorification of Te, called Nhedral Hecke category (or Nhedral
Soergel bimodules) of level e. This category is positively graded and its degree zero part is what we
call the asymptotic category aM,M,N . We show that the Drinfeld center of aM,M,N is a modular
category and compute its S and T matrices. We show that the S matrix coincides with Malle’s Fourier
matrix for G(M,M,N) [Mal95].

(c) Generalizing (C). We then define a matrix category AM,M,N over aM,M,N , the big asymptotic
category, which, by construction, is Morita equivalent to aM,M,N . We explain how this category is
related to a CM family for G(M,M,N).

(d) Generalizing (D). Returning to Te, we show that most of Zuber’s generalized ADE Dynkin diagrams
[Zub98] give rise to Z≥0-representations of Te. This is closely related (but does not quite match) with
three different objects: irreducible CFT for SUN as e.g. in [PZ96], subgroups of quantum SUN as
e.g. in [Ocn02] and module categories of the SLN Verlinde category as, for example, in [Gan94].

Let us summarize the main points of the paper with two overview diagrams. The first diagram illustrates how
the main algebras and categories are related:

Nhedral Hecke
category (*)

Asymptotic
category aM,M,N

Big asymptotic
category AM,M,N

Nhedral Hecke
algebra

Decategorification
of aM,M,N

Asymptotic Hecke al-
gebra for a CM cell

degree zero

equivalence (QSH)
Morita

equivalence

degree zero

isomorphism (QSH)
Morita

equivalence

decat. decat. decat.

The “(QSH)” is explain in Section 1C below, while (*) means that we believe this is definable and interesting
to define, though we do not do this here since the relevant technology is missing while writing this paper.

Nhedral
picture

A. Chebyshev
polynomials

B. Unipotent chars.
for G(M,M,N)C. CM family

D. Irreducible
CFT

E. Subgroups of
quantum SU(N)

F. Module cats for
Verlinde cats

Section 2D

Section 3BSection 3C

Section 4C

Section 4C Section 4C

In this picture we indicate where the reader can find more details about the connection.
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1B. Related works and speculations. There are two infinite families of spetsial complex reflection groups,
which represent two different extremes, yet both might permit some Hecke category combinatorics. Addition-
ally, there is a twisted variant that appears to fit into the Hecke category framework, and we comment on all
three here.

The first infinite family is G(M,M,N), as discussed in this paper, and we think of the Nhedral picture
as the associated Hecke category combinatorics. Furthermore, for N = 3, (A) and (D) above were originally
generalized in [MMMT20]. The paper [MMMT20] also provides a classification of Z≥0-representations of
Te for small e, a task we expect to be achievable for at least small N as well. Moreover, exciting so-called exotic
nilCoxeter and deformed affine NilHecke algebras are obtained in [EJY24b,EJY24a] (with some results also
for N > 3), but we do not know how to relate this work to ours.

The other infinite family of spetsial complex reflection groups consists of the groups G(M, 1, N), where
the corresponding Hecke algebra is the Ariki—Koike algebra [AK94, BM93]. Fourier matrices and fami-
lies of unipotent characters for these groups have been studied quite extensively; see, for example, [Mal95,
Cun07,BR20,Lac20b,Lac21]. However, we are not aware of any general Hecke category combinatorics for
G(M, 1, N). The paper [LTV23] identifies the Ariki-–Koike algebra as a subalgebra of webs on an annulus,
suggesting the possibility of using annular foams, as in [RW20], to describe a Hecke category. For N = 1, a
Hecke category has been proposed in [GT20], but it seems quite different from the annular web picture.

There is also the story of Fourier matrices associated with groups having an automorphism, such as the Ree
groups; see, for example, [GM03,Lac20a]. The corresponding Fourier matrices are not symmetric and often
not integral, so they may only arise via equivariant module categories and not via modular categories. The
automorphism ‘twists’ the setting in a certain sense and one might hope that the ‘twisted’ 2-representations
of the Hecke category as e.g. [MMM+23] can be used to define degree zero module categories with crossed
S-matrices in the sense of [Des17] might play a role.

1C. Additional remarks. For some proofs in this paper we need the following.

The quantum Satake hypothesis (QSH) is:

[Eli17, Theorem 5.35] is true.(QSH)

Whenever we assume (QSH) holds, we state this explicitly.

Remark 1C.1. The paper [Eli17] proves this for N = 2, 3, and in these cases we have further assumptions. 3

Remark 1C.2. We postponed several proofs to Section 5. If the reader is missing a proof, then they should
be able to find it there. Moreover, in Section 2 and Section 4, we will generalize some of the main results
of [MMMT20], following their exposition. Some results will have proofs that work mutatis mutandis and we
will be brief with these, and we will point out when the arguments are sufficiently different. 3

Remark 1C.3. The paper is readable in black-and-white but we recommend reading it in color. 3

Remark 1C.4. Code for some of the calculations in this paper is available on GitHub: [LTV24]. 3

1D. Table of notation and general conventions. The following is the list of the most important concepts.

Symbol Name Description

− Placeholder Used as a placeholder symbol
[−]⊕ Grothendieck group The additive Grothendieck group of − (for semisimple

categories this equals the abelian one)
−
→ A cyclic action See Section 2B.

− The dual If m = (m1, ...,mN−1), then m = (mN−1, ...,m1)

(−)i Degree i part If the category − is graded, then this denotes the de-
gree i part

A(−) Adjacency matrix The adjacency matrix of a graph −

AM,M,N The big asymptotic category The big asymptotic category for G(M,M,N) defined
in Definition 3C.2

aM,M,N The asymptotic category The asymptotic category for G(M,M,N) defined in
Definition 3A.1

cxy ,
x
yc Nhedral KL elements See Section 4A
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Symbol Name Description

dkm Change-of-basis coefficients See (2B.2)
dimc − Categorical dimension The categorical dimension of −

dimη − Quantum dimension The quantum dimension of −

dimK − Usual dimension The dimension of − over K
e Level The level, a number e ∈ Z≥0 that we fix
η Root of unity The primitive 2Mth root of unity exp(iπ/M)

η1/N Root of unity The Nth root of η given by exp(iπ/NM)

F Family of unipotent
characters

A family of unipotent characters for G(M,M,N), see
Section 3B

F0 Principal series The principal series of F
G(M,M,N) Complex reflection group The imprimitive complex reflection group of order

MN−1N !

Γ CM cell The two-sided CM cell associated with F , see Sec-
tion 3C

hx
y ,

x
yh Nhedral Bott–Samelson

elements
See Section 4A

i Imaginary unit The usual square root of −1

I Vertices I = {0, ..., N−1}, the vertices of the affine type AN−1

Dynkin diagram
Je Vanishing ideal Defined in Definition 2E.1
M Level (plus Coxeter number) This is e + N , the ‘level’ of G(M,M,N) such that

G(M,M, 2) is the dihedral group of order 2M

M Nhedral representation Representation of the Nhedral Hecke algebra; poten-
tially decorated with symbols

N Rank (potentially plus one) The rank, a number N ∈ Z≥2 that we fix
κ Quantum N − 1 factorial [N − 1]v!

ζ Root of unity The primitive Nth root of unity exp(2iπ/N)

peN Simplicial polytopic numbers peN =
(
e+N−1
N−1

)
=
(
M−1
N−1

)
q Quantum parameter The quantum generic parameter
[k]v Quantum numbers The kth quantum number, [k]v = qk−q−1

q−q−1

[k]v! Quantum factorials The kth quantum factorial, [k]v! = [1]v...[k]v
rk− Rank The rank of the category − (the number of indecom-

posable objects)
Repη(slN ) Representation category The fusion category of Uη(slN )-representations
Repq(slN ) Representation category The category of (type 1) Uq(slN )-representations
S An S-matrix The matrix S of a modular category involved in the

action of the modular group
S Complex conjugate Entry-wise complex conjugate of S
S Fourier matrix The Fourier matrix of the family F
Si(−) Simple objects The set of isomorphism classes of simple objects of −

Σm Sum of the entries For m = (m1, ...,mr) we let Σm = m1 + ... +mr

stab− Stabilizer Cardinal of a stabilizer
T A T-matrix The matrix T of a modular category involved in the

action of the modular group
T− Nhedral Hecke algebra The Nhedral Hecke algebra of level −, see e.g. Defini-

tion 4A.6
θ Ribbon structure The ribbon structure on Repη(slN ) defined via η1/N

θi Nhedral generators The generators of T−

Um Chebyshev polynomials for slN The higher versions of Chebyshev polynomials, see
Definition 2D.1, due to Koornwinder and Eier–Lidl
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Symbol Name Description

Uq(slN ) Quantum slN The generic quantum group for quantum parameter q
Uη(slN ) Another quantum slN The quantum group specialized quantum parameter η
Ve Koornwinder variety Defined in Definition 2E.1
V′

e Reparametrization of Ve Defined in Definition 2E.7
V(N)e Verlinde category The Verlinde category for slN defined using η, with

ribbon structure θ

W Affine Weyl group The Weyl group for affine type AN−1

WC Parabolic subgroup The parabolic subgroup for the vertices C; here C ⊂ I
which we often also write indicating the missing values

χc Central character The “colors” associated with simple Uq(slN )-
representations

Xi Fundamental variables The variables used for the fundamental Uq(slN )-
representations

Z(−) Drinfeld center The Drinfeld center of a category −

Zi Koornwinder’s Z-functions Defined in Definition 2E.5

As a few general conventions that hold throughout unless otherwise stated:
(a) Our conventions for rings and fields, generic symbol K, are: subscripts mean we adjoin a certain

element to the ring/field, e.g. Cq = C(q). We write square brackets if we adjoin these elements as
Laurent polynomials, e.g. Z[v] = Z[v, v−1].

(b) All K-vector spaces are finite dimensional in this paper, or free of finite rank if K is a ring.

(c) All modules that we consider are left modules, and representations of quantum enveloping algebras
are always of type 1 (in the sense of e.g. [APW91, Section 1.4]).

(d) We often say “is a XYZ” instead of “can be equipped with the structure of an XYZ” to not overload
statements. For example, we say a category is modular.

(e) We also often say e.g. “there are only finitely many simple objects” instead of “there are only finitely
many isomorphism classes of simple objects”.

Acknowledgments. We like to thank Elijah Bodish, Cédric Bonnafé and Ben Elias for their invaluable
insights and thoughtful discussions, and ChatGPT for help during proofreading. Their contributions signifi-
cantly enriched our work. We also thank a flower of hexagons for giving us the wrong impression which killed
a different project and led to this paper.

AL is grateful for the support and hospitality of the Sydney Mathematical Research Institute (SMRI).
DT was sponsored by the ARC Future Fellowship FT230100489, and PV was supported by the Fonds de la
Recherche Scientifique-FNRS under Grant No. CDR-J.0189.23.

2. Some slN combinatorics

We start by fixing some notation regarding slN . Most of the material is known, but our exposition for some
parts is new.

2A. Root combinatorics. Denote by (ε1, ..., εN ) the standard basis of RN , which we equip with the standard
symmetric bilinear form (εi, εj) = δi,j . Denote by SN the symmetric group on N letters, which acts naturally
on RN by permutation. We let E = {(x1, . . . , xN ) ∈ RN | x1 + ... + xN = 0} and let αi = εi+1 − εi
for 1 ≤ i < n. The vectors α1, . . . , αN−1 are the simple roots and we fix the coroots α∨

i ∈ E∗ such that
⟨αi, α

∨
j ⟩ = aij , where (aij) is the usual Cartan matrix of type AN−1 and ⟨−,−⟩ is the duality pairing. The

weight lattice is X = {λ ∈ E | ⟨λ, α∨
i ⟩ ∈ Z for all 1 ≤ i < N} and the dominant weights are X+ = {λ ∈

E | ⟨λ, α∨
i ⟩ ∈ Z≥0 for all 1 ≤ i < N}. We also denote by ω1, . . . , ωN−1 ∈ E the fundamental weights which

are defined through the equalities ⟨ωi, α
∨
j ⟩ = δi,j , and by ρ = ω1 + · · · + ωN−1 the sum of the fundamental

weights, or equivalently the half-sum of positive roots. Using the basis of fundamental weights, we identify X
with ZN−1 and X+ with ZN−1

≥0 .
We will also work with cut-offs X+(e) of the weight lattice, which will depend on the level e ∈ Z≥0, which

are defined by X+(e) = {λ ∈ X+ | ⟨λ, α∨
1 + ...+α∨

N−1⟩ ≤ e}. Therefore, a weight λ = λ1ω1 + · · ·+λN−1ωN−1

is in X+(e) if and only if each λi is nonnegative and Σλ ≤ e.

Notation 2A.1. As above, we repeatedly will sum over entries of tuples, and we use the following shorthand
notation: Σm = m1 + ... +mk for m = (m1, ...,mk). 3
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The following picture is stolen from [MMMT20]. We stole it because it summarizes our conventions for
N = 3 and e = 3:

X+ = Z2
≥0

e = 3

e + 1 = 4

e + 2 = 5

α1α2

•

•
••

•

•
•

•
• •

•
•

•
••

• • • • • •
• • • • • • •

(2, 2)

(1, 2)

(0, 2)

.

2B. Quantum group generically and semisimplified. Our conventions follow [Jan96, Chapters 4-7].
For q a formal variable, let Uq(slN ) denote the quantum enveloping (Cq-)algebra associated to slN ,

with the Hopf algebra structure as chosen in [Jan96, Section 4.8]. Let us denote its category of finite di-
mensional representations by Repq(slN ). This category is semisimple and has the same combinatorics as the
corresponding category for slN itself, so all the below follows from classical theory. In particular, the simple
Uq(slN )-representations (we also write slN -representations for short) are parameterized by the integral positive
Weyl chamber: {

Lm|m = (m1, ...,mN−1) ∈ X+
}
.

The highest weight here is m1ω1+ ...+mN−1ωN−1. Let [−]⊕ denote the (additive) Grothendieck group, which
is a Z-algebra. We have a Z-basis given by (the set of the elements)

[Lm] = [Lm]⊕ ∈ [Repq(slN )]⊕.

Scalar extension gives a C-algebra:

[Repq(slN )]C⊕ = [Repq(slN )]⊕ ⊗Z C.

The fundamental slN -representations are our generating variables:

Xi = Lωi .

Let m = (mN−1, ...,m1). We have (Lm)∗ ∼= Lm for all m ∈ X+.
We will see them as variables in a polynomial ring, i.e. let Z[Xi] = Z[Xi | i ∈ {1, ..., N−1}] where we use the

Xi as variables. Write Xki = X⊗k
i , for short, and also use XiXj = XjXi. For k ∈ ZN−1

≥0 , write Xk = Xk1
1 · · · XkN−1

N−1 .
This is justified by:

Lemma 2B.1. We have two bases of [Repq(slN )]⊕ given by {Lm|m ∈ X+} and {[Xk]|k ∈ ZN−1
≥0 }. Moreover,

as Z-algebras [Repq(slN )]⊕ ∼= Z[Xi].

Proof. By classical theory. □

Lemma 2B.1 motivates the definition of the change-of-basis coefficients:

[Lm] =
∑

k d
k
m · [Xk], dkm ∈ Z.(2B.2)

Note that this sum is finite since dkm = 0 unless Σk ≤ Σm. The numbers dkm can be computed inductively, as
explained in Section 2D below, and we have dkm = dkm and dmm = 1.

The center of SUN is Z/NZ, which, following [MMMT20], motivates:

Definition 2B.3. Let us define “colors” associated to the simple Uq(slN )-representations:

χc(Lm) = m1 + 2m2 + ... + (N−1)mN−1 ∈ Z/NZ.(2B.4)

We call χc(Lm) the central character of Lm. 3
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Example 2B.5. For N = 2, this is the parity coloring of Z≥0, for N = 3 see [MMMT20, Example 3.16],
and for N = 4, we have the following pictures:

e = 1: , ..., e = 4: , ...

The color 0 corresponds to black circles, 1 to red triangles, 2 to green squares and 3 to blue pentagons. In
these pictures the edges correspond to the action of the direct sum of the fundamental sl4-representations.
For example, for e = 1 the black circle represents the trivial sl4-representation, the red triangle the defining
sl4-representation, the blue pentagon its dual and the green square the 6 dimensional simple sl4-representation.
Moreover, tensoring with either of them jumps from the black circle to the other vertices. 3

These colors define a grading by Z/NZ on Repq(slN ) since χc is a character, by classical theory again.

Lemma 2B.6. All simple summands of Xk have central character χc(Lk).

Proof. All summands of Xk have the same color and Lk is a summand of Xk. □

Specializing q to a primitive 2Mth root of unity η (using the integral form), where M = e+N , we obtain
Uη(slN ), as defined and used in e.g. [Lus90], [APW91]. There is an associated category of representations,
which we can semisimplify as usual, see e.g. [AP95] for details. This category is denoted by Repη(slN ). The
Grothendieck group of this category is a Z-algebra by the fusion product, and has Z-bases given by:

Lemma 2B.7. We have two bases of [Repη(slN )]⊕ given by {[Lm] | m ∈ X+(e)} and
{
[Xk] | k ∈ X+(e)

}
.

Proof. Well-known by [AP95], see for example [EGNO15, Example 8.18.5]. □

The following are known as simplicial polytopic numbers, since they count points in simplices.

Definition 2B.8. We define peN =
(
e+N−1
N−1

)
=
(
M−1
N−1

)
. 3

We have shifted them when compared to the usual definition in the sense that our peN is what is often
denoted PN−1(e− 1).

Example 2B.9. For N = 2 we have the linear numbers pe2 = e+1, for N = 3 we have the triangular numbers
pe3 = (e+1)(e+2)

2 , see e.g. [OEI23, A000217]. 3

Lemma 2B.10. We have [Repη(slN )]⊕ ∼= Z⊕pe
N as free Z-modules.

Proof. By Lemma 2B.7, this is just a count. □

The object Leω1 is invertible in Repη(slN ) and for any m ∈ X+(e) we have Leω1 ⊗ Lm ≃ Lm→ where
m→ = (e− Σm,m1, . . . ,mN−2). This defines an action of Z/NZ on X+(e) and we will denote by stabm the
size of the stabilizer of m.

As for Repq(slN ), we have a grading by Z/NZ on Repη(slN ) by colors. For later use we recall:

Lemma 2B.11. The grading on Repη(slN ) by colors induces a grading on its Drinfeld center, also by colors.

Proof. Easy and omitted. □

We denote the full subcategory of Repη(slN ) of objects of color i by Repη(slN )i, and similarly for the
Drinfeld center.
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2C. Braiding and ribbon structure. The fusion category Repη(slN ) is equipped with a braided structure
β−,− . This structure is obtained through the use of the universal R-matrix of Uη(slN ), as one can adapt
from e.g. [Jan96, Chapter 7], and a choice of an Nth root of η, which we denote by η1/N . We also endow
Repη(slN ) with a spherical structure, the corresponding quantum trace Tr and the corresponding ribbon θ,
we refer to [EGNO15, Definition 8.10.1] for the definition of a ribbon structure. We will denote by Sm,m′

the values of the S-matrix as defined in [EGNO15, Definition 8.13.2].

Lemma 2C.1. For any m,m′ ∈ X+(e), we have the following formula for the S-matrix of Repη(slN ):

Ssl
m,m′ =

∑
w∈SN

(−1)l(w)η2(m+ρ,w(m′+ρ))∑
w∈SN

(−1)l(w)η2(ρ,w(ρ))
.

For any m ∈ X+(e), the ribbon θm on Lm is given by multiplication by the scalar η(m,m+2ρ).

Proof. A proof of the lemma can be found in e.g. [BK01, Theorem 3.3.20]. □

Using Bruguières’s criterion [Bru00, Section 5], the fusion category Repη(slN ) is modular if and only if
η1/N is a primitive 2MNth root of unity.

Lemma 2C.2. Let m ∈ X+(e). Then βLeω1 ,Lm
◦ βLm,Leω1

= ζ−χc(Lm) · id.

Proof. Since Lm→ = Lm⊗Leω1
and since θ is a ribbon element, we have θm→ = θm⊗ θeω1

◦βLeω1 ,Lm
◦βLm,Leω1

.
Using Lemma 2C.1, we therefore obtain βLeω1 ,Lm

◦ βLm,Leω1
= η(m

→,m→+2ρ)−(m,m+2ρ)−(eω1,eω1+2ρ) · id. One
may finally show that (m→,m→ + 2ρ)− (m,m+ 2ρ)− (eω1, eω1 + 2ρ) = −2eχc(Lm)/N . □

The grading by color is then retrieved using the braiding as in [EGNO15, Lemma 8.22.1].

2D. Chebyshev-like polynomials. The following polynomials are due to Koornwinder [Koo74], and Eier–
Lidl [EL82]. We mildly change the conventions for convenience.

Definition 2D.1. For each m we define Chebyshev polynomials (of the second kind) for slN , denoted
by, Um ∈ Z[Xi] as

Um =
∑

k d
k
m · Xk,

with dkm ∈ Z as in (2B.2).
By convention, Um and Lm with negative subscripts mi are zero. 3

Lemma 2D.2. Let wi
j denote the weights of Lωi

. We have the following Chebyshev-like recursion relations

Um(X1, ..., XN−1) = Um(XN−1, ..., X1), XiUm =
∑
wi

j

Um+wi
j
.

Together with the starting conditions for e = 0, 1 (as in Example 2D.3 for N = 4), these recursion relations
determine the polynomials Um for all m.

Proof. By construction and classical theory. □

Example 2D.3. The examples for N = 2 are the Chebyshev polynomials of the second kind normalized using
the variable x/2 instead of x, while [MMMT20, Example 2.6] lists examples for N = 3.

The next case is N = 4, we have three fundamental variables, X1, X2 and X3, associated to the simple 4 (the
vector representation), 6 and 4 dimensional sl4-representations. We have the following recursion. If mi < 0,
then Um1,m2,m3

= 0, and U0,0,0 = 1 and:

Um1,m2,m3 = X1 ·Um1−1,m2,m3 −Um1−2,m2+1,m3 −Um1−1,m2−1,m3+1 −Um1−1,m2,m3−1,

Um1,m2,m3 =

{
X2 ·Um1,m2−1,m3 −Um1+1,m2−2,m3+1 −Um1−1,m2−1,m3+1

−Um1+1,m2−1,m3−1 −Um1−1,m2,m3−1 −Um1,m2−2,m3 ,

Um1,m2,m3 = X3 ·Um1,m2,m3−1 −Um1,m2+1,m3−2 −Um1+1,m2−1,m3−1 −Um1−1,m2,m3−1.

Now U0,0,0 = 1 and

e = 0 U1,0,0 = X1, U0,1,0 = X2, U0,0,1 = X3,

e = 1
U2,0,0 = X

2
1 − X2, U1,1,0 = X1X2 − X3, U1,0,1 = X1X3 − 1,

U0,2,0 = X
2
2 − X1X3, U0,1,1 = X2X3 − X1, U0,0,2 = X

2
3 − X2,

e = 2

U3,0,0 = X
3
1 − 2X1X2 + X3, U2,1,0 = X

2
1X2 − X1X3 − X

2
2 + 1, U2,0,1 = X

2
1X3 − X2X3 − X1, U1,2,0 = X1X

2
2 − X

2
1X3 − X2X3 + X1,

U1,1,1 = X1X2X3 − X
2
1 − X

2
3, U1,0,2 = X1X

2
3 − X1X2 − X3, U0,3,0 = X

3
2 − 2X1X2X3 + X

2
1 + X

2
3 − X2,

U0,2,1 = X
2
2X3 − X1X

2
3 − X1X2 + X3, U0,1,2 = X2X

2
3 − X1X3 − X

2
2 + 1, U0,0,3 = X

3
3 − 2X2X3 + X1.

For e = 3 there are already 15 polynomials and for e = 4 there are 21, so we omit to put them here. Instead
let us list the polynomials for the symmetric powers U (k) = U(k,0,0) varying k:



ON HECKE AND ASYMPTOTIC CATEGORIES FOR COMPLEX REFLECTION GROUPS 9

k 0 1 2 3 4 5

U (k) 1 X1 X21−X2 X31−2X1X2+X3 X41−3X21X2+2X1X3+X
2
2−1 X51−4X31X2+3X21X2+3X1X

2
2−2X2X3−2X1

k 6 7 8 9 10 11 12

U (k) X61±...+2X2 X71±...−2X3 X81±...+1 X91±...+3X1 X101 ±...−3X2 X111 ±...+3X3 X121 ±...−1

We will see in the proof of Lemma 2D.4 below how one can compute these fairly efficiently. 3

Lemma 2D.4. The polynomial Um has a nonzero constant term only if χc(Lm) = 0. Moreover, all Chebyshev
polynomial Um with Σm = e+ 1 have a zero constant term if and only if e ≡ 0 mod N .

Proof. This proof is much more involved than in [MMMT20, Lemma 2.8].
The trivial representation is of color 0, which implies that if χc(Lm) ̸= 0 then Um has a zero constant

coefficient.
The vanishing of the constant term is understood using the recursion [Bee91, (5.18)], which is nicely

expressed using partitions instead of highest weights. This recursion implies that the Chebyshev polynomial
Um has a non zero constant coefficient if and only if the residues modulo N of (m1+ ...+mN−1+N −1,m2+
...+mN−1 +N − 2, ...,mN−1 + 1, 0) are all different. Therefore, if Σm ≡ 1 mod N , the residue 0 appears at
least twice and Um has zero constant term. Conversely, given e ≡ k mod N with 0 < k < N , one may check
that for m = ωk + eωN−1, the Chebyshev polynomial Um has a nonzero constant term.

To be self-contained, the alternative recursion that we mention above comes from the following observation:
It is remarkably easy to find a recursion for the kth symmetric power of the vector slN -representation, which
correspond to U(k,0,...,0) in our notation. For N = 2 this recursion is the standard recursion since all simple
sl2-representations are symmetric powers. For N > 2 let U (k)(X1, ..., XN−1) = U(k,0,...,0)(X1, ..., XN−1) denote
these polynomials. The recursion then takes the form

U (k+N) − X1U
(k+N−1) + ...(−1)N−1XN−1U

(k+1) + (−1)NU (k) = 0,

with some additional starting conditions. The main observation that makes [Bee91, (5.18)] is then that this
recursion also takes a nice form for other entries than the first when done entry-wise in the notation of the
highest weights using partitions. In this recursion setting all variable to zero (the constant term) gives

U (k+N) + (−1)NU (k) = 0,

and the claim then follows easily. □

A classical result of Kostant [Kos76] gives a formula for certain powers of the Dedekind η-function by
summing over simple slN -representations Lm, and the appearing coefficients ϵm are in {0, 1,−1}. The following
is a fun side observation:

Proposition 2D.5. The constant coefficient of the Chebyshev polynomial Um is equal to the trace of a(ny)
Coxeter element acting on the zero weight space of Lm which in turn is equal to ϵm.

Proof. This follows by comparing [Bee91, (5.18)] and [AF04, Theorem 1.2]. □

2E. Koornwinder variety. All proofs in this section are much more intricate than their rank 2 or 3 coun-
terparts in [MMMT20]. We define:

Definition 2E.1. Let Je be the ideal generated by

{Um | Σm = e+ 1} ⊂ Z[Xi].

We call Je the vanishing ideal of level e. Associated to it is the Koornwinder variety of level e

Ve =
{
γ = (γ1, ..., γN−1) ∈ CN−1 | p(γ) = 0 for all p ∈ Je

}
⊂ CN−1

which we consider as a complex variety. 3

Remark 2E.2. Following history, one could also call Ve the Chebyshev–Eier–Koornwinder–Lidl variety,
cf. [Koo74], which discusses the case N = 3 and [EL82], which discusses the general case, but that is a
mouthful. 3

Example 2E.3. All roots of Chebyshev polynomials Um have their first coordinate in the interior of the
N-cusped hypocycloid of parametric equation

x(θ) = (N − 1) cos(θ) + cos
(
(N − 1)θ

)
and y(θ) = (N − 1) sin(θ)− sin

(
(N − 1)θ

)
.

This is a folk result, and can, for example, be explicitly found in [Kai06, Section 3]. Recall that these are
plane curves generated by following a point on a circle of radius 1 that rolls within a circle of radius N . Here
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are the pictures:

N = 2: , N = 3: , N = 4: , N = 5: .

To be completely explicit, let N = 4 and e = 2. The common roots of the Chebyshev-like polynomials are:

(0,−1, 0), (0, 1, 0), (
√
3i,−2,−

√
3i), (−

√
3i,−2,

√
3i), (

√
3, 2,

√
3), (−

√
3, 2,−

√
3),

(e2iπ/8, 0, e14iπ/8), (e6iπ/8, 0, e10iπ/8), (e10iπ/8, 0, e6iπ/8), (e14iπ/8, 0, e2iπ/8).

We have the following plot of the first coordinates:

The point at zero is illustrated thick since it correspond to two values. Similar conventions are used throughout,
i.e. the thickness of points indicates their multiplicity. 3

Example 2E.4. For N = 6 and e = 6, the Koornwinder variety has p66 = 462 points. We have the following
plot of the first two coordinates:

,

We have not included the third coordinate since the points are on the real line. The fourth and fifth coordinates
are the complex conjugates of the second and the first. Note that the radius of the circle of the ith coordinate
equals the dimension of the slN -representation Lωi . 3

Definition 2E.5. For 1 ≤ i ≤ N − 1, we introduce Koornwinder’s Z-functions Zi : E → C defined by

Zi(σ) =
∑
j

exp
(
i(σ, wi

j)
)
,

where we recall that (wi
j)j are the weights of the fundamental representation Lωi

. 3

Remark 2E.6. The map Z1 is 2πY periodic, where Y is the root lattice, and is invariant under the action of
SN . The fundamental domain of E/2πY for this action is

D =

{
N−1∑
i=1

λiαi

∣∣∣2λi ≥ λi−1 + λi+1 for all 1 ≤ i < N, λ1 + λN−1 ≤ 2π

}
.
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Note that, in contrast to [Koo74] (this is N = 3), the map Z1 is not injective on the fundamental domain
D for N > 3. For example, for N = 4, D is a tetrahedron and the image of the six edges under Z1 are the
following:

Z1(0)Z1(2πω2)

Z1(2πω1)

Z1(2πω3)

The edge joining the vertices 0 and 2πω2 and the one joining the vertices 2πω1 and 2πω3 are mapped to the
parts of the real and the imaginary axis inside the hypocycloid. 3

To describe Ve using the functions Zi, we introduce a different parametrization.

Definition 2E.7. Define V′
e as the set V′

e =
{

2π
e+N (k+ ρ) | k ∈ X+(e)

}
. For σ = 2π

e+N (k + ρ) ∈ V′
e, we

denote by σ→ the element 2π
e+N (k→ + ρ) ∈ V′

e. 3

Lemma 2E.8. Given σ ∈ V′
e, we have (Z1(σ), ..., ZN−1(σ)) ∈ Ve.

Example 2E.9. For N = 3, the coordinates of the vectors of V′
e in the basis (α1, α2) coincide with the

expression as in [MMMT20, (2-11)]. For N = 4, we get

V′
e =

{
2π

4(e+4) (3k1 + 2k2 + 1k3 + 6, 2k1 + 4k2 + 2k3 + 8, 1k1 + 2k2 + 3k3 + 6) | 0 ≤ k1 + k2 + k3 ≤ e
}
,

from Definition 2E.7, where the coordinates are given in the basis (α1, α2, α3). 3

In the next theorem we use the Möbius function µ.

Theorem 2E.10. We have the following:
(a) As Z-algebras we have [Repη(slN )]⊕ ∼= Z[Xi]/Je.
(b) #Ve = peN .

(c) The number of points in Ve with stabilizer of size m under multiplication by ζ is

N

M

∑
k|g

µ(k)

(
M/mk

N/mk

)
,

where g = gcd(N/m,M/m).

Proof. Part (a). That we get the claimed isomorphism of free Z-modules follows from the definitions. More-
over, the quantum Racah formula [Saw06, Corollary 8] implies that this is actually an isomorphism of Z-
algebras.

Parts (b)+(c). These are proven in Section 5A. □

3. Asymptotic G(M,M,N)

Below we will use some standard terminology that can be found e.g. in [EGNO15].

3A. The asymptotic category and its Drinfeld center. We define the asymptotic category aM,M,N as
a matrix category indexed by Z/NZ, with entries in suitable subcategories of Repη(slN ).

Definition 3A.1. The asymptotic category aM,M,N is the monoidal additive C-linear category whose:
(a) indecomposable objects are matrices (Xij)i,j∈Z/NZ, with Xij a simple object in Repη(slN ) and χc(Xij) =

i− j,

(b) morphisms between (Xij)i,j∈Z/NZ and (Yij)i,j∈Z/NZ are matrices (fij)i,j∈Z/NZ with fij being a mor-
phism between Xij and Yij in Repη(slN ),

and the tensor product is given by multiplication of matrices. We equip this category with the ribbon structure
inherited from Repη(slN ). 3
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Example 3A.2. When e = 0, then Repη(slN ) is equivalent to the category of C-vector spaces, and aM,M,N

is then equivalent to the direct sum of N copies of the category of C-vector spaces. 3

Lemma 3A.3. The asymptotic category is a multifusion category of rank NpeN and is indecomposable if and
only if e ̸= 0.

Proof. The first statement follows from Lemma 2B.10, applied row-by-row. For e = 0 see Example 3A.2.
Finally, if e ̸= 0, the grading of Repη(slN ) by colors is faithful. □

We now describe the Drinfeld center of the asymptotic category when e ≥ 0. The first case is easy:

Example 3A.4. If e = 0, then the Drinfeld center is simply N copies of the category of vector spaces, with
a trivial braiding. 3

We now assume that e > 0. Let us denote by J3(k) = k3
∏

p|k(1−
1
p3 ) Jordan’s totient function. See [OEI23,

A059376] for explicit values. Moreover, recall the modular closure as in e.g. [Bru00] or [Müg00], which is
a special case of de-equivariantization from [EGNO15, Section 8.23].

Theorem 3A.5. We have the following.

(a) Z(aM,M,N ) is equivalent as a ribbon category to the modular closure of Z(Repη(slN ))0. In particular,
it is a modular category.

(b) Write stabk,m = gcd(stabk, stabm). Simple objects of Z(aM,M,N ) are indexed by the set

{
(m,k, i)|(m,k) ∈ X+(e)2/(Z/NZ) with χc(Lm) = χc(Lk), and i ∈ Z/stabm,kZ

}
.

Here Z/NZ acts diagonally on X+(e)2 = X+(e)×X+(e).

(c) The rank of Z(aM,M,N ) is

rkZ(aM,M,N ) =
1

M2

∑
k|gcd(N,M)

J3(k)

(
M/k

N/k

)2

.

(d) For N fixed and M → ∞ we have

rkZ(aM,M,N ) ∼ 1
(N !)2 ·M2N−2.

(e) The S-matrix Sa of Z(aM,M,N ) satisfies:

stabk,m∑
i=1

Sa
(m,k,i),(m′,k′,i′) =

1
stabk,m

Ssl
m,m′S

sl

k,k′ .

Moreover, if N is prime, there exists a unique (m,k) ∈ X+(e)2/(Z/NZ) with stabk,m ̸= 1 if and only
if e ≡ 0 mod N and we have

Sa
(m,k,i),(m,k,j) =

1

N2

{
Ssl
m,mS

sl

k,k + (N−1)θ3m,k dimc Repη(slN ) if i = j,

Ssl
m,mS

sl

k,k − θ3m,k dimc Repη(slN ) if i ̸= j,

where dimc Repη(slN ) is the categorical dimension. (See, for example, [BK01, (3.3.9)] for the value
of dimc Repη(slN ).) If N is not prime, see Remark 3A.8.

(f) The T -matrix of Z(aM,M,N ) is the matrix with entries T a
(m,k,i),(m′,k′,i′) = δm,m′δk,k′δi,i′θ

−1
m θk.

Example 3A.6. Let N = 3, e = 3 and M = 6. The category Repη(slN ) has 10 simple objects and
Z(aM,M,N )0 has then 34 simple objects. Among these 34 object, there are 11 orbits of size 3 and one of size
1 under the action of Z/NZ. Therefore, Z(aM,M,N ) has 14 simple objects, since each orbit of size 3 will give
one simple object, and the orbit of size 1 will split into 3 simple objects.
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The S-matrix of Z(aM,M,N ) is the 14-by-14 matrix

Sa =



1 1 3 1 4 4 4 4 4 4 3 3 3 3

1 1 3 1 4Υ 4Υ 4Υ 4Υ2 4Υ2 4Υ2 3 3 3 3

3 3 −3 3 0 0 0 0 0 0 9 −3 −3 −3

1 1 3 1 4Υ2 4Υ2 4Υ2 4Υ 4Υ 4Υ 3 3 3 3

4 4Υ 0 4Υ2 4 4Υ 4Υ2 4 4Υ2 4Υ 0 0 0 0

4 4Υ 0 4Υ2 4Υ 4Υ2 4 4Υ2 4Υ 4 0 0 0 0

4 4Υ 0 4Υ2 4Υ2 4 4Υ 4Υ 4 4Υ2 0 0 0 0

4 4Υ2 0 4Υ 4 4Υ2 4Υ 4 4Υ 4Υ2 0 0 0 0

4 4Υ2 0 4Υ 4Υ2 4Υ 4 4Υ 4Υ2 4 0 0 0 0

4 4Υ2 0 4Υ 4Υ 4 4Υ2 4Υ2 4 4Υ 0 0 0 0;

3 3 9 3 0 0 0 0 0 0 −3 −3 −3 −3

3 3 −3 3 0 0 0 0 0 0 −3 9 −3 −3

3 3 −3 3 0 0 0 0 0 0 −3 −3 9 −3

3 3 −3 3 0 0 0 0 0 0 −3 −3 −3 9



,

where Υ = η4. The top colored block corresponds to the S-matrix of Repη(slN )0 and the bottom colored
block corresponds to the object of Z(aM,M,N )0 that splits in three. 3

Remark 3A.7. Let A4 denote the alternating group of order twelve. The matrix in Example 3A.6 is the same
as the S-matrix of Drinfeld center of A4-graded vector spaces (the latter, by duality, is the same as the Drinfeld
center of the category of A4-representations). However, the appearance of nonnegative integers in the first
row and column of the matrix is a small number coincidence and we do not expect any nice description of the
S-matrix in terms of a group in general. 3

Proof of Theorem 3A.5. Part (a). Since the asymptotic category aM,M,N is indecomposable by Lemma 3A.3,
[KZ18, Theorem 2.5.1] shows that its Drinfeld center is equivalent to the Drinfeld center of any of its diagonal
components Repη(slN )0. We then observe that Z(Repη(slN )0) is monoidally equivalent to the modular
closure of Z(Repη(slN ))0, which follows immediately from [EGNO15, Proposition 8.23.11].

Part (b). Let (−)
rev denote the reverse category as in [EGNO15, Definition 8.1.4]. Since Repη(slN ) is

modular, its Drinfeld center is equivalent to Repη(slN )⊠Repη(slN )rev, see, for example, [EGNO15, Propo-
sition 8.6.3]. The degree zero part of Repη(slN ) ⊠Repη(slN )rev is

⊕
i∈Z/NZ Repη(slN )i ⊠ (Repη(slN )rev)i,

and its symmetric center is generated by the object Leω1
⊠ Leω1

. Since Leω1
⊗ Lm = Lm→ , the result follows

from [Bru00, Remarques 4.5, 1)] or [Müg00, Corollary 5.3].
Part (c). This is done in Section 5B.
Part (d). For fixed N , rkZ(aM,M,N ) is polynomial in M and the leading term is obtained for k = 1. The

result follows from J3(1) = 1 and
(
M
N

)
∼ MN

N ! when M → ∞.
Part (e). This is done in Section 5B.
Part (f). This follows immediately from [Müg00, Proposition 4.2]. □

Remark 3A.8. When N is not prime, the calculation of the S-matrix of Z(aM,M,N ) is more intricate. For
gcd(e,N) ̸= 1, Lemma 5B.2 shows that several objects of Z(Repη(slN ))0 can split in the modular closure. 3

3B. A family of unipotent characters. Malle [Mal95] has introduced the notion of unipotent characters
for the complex reflection group G(M,M,N). These characters are partitioned into families, similarly to the
unipotent characters of a finite group of Lie type as e.g. in [Lus84, Chapter 4]. We consider a certain family
F of unipotent characters which, in terms of the combinatorics developed by Malle, are indexed by so-called
M-symbols with entries in the multiset {0e, 1N}, but we do not use this explicitly.

Remark 3B.1. For N = 2 the family F corresponds to the subregular KL cell of a-value 1. In general, the
families we consider have a-value N(N − 1)/2. 3

The elements of F are indexed by orbits under an action of Z/MZ, which we will define later in Section 5B
(on M -symbols, this action is given by a cyclic shift of the rows), on the following set. Let Y = {1, ...,M} and
π : Y → Z≥0 defined by π(y) = 1 if 1 ≤ y ≤ N and π(y) = 0 otherwise. We consider the set

Ψ(Y, π) =
{
f : Y → {0, . . . ,M − 1}|

∑
y∈Y

f(y) ≡
(
M
2

)
mod M,f|π−1(i) is strictly increasing for all i ∈ Z≥0

}
.

We denote equivalence classes by [f ]. An equivalence class [f ] might index several unipotent characters of F ,
which we will denote by ([f ], i) for i ∈ Z≥0. We make this precise in Section 5B.

To each family of unipotent characters, Malle [Mal95] has attached a Fourier matrix and eigenvalues of
the Frobenius, generalizing the constructions from the groups of Lie type as, for example, in [Lus84]. The
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eigenvalue of the Frobenius of the unipotent character of F indexed by ([f ], i) is

Frob([f ], i) = η−α(f) with α(f) =
M(1−M2)

6
−
∑
y∈Y

(f(y)2 +Mf(y)).(3B.2)

For the Fourier matrix, we will adopt the conventions of [Las12, Section 5.4] which differ from [Mal95, Section
6C] by some signs. For f ∈ Ψ(Y, π), we set ε(f) = (−1)c(f)+γ(f) where

c(f) =
∣∣{(y, y′) ∈ Y 2 | y < y′, f(y) < f(y′)}

∣∣ and γ(f) =
M − 1

M

((M
2

)
−
∑
y∈Y

f(y)
)
.

Let S = (η−2ij)0≤i,j<M and define τ = (−1)(
M
2 ) det(S). We view S as the matrix of an endomorphism of

V =
⊕M−1

i=0 Cvi. Given f : Y → {0, . . . ,M − 1} strictly increasing on π−1(1) = {1, . . . , N} and on π−1(0) =
{N + 1, . . . ,M}, we set

vf = (vf(1) ∧ · · · ∧ vf(N))⊗ (vf(N+1) ∧ · · · ∧ vf(M)) ∈ ΛNV ⊗ ΛeV.

Such vectors form a basis of ΛNV ⊗ ΛeV and we denote by (ΛNS ⊗ ΛeS)f,g the entries of the matrix of the
endomorphism ΛNS ⊗ ΛeS in this basis.

We define the pre-Fourier matrix S̃ of the family F , which in indexed by orbits of Ψ(Y, π) under the
action of Z/MZ, by

S̃[f ],[g] =
(−1)M−1M

τ
ε(f)ε(g)(ΛNS ⊗ ΛeS)f,g,

for all f, g ∈ Ψ(Y, π). In contrast to the pre-Fourier matrix, the Fourier matrix itself S of the family F is not
entirely determined, see [Las12, Remark 5.4.35].

Let ι be the bijection defined in Section 5B. Recall the T -matrix T a of the modular category Z(aM,M,N ).
We denote the S-matrix of the degree zero part of the Drinfeld center of Repη(slN ) by S0.

Theorem 3B.3. We have the following.
(a) The cardinal of F is equal to the rank of Z(aM,M,N ).

(b) For all f, g ∈ Ψ(Y, π),

S̃[f ],[g] = factor(f, g) · S0
ι(f),ι(g), factor(f, g) = (−1)

∑N
i=1

(f(i)+g(i))
ε(f)ε(g)√

dim(Z(aM,M,N ))
.

Thus, up to a diagonal change of basis, the pre-Fourier matrix and the S-matrix of Z(Repη(slN ))0
coincide.

(c) For all f ∈ Ψ(Y, π),

Frob([f ], i) = T a
ι(f),ι(f).

Remark 3B.4. By Theorem 3A.5.(e), the S-matrix of Z(aM,M,N ) satisfies [Las12, Conjecture 5.4.34], and we
think it hence deserves to be called the Fourier matrix of the family F . 3

3C. The big asymptotic category related to a Calogero–Moser cell. We say that a unipotent character
represented by ([f ], i) is in the principal series if |f−1(i)| = 1 for every 0 ≤ i ≤ e − 1. We denote by F0 the
unipotent characters of F lying in the principal series. They are in bijection with a subset of irreducible
complex representations of G(M,M,N), which are represented by M -partitions of N with each entry being
(1) or empty, see [Mal95, Section 6A] for more details. By a (slight) abuse of notations, we will also denote
by F0 the set of irreducible complex representations of G(M,M,N) corresponding to the unipotent characters
in the principal series. If M > N , a result of Bellamy [Bel12] states that F0 is a CM family of irreducible
complex representations of G(M,M,N) for a specific choice of parameters, the so-called spetsial ones.

Remark 3C.1. The spetsial parameters correspond to equal parameters for Iwahori–Hecke algebras. 3

In [BR17], Bonnafé–Rouquier construct a partition of a finite complex reflection group into left, right and
two-sided CM cells, and conjecture that these cells coincide with the KL cells provided the complex reflection
group is a Coxeter group. They also construct a bijection between the CM families and the two-sided CM
cells. Let us denote by Γ the two-sided CM cell associated with the family F0.

We now define what we call the big asymptotic category.

Definition 3C.2. Let AM,M,N be the matrix category over aM,M,N of size (N−1)!. 3

Since aM,M,N is a ribbon category, so it the big asymptotic category AM,M,N .

Theorem 3C.3. We have the following.
(a) aM,M,N and AM,M,N are Morita equivalent (they have the same 2-representation theory).
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(b) The Drinfeld centers of aM,M,N and AM,M,N are equivalent as modular categories.

(c) rk AM,M,N = (N !)2

M

(
M
N

)
= |Γ|.

(d) [AM,M,N ]C⊕ ≃
⊕

V ∈F0
MatdimC V (C).

Proof. Part (a). This is [MMM+21, Proposition 2.27].
Part (b). This follows from [KZ18, Theorem 2.5.1, (7)].
Part (c). The rank of AM,M,N is ((N−1)!)2rk aM,M,N = ((N−1)!)2NpeN . The second equality follows

from [BR17, Theorem 12.2.7, (c)] and taking dimensions in (d).
Part (d). See Section 5B. □

4. Nhedral Hecke algebras and categories

While reading this section we recommend having Lemma 2B.1 and Theorem 2E.10.(a) in mind that we are
going to “color”.

4A. Nhedral Hecke algebras. Let I = {0, ..., N−1}, identified with the set of vertices of the affine type
AN−1 Dynkin diagram. The associated Weyl group is W = ⟨si|i ∈ I⟩/(relations in (4A.2)).

Notation 4A.1. To easy notation, we write i instead of si for the standard generators of W . We will also
often write e.g. 145 for C = {1, 4, 5}. 3

Summarized in one picture:

ÃN−1 = A
(1)
N−1 : 0

1
2

3

4

N−1

, relations : ii = 1 and

010 = 101

121 = 212

...
(N−1)0(N−1) = 0(N−1)0

.(4A.2)

For k ∈ {0, ..., N−1} the kth colors are the subsets C ⊂ I of size k. For such a C its ingredient colors are
the D ⊂ I of size k − 1 such that #C∆D = 1, i.e. they differ by precisely one element. The 0th color is ∅,
also called white.

Remark 4A.3. The colors correspond to finite parabolic subgroups WC = ⟨i|i ∈ C⟩ ⊂ W . Note that there
is no black color: I is not a color as the corresponding subgroup would be W itself. 3

The (N−1)th colors are the subsets C ⊂ I of size N−1, and since we use them often we call these top
colors. These correspond to maximal finite parabolic subgroups of W .

Example 4A.4. For N = 3, the color analogy can be used at its fullest, either in the RYB model (as
in [MMMT20], the convention we follow) or the RGB model: Here 0 is red, 1 is either yellow or green, and
2 is blue. Moreover, 01 is orange or yellow, 02 is purple or magenta, and 12 is green or cyan.

RYB :

∅

10 2

0201 12

, RGB :

∅

10 2

0201 12

.

(Note that white is black in RGB.) Beyond N = 3 the color analogy gets a bit shaky, but is still useful to keep
in mind. 3

Label the vertices of an Ngon from 0 to N−1 counterclockwise. Let us put the top colors on the vertices of
such a regular Ngon, so that C corresponds to the vertex i with C ∪ i = I. Let Z/NZ ∼= ⟨ρ0, ..., ρN−1|ρiρj =
ρi+j( mod N)⟩ act on this configuration by rotation, i.e. ρ = ρ1 : i → i + 1(modN). For example, for N = 4
and N = 5:

N = 4: 0

1

2

3

ρ ⟲ ↭ 123

023

013

012

ρ ⟲ , N = 5: 0

1

2

3

4

ρ ⟲ ↭ 1234

0234

0134

0124

0123

ρ ⟲ .
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Notation 4A.5. We will always have a set of size N − 1 inside a set of size N , and we will index the subsets
by the missing value. Similarly, the parabolic subgroups of W corresponding to these subsets will be indexed
by the missing value. For example, if N = 4, then 023 will be denoted 1 and the corresponding parabolic
subgroup by W1. 3

Recall that v is a generic parameter. The quantum numbers in this variable will be denoted by [a]v etc.

Definition 4A.6. The Nhedral Hecke algebra T∞ of level ∞ is the associative unital (Cv-)algebra
generated by N elements {θi|i ∈ I} subject to the following relations.

θ2i = [N ]v! · θi, θk+i+jθk+iθk = θk+i+jθk+jθk for all i, j, k ∈ I,(4A.7)

where indices are taken modulo N . The second type of relation is called fundamental commutativity. 3

Remark 4A.8. Recall from Remark 3B.1 that the a-value of the CM cell is N(N − 1)/2, which is half of the
span of [N ]v!. So after shift, at v = 0 the relation θ2i = [N ]v! · θi becomes θ2i = θi. 3

We identify ρi with the fundamental variable Xi. The fundamental commutativity is then mimicking XiXj =
XjXi. Moreover, given an expression θj ...θi, we call i the starting and j the ending color.

Example 4A.9. Let N = 4. Then, up to changing the starting color, we have

θ3θ1θ0 = θ3θ2θ0 ↭ X2X1 = X1X2,

θ0θ1θ0 = θ0θ3θ0 ↭ X3X1 = X1X3,

θ1θ2θ0 = θ1θ3θ0 ↭ X3X2 = X2X3,

as the fundamental commutativity relations. 3

Every i defines a word of length 1
2N(N−1) as follows. Say i = N−1, the general case being similar, then

wi = 012...(N − 2)...012010 ∈ Wi.

Note that the wi are representatives of the longest elements in their associated parabolic subgroups Wi.
Let H(ÃN−1) denote the Hecke algebra of affine type AN−1. Following the conventions of [Soe97], this

algebra is generated by {Θi|i ∈ I} subject to (reading indices modulo N):

Θ2
i = [2]vΘi, ΘiΘjΘi −Θi = ΘjΘiΘj −Θj for |i− j| = 1, ΘiΘj = ΘjΘi for |i− j| > 1.

Let Θw denote the KL basis element for w ∈ W , see e.g. [Soe97]. We have:

Lemma 4A.10. (This assumes (QSH).) The algebra homomorphism given by

θi 7→ Θwi ,

defines an embedding T∞ ↪→ H(ÃN−1) of algebras.

The proof of Lemma 4A.10 is different from the one given in [MMMT20, Lemma 3.2], and is postponed
to Section 5C.

The Nhedral KL combinatorics works as follows. For k = (k1, ..., kN−1) ∈ X+ and starting color i, let

hk
i = θiΣk

...θi1θi0

with i0 = i and ir+1 = ρj(ir) = ir + j for any kj values of r. We will call Σk the ending color. Reversing the
order, let

k
i h = θi0θi1 ...θiΣk

be defined similarly as hk
i but using ρ−j instead of ρj .

Lemma 4A.11. For any starting color i ∈ I and any k ∈ X+, the element hk
i and k

i h only depends on k and
not on the chosen sequence i = i0, i1, ..., iΣk.

Proof. Any word representing hk
i is equivalent to the word θiΣk

...θi0 with i0 = i and

ir+1 = ρj(ir) for all k1 + ... + kj−1 ≤ r < k1 + ... + kj .

Indeed, if there exists a subword of the form θir+j+kθir+jθir with 1 ≤ k < j < N−1 then using the fundamental
commutativity relation (4A.7), we replace this subword by θir+j+kθir+kθir . □

Remark 4A.12. Via (QSH), the element hk
i is associated to Xk1

1 ...XkN−1

N−1 because its definition involves kj times
the application of ρj . 3



ON HECKE AND ASYMPTOTIC CATEGORIES FOR COMPLEX REFLECTION GROUPS 17

Example 4A.13. Let us choose 0 as the starting color. For N = 4 and Σk = 2, we have

h2,0,0
0 = θ2θ1θ0 ↭ X21, h0,2,0

0 = θ0θ2θ0 ↭ X22, h0,0,2
0 = θ2θ3θ0 ↭ X23,

h1,1,0
0 = θ3θ1θ0 ↭ X2X1, h1,0,1

0 = θ0θ1θ0 ↭ X3X1, h0,1,1
0 = θ1θ2θ0 ↭ X3X2.

Note that, for example, h1,1,0
0 = θ3θ2θ0 by (4A.7), and on the representation side by X2X1 = X1X2. 3

Recall that κ = [N − 1]v! and dkm denote the numbers from (2B.2). For each m ∈ X+, we define (right)
Nhedral KL basis elements:

cmi =
∑
k

κ−Σkdkm · hk
i .

Note that the three sums are finite, because dkm = 0 unless Σk ≤ Σm. Similarly, using k
i h instead of hk

i , we
define the (left) Nhedral KL basis elements m

i c. Note that the ending color of every term hk
i appearing in the

sum have the same ending color.

Remark 4A.14. Via (QSH), the element cmi is associated to the Chebyshev polynomial Um(X1, ..., XN−1). 3

Example 4A.15. For N = 4 and Σk = 2, we have

c2,0,00 = κ−2θ2θ1θ0 − κ−1θ2θ0 ↭ U2,0,0 = X21 − X2, c0,2,00 = κ−2θ0θ2θ0 − κ−2θ0θ1θ0 ↭ U0,2,0 = X22 − X3X1,

c0,0,20 = κ−2θ2θ3θ0 − κ−1θ2θ0 ↭ U0,0,2 = X23 − X2, c1,1,00 = κ−2θ3θ1θ0 − κ−1θ3θ0 ↭ U1,1,0 = X2X1 − X3,

c1,0,10 = κ−2θ0θ1θ0 − θ0 ↭ U1,0,1 = X3X1 − 1, c0,1,10 = κ−2θ1θ2θ0 − κ−1θ1θ0 ↭ U0,1,1 = X3X2 − X1,

with 0 as the starting color. 3

Lemma 4A.16. For any i ∈ I and k ∈ X+, let j be the ending color of hk
i . We have hk

i = k
j h and similarly

for the KL basis elements.

Proof. This follows immediately from Lemma 4A.11. □

Lemma 4A.17. (This assumes (QSH).) For all i ∈ I and m ∈ X+, let j be the ending color of cmi . Let
0 ≤ k < N . With the notation in Lemma 2D.2, we have

θj+kc
m
i =

{
[N ]v!c

m
i k = 0,

κ
∑

l c
m+wk

l
i otherwise,

where terms with negative entries are zero. Similarly for the left KL elements.

Remark 4A.18. Coming back to Remark 4A.8, at v = 0, Lemma 4A.17 becomes

θj+kc
m
i =

{
cmi k = 0,

0 otherwise,

since κ has a smaller span than N(N−1). This justifies the “degree 0 isomorphism” from Te in Definition 4A.21
to the Grothendieck ring of the asymptotic category aM,M,N in Definition 3A.1. 3

Proposition 4A.19. (This assumes (QSH).) Each of the four sets

H∞ = {1} ∪ {hk
i |k ∈ X+, i ∈ I}, ∞H = {1} ∪ {ki h|k ∈ X+, i ∈ I},

C∞ = {1} ∪ {cmi |m ∈ X+, i ∈ I} ∞C = {1} ∪ {mi c|m ∈ X+, i ∈ I}

is a basis of T∞. The first two are called Nhedral Bott–Samelson bases, the final two Nhedral KL
bases.

Recall the definition of left, right and two-sided cells for T∞ using the Nhedral KL basis, see for example
[MMMT20, Definition 3.10]. The unit forms its own cell, that we call the trivial cell.

Proposition 4A.20. The nontrivial cells for the algebra T∞ are

Li =
{
cmi |m ∈ X+

}
, iR =

{
m
i c|m ∈ X+

}
, for i ∈ I,

J =
{
cmi |m ∈ X+, i ∈ I

}
=
{
m
i c|m ∈ X+, i ∈ I

}
,

where Li, iR and J are left, right and two-sided cells respectively.

Proof. As in [MMMT20, Proof of Proposition 3.11], this follows from Lemma 4A.17. □

We now define finite dimensional quotients of T∞, which are compatible with the cell structure in Proposi-
tion 4A.20.
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Definition 4A.21. For our fixed e, let Ie be the two-sided ideal in T∞ generated by

{cmi | i ∈ I,m ∈ X+,Σm = e+ 1}.
We define the Nhedral Hecke algebra of level e as

Te = T∞/Ie

and we call Ie the vanishing ideal of level e. 3

Proposition 4A.22. The set

Ce = {1} ∪ {cmi | i ∈ I,m ∈ X+(e)} (∗)
= eC = {1} ∪ {mi c | i ∈ I,m ∈ X+(e)}

(the equality (*) follows from Lemma 4A.16) is a basis of Te. Thus, we have dimCv Te = 1 +NpeN .

Proof. Similarly as [MMMT20, Proof of Proposition 3.14]. □

Proposition 4A.23. The nontrivial cells for the algebra Te are

Li =
{
cmi |m ∈ X+(e)

}
, iR =

{
m
i c|m ∈ X+(e)

}
, for i ∈ I,

J =
{
cmi |m ∈ X+(e), i ∈ I

}
=
{
m
i c|m ∈ X+(e), i ∈ I

}
,

where Li, iR and J are left, right and two-sided cells respectively. In particular, each left and right cell is of
size peN , and J is of size NpeN .

Proof. This follows from the previous results. □

Example 4A.24. Left and right cells correspond to the cut-off of the positive Weyl chamber of type AN−1,
similarly as in [MMMT20, Example 3.16]. 3

4B. Nhedral complex representations. We now classify all simple representations of Te on Cv-vector
spaces, and this classification implies that Te is semisimple.

To this end, for λ = (λi)i∈I ∈ (Cv)I define

Mλ : Cv⟨θi|i ∈ I⟩ → Cv, θi 7→ λi,

which determines a one dimensional Te-representation in the following cases. We let (x, i) ∈ (Cv)I the element
with the ith entry x and zero otherwise.

Proposition 4B.1. The following table

e ≡ 0 mod N e ̸≡ 0 mod N

M0,...,0,M[N ]v!,i for i ∈ I M0,...,0

N + 1 in total only one

(4B.2)

gives a complete and irredundant list of one dimensional Te-representations.

Proof. That M0 is well-defined and simple is immediate. The remaining parts follow from Theorem 4B.4
below. □

We now define some representations of dimension N , which are parametrized by the points in V′
e. Given

σ ∈ E, we define

M0(σ) = κ

(
[N ]v Z1(σ) Z2(σ) ... ZN−1(σ)
0 0 0 ... 0

... ... ... ... ...

0 0 0 ... 0

)
, M1(σ) = κ

 0 0 0 ... 0
ZN−1(σ) [N ]v Z1(σ) ... ZN−2(σ)

0 0 0 ... 0

... ... ... ... ...

0 0 0 ... 0

, ...,

MN−1(σ) = κ

(
0 0 ... 0 0

... ... ... ... ...

0 0 ... 0 0
Z1(σ) Z2(σ) ... ZN−1(σ) [N ]v

)
.

Lemma 4B.3. The assignment θi 7→ Mi(σ) is a well-defined representation of Te if and only if σ ∈ V′
e.

Proof. The defining relations (4A.7) of T∞ are easy to check, since the matrices have only one nonzero row.
It factors through Je if and only if (Z1(σ), ..., ZN (σ)) ∈ Ve as in [MMMT20, Lemma 3.18]. □

For σ ∈ V′
e, denote by M(σ) the above defined Te-representation.

Theorem 4B.4. We have the following.
(a) For σ ∈ V′

e, the representation M(σ) decomposes as the direct sum of m equidimensional nonisomor-
phic simple representations, where m is the order of the stabilizer of σ for the Z/NZ-action.
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(b) For σ,σ′ ∈ V′
e, we have

dim HomTe

(
M(σ),M(σ′)

)
=

{
0 if σ and σ′ are in different orbits,
m otherwise.

(c) The simple representations appearing in (a), when σ varying over the orbits of V′
e, and the represen-

tation M(0,...,0) form an complete irredundant list of simple representations.

(d) The algebra Te is semisimple.

4C. Nhedral integral representations. Let Z[v]
≥0 = Z≥0[v, v

−1]. Recall that an Z[v]
≥0-algebra is a Cv-algebra

with a fixed basis such that the structure constants for the multiplication are in Z[v]
≥0. An Z[v]

≥0-representation
of such an algebra is a representation over Cv with a fixed basis such that the structure constants for the
action are in Z[v]

≥0.

Lemma 4C.1. (This assumes (QSH).) The Nhedral Hecke algebras T∞ and Te are Z[v]
≥0-algebras with respect

to the KL basis of Proposition 4A.19 and Proposition 4A.22.

We now study Z[v]
≥0-representations of the Nhedral Hecke algebras. To this end, we use the following type

of colored graphs. Recall I = {0, ..., N − 1}.

Definition 4C.2. An unoriented graph Γ = (V, E) is Ncolored if V is partitioned into N disjoint sets V =∐
i∈I Vi such that neighboring vertices have different colors. The vertices in Vi are said to be of color i. 3

The adjacency matrix of such a graph can be brought in the form

A(Γ) =


0 1 · · · N − 1

0 0 Z1
0 ... ZN−1

0

1 Z0
1 0 ... ZN−1

1

... ... ... ... ...

N − 1 Z0
N−1 Z1

N−1 ... 0

 with (Zj
i )

T = Zi
j .

Given an Ncolored graph Γ = (V, E), define

M(Γ): Cv⟨θi|i ∈ I⟩ → EndCv(CvV), θi 7→ Mi(Γ),

where the matrices are

M0(Γ) = κ

(
[N ]vid Z1

0 Z2
0 ... ZN−1

0
0 0 0 ... 0

... ... ... ... ...

0 0 0 ... 0

)
, M1(Γ) = κ

 0 0 0 ... 0
Z0

1 [N ]vid Z2
1 ... ZN−1

1
0 0 0 ... 0

... ... ... ... ...

0 0 0 ... 0

, ...,

MN−1(Γ) = κ

( 0 0 ... 0 0

... ... ... ... ...

0 0 ... 0 0
Z0

N−1 Z1
N−1 ... ZN−2

N−1 [N ]vid

)
.

Let Zi
i = id for i ∈ I.

Lemma 4C.3. The assignment θi 7→ Mi(Γ) is a well-defined representation of T∞ if and only if for all
i, j, k ∈ I, Zi+j

i+j+kZ
i
i+j = Zi+k

i+j+kZ
i
i+k.

Proof. This follows from an easy direct computation (since only one row of the action matrices is nonzero). □

For i ∈ {1, ..., N − 1} define the following oriented subgraphs Γi of Γ with adjacency matrix A(Γi) obtained
from A(Γ) by setting all blocks to zero except the blocks Zi+j

j . Note that the condition in Lemma 4C.3 is
equivalent to the pairwise commutation of the matrices A(Γ1), ..., A(ΓN−1).

Example 4C.4. For N = 4 we have:

A(Γ) =


0 Z1

0 Z2
0 Z3

0

Z0
1 0 Z2

1 Z3
1

Z0
2 Z1

2 0 Z3
2

Z0
3 Z1

3 Z2
3 0

, A(Γ1) = A(Γ3)
T =


0 Z1

0 0 0

0 0 Z2
1 0

0 0 0 Z3
2

Z0
3 0 0 0

, A(Γ2) =


0 0 Z2

0 0

0 0 0 Z3
1

Z0
2 0 0 0

0 Z1
3 0 0

.
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If Γ is the graph of the type as in Example 2B.5, then the Γi are obtained by putting an orientation on some
edges, and removing other edges. Generically, the picture is:

1: , 2: , 3: .

These three graphs correspond to tensoring by Lωi
. Note that the generic picture for 1 and 3 have four edges,

while 2 has six edges, matching the dimensions of the Lωi
. 3

Let us now assume that Γ is such that the condition in Lemma 4C.3 holds.

Lemma 4C.5. The T∞-representation M(Γ) descents to a Te-representation if and only if

Um

(
A(Γ1), ..., A(ΓN−1)

)
= 0 for all m with Σm = e+ 1.

Proof. By construction. □

Some examples of Ncolored graphs Γ satisfying Lemma 4C.5 are obtained through the fusion rules of
Repη(slN ). Here is a (non-exhaustive) list:

Definition 4C.6. We define the graph of type A of rank N and level e as the graph Γ with set of vertices
X+(e), colored using the color χc, and the vertices m and k are adjacent if and only if Lm is a summand of⊕N−1

i=1 Lωi
⊗ Lk. The graph Γi is then the fusion graph of the object Lωi

.
Moreover, we define graphs of type D in Section 5C.
For N = 4, we have additional graphs that we will not describe here but rather refer to [Ocn02, Figures 3

and 4, denoted 2Ac
e, 2(Ac

e/2) and E]. These are called graphs of conjugate type A (these two are infinite
family), and graphs of type E (there are six of these). 3

Remark 4C.7. There appears to be a small typo in [Ocn02, Figures 3 and 4] for the graphs labeled 2Ac
e and

2(Ac
e/2): all double edges should be colored blue instead of red (in 2024, we got a colored version of Ocneanu’s

paper from https://cel.hal.science/cel-00374414/document). 3

Example 4C.8 (Type A). For N = 4 and e = 4, the graph of type A is the tetrahedron of Example 2B.5
and the plot of the eigenvalues of A(Γ1) are:

and .

The joint spectrum of (A(Γ1), A(Γ2), A(Γ3)) is the Koornwinder variety Ve. 3

Example 4C.9 (Type D). For N = 2 the type D graphs are type D Dynkin diagrams, for N = 3 see
[MMMT20, Appendix 1], and for N = 4 see [Ocn02, Figures 3 and 4]. Here are the graph of type D for

https://cel.hal.science/cel-00374414/document


ON HECKE AND ASYMPTOTIC CATEGORIES FOR COMPLEX REFLECTION GROUPS 21

e = 4 and N = 4 and the plot of the eigenvalues of A(Γ1):

and .

Convention : = single edge, = double edge, = triple edge.

Here, similarly as below, the blue slightly thicker edges are double edges and the red thicker edge is a triple
edge. This graph is not included in [Ocn02] and the joint spectrum of (A(Γ1), A(Γ2), A(Γ3)) is a subset
(with extra multiplicities) of the Koornwinder variety: there are 8 points with multiplicity 1 and 3 points with
multiplicity 2. 3

Example 4C.10 (Type A conjugate). For e = 4, the graph of type 2Ac
e and the plot eigenvalues of A(Γ1) are

and .

The joint spectrum of (A(Γ1), A(Γ2), A(Γ3)) is a subset (with extra multiplicities) of the Koornwinder: there
are 12 points with multiplicity 1 and 3 points with multiplicity 2.

For e = 4, the graph of type 2(Ac
e/2) and the plot eigenvalues of A(Γ1) are

and .

The joint spectrum of (A(Γ1), A(Γ2), A(Γ3)) is a subset (with extra multiplicities) of the Koornwinder: there
are 12 points with multiplicity 1 and 3 points with multiplicity 2. 3
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Example 4C.11 (Type E). The exceptional graph E4 and the plot eigenvalues of A(Γ1) are

and .

The joint spectrum of (A(Γ1), A(Γ2), A(Γ3)) is a subset (with extra multiplicities) of the Koornwinder: there
are 8 points with multiplicity 1 and 1 point with multiplicity 4. 3

Recall, from e.g. [MMMT20, Definition 5.6], the notion of a transitive Z[v]-representation. These rep-
resentations are the simple objects in the category of Z[v]-representations, and we call them simple Z[v]-
representations.

Theorem 4C.12. We have the following (potentially conjectural as indicated below). All of the following give
well-defined simple Z[v]-representations of Te.

(a) M(Γ) for Γ of type A of rank N and level e. (Proven.)

(b) M(Γ) for Γ of type D of rank N and level e. (Conjectural; verified in small cases.)

(c) M(Γ) for Γ of conjugate type A of rank N and level e. (Conjectural; verified in small cases.)

(d) M(Γ) for Γ of type E. (Proven via computer, see [LTV24].)

Proof. This is proven in Section 5C □

Remark 4C.13. One could ask the following problem: could one classify the graphs such that the condition in
Lemma 4C.5 is satisfied? This question has been addressed in the literature for special cases, see e.g. [Zub98],
[Ocn02], [MMMT20]. We do not know the answer to this in general, not even for N = 3. In particular,
there will be more simple Z[v]-representations in Theorem 4C.12 in general. 3

4D. Categorification. There is a categorification of the above story, but we decided not to include it here
for brevity and to not overload the paper with more combinatorics. (Another problem is that several notions
we would need are not in the literature while writing this paper.) Instead, we list here what one needs to
change when compared to [MMMT20].

(i) The diagrammatic 2-category in [MMMT20, Section 4.1] should be replaced by its affine type AN−1

analog. While writing this paper, at least to the best of our knowledge, there is no diagrammatic
presentation of the relevant 2-category but one rather has to work with algebraic singular Soergel
bimodules as in [Wil11]. For the quantization of this category one needs to use the quantum Cartan
matrix as in [Eli17].

(ii) Nhedral Soergel bimodules of level ∞ can then be defined similarly as in [MMMT20, Section 4.2],
replacing ‘secondary color’ therein by a subset of I of size N − 1. The main statement is then the
analog of [MMMT20, Proposition 4.31], which holds verbatim and provides a categorification of T∞.

(iii) Under (QSH), one can then copy [MMMT20, Section 4.3] using N -colored webs (using e.g. the webs
from [CKM14]) and gets the analog of [MMMT20, Proposition 4.48], categorifying Te for a fixed
e. Hereby, the Nhedral version of the clasps can be defined using [Eli15] (which has been proven by
now, see [MS22], and which might even give bases cf. [AST18]).

(iv) Finally, [MMMT20, Section 5.2] can be, mutatis mutandis, used to categorify Theorem 4C.12 in the
expected way. One exploits here the algebra objects that we give in Section 5C and the algebra object
technology for Soergel bimodules developed in [MMMT19], [MMM+23], [MMM+21]. Alterna-
tively, this could be done using a quiver similarly to [AT17], but the quiver is already complicated for
N = 3, see [MMMT20, Section 5.3].

5. Appendix: Some more technical things

5A. Missing proofs for Section 2.
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Proof of Lemma 2E.8. Given m ∈ X+, we define E−
m : E → C by

E−
m(σ) =

∑
w∈SN

(−1)l(w) exp (i(w(m),σ)) .

The functions Zi and E−
m are invariant by σ 7→ σ + 2παi and therefore define functions on the torus

TN−1 = E/2πY , where Y is the root lattice. Moreover, the functions Zi are invariant and the functions E−
m

are antiinvariant under the action of the symmetric group. The fundamental domain of the quotient TN−1/SN

is equal to

D =

{
N−1∑
i=1

λiαi

∣∣∣2λi ≥ λi−1 + λi+1 for all 1 ≤ i < N, λ1 + λN−1 ≤ 2π

}
.

Weyl’s denominator formula implies that the zeroes of E−
ρ are on the boundary of D. Therefore the functions

Zi and E−
m+ρ/E

−
ρ are defined on the interior of D.

Using Weyl’s character formula we have, for σ in the interior of D, we have

Um

(
Z1(σ), ..., ZN−1(σ)

)
= E−

m+ρ(σ)/E
−
ρ (σ).

If moreover m ∈ X+ is such that
∑

m = e+ 1, then [BK01, Equation (3.3.11)] implies that, for σ ∈ V′
e, we

have Um(Z1(σ), ..., ZN−1(σ)) = 0. □

Proof of Theorem 2E.10. Part (b). Firstly, (a) and Hilbert’s Nullstellensatz (via e.g. [Ful89, Corollary I.7.4])
imply that #Ve ≤ peN . For the converse, we use the following important lemma:

Lemma 5A.1. The map σ 7→ (Z1(σ), ..., ZN−1(σ)) is an injection on the interior of the fundamental domain
D.

Proof. In [Bee91, Equation 5.9], Beerends calculated the value of the Jacobian
∣∣∣∂(Z1,...,ZN−1)
∂(σ1,...,σN−1)

∣∣∣:∣∣∣∣ ∂(Z1, ..., ZN−1)

∂(σ1, . . . , σN−1)

∣∣∣∣ = ∏
1≤i<j≤N

|ei(σi−σi−1) − ei(σj−σj−1)| = 2(
N
2 )

∏
1≤i<j≤N

∣∣∣∣sin(σi − σi+1 − σj + σj+1

2

)∣∣∣∣ .
Therefore, the Jacobian vanishes only on the reflecting hyperplanes of the representation E of the symmetric
group, and we are done. □

Since V′
e lies in the interior of D, Lemma 2E.8 implies that we have found peN points in Ve.

Part (c). We need the following two lemmas.

Lemma 5A.2. Given σ =
∑N−1

j=1 σjαj ∈ E, the function Zi(σ) is the evaluation of the ith elementary
symmetric function at (eiσ1 , ei(σ2−σ1), ..., ei(σN−1−σN−2), e−iσN−1).

Proof. The function Zi is the evaluation of the character of the fundamental slN -representation Lωi at the
diagonal matrix diag(iσ1, i(σ2 − σ1), ..., i(σN−1 − σN−2),−iσN−1). The claim follows from the usual corre-
spondence between the character of Lωi

and the ith elementary symmetric function. □

Using Newton’s identities, we can hence express Zi(σ) in terms of the power sums Z1(kσ).

Lemma 5A.3. For σ ∈ V′
e, we have Zi(σ

→) = ζ−iZi(σ).

Proof. For k =
∑N−1

i=1 kiωi, we write λi(k) its coordinates in the basis (α1, . . . , αN−1). Using [Bou02, Plate
I], we explicitly have

λi(k) =
1

N

(N − i)

i−1∑
j=1

jkj + (N − i)iki + i

N−1∑
j=i+1

(N − j)kj

 .

Then, one easily show that N(λi(k) − λi−1(k)) = −
∑N−1

j=1 jkj + N
∑N−1

j=i kj . A straightforward calculation
also shows that, for k ∈ X+(e) and 1 ≤ i ≤ N − 1, we have

λi+1(k
→ + ρ)− λi(k

→ + ρ) = λi(k+ ρ)− λi−1(k+ ρ)− N + e

N
and

λ1(k
→ + ρ) = −λN−1(k+ ρ)− N + e

N
+ e+N.

The result then follows from Lemma 5A.2. □
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Lemma 5A.3 and Theorem 2E.10.(a) that the map X+(e) → Ve, k 7→ (Zi(2iπ(k + ρ)/(e + N)))1≤i≤N−1

is a bijection which is Z/NZ-equivariant. We then do the counting in X+(e) instead of in the Koornwinder
variety. Denote by c(N, e,m) the number of weights in X+(e) with stabilizer of order m. We first notice that
necessarily m | N and m | e and that c(N, e,m) = c(N/m, e/m, 1). It then suffices to prove the formula for
m = 1.

We proceed by induction on gcd(N, e). If gcd(N, e) = 1 then all elements of X+(e) have a stabilizer of
order 1. Therefore, c(N, e, 1) = peN =

(
N−1
M−1

)
= M

N

(
N
M

)
.

Now suppose that gcd(N, e) > 1. We have

c(N, e, 1) =
N

M

(
M

N

)
−

∑
k|gcd(M,N)

k ̸=1

c(N, e, k) =
N

M

(
M

N

)
−

∑
k|gcd(M,N)

k ̸=1

c(N/k,M/k, 1).

Since k ̸= 1 in the last sum, we can apply the induction hypothesis and we find that

c(N, e, 1) =
N

M

(
M

N

)
−

∑
k|gcd(M,N)

k ̸=1

N

M

∑
k′|gcd(N/k,M/k)

µ(k′)

(
M/kk′

N/kk′

)
.

But ∑
k|gcd(M,N)

N

M

∑
k′|gcd(N/k,M/k)

µ(k′)

(
M/kk′

N/kk′

)
=

N

M

∑
k|gcd(N,M)

∑
k′|k

µ

(
k

k′

)(
M/k

N/k

)
and we conclude using the fact the Möbius function is the convolution inverse of the identity function. □

5B. Missing proofs for Section 3.

Proof of Theorem 3A.5. Part (c). We will first compute the rank of Z(Repη(slN ))0 and then the number of
simple objects with a stabilizer of a given order. We will denote by Lm,k the simple object Lm ⊠ Lk. In these
lemmas we use Euler’s totient function φ and Möbius function µ.

Lemma 5B.1. The rank of Z(Repη(slN ))0 is

N

M2

∑
k|gcd(M,N)

φ(k)

(
M/k

N/k

)2

.

Proof. The simple objects are indexed by pairs (m,k) ∈ X+(e) such that χc(Lm) = χc(Lk). Let V be
a complex vector space with basis (v0, . . . , vN−1) equipped with the endomorphism Ω defined by Ω(vi) =
ωivi, where ω is a primitive Nth root of unity. This endows V with an action of Z/NZ and then also the
symmetric algebra S(V × V ∗) = S(V ) ⊗ S(V ∗). We notice that the rank of Z(Repη(slN ))0 is equal to the
dimension of (Se(V )⊗Se(V ∗))Z/NZ. Using a multigraded version of Molien’s formula, one finds that the rank
of Z(Repη(slN ))0 is the coefficient of ueve in

1

N

∑
i∈Z/NZ

1

detV (1− Ωiu) detV ∗(1− Ωiv)
.

Since Ω is diagonal in the basis (v0, . . . , vN−1), we have detV (1− Ωiu) =
∏N−1

j=0 (1− ωiju) = (1− uki)n/ki ,
where ki is the order of the root ωi. Similarly, detV ∗(1 − Ωiv) = (1 − vki)n/ki . Since there are exactly φ(k)
powers of ω of order k, one has

1

N

∑
i∈Z/NZ

1

detV (1− Ωiu) detV ∗(1− Ωiv)
=

1

N

∑
k|N

φ(k)

(1− uk)N/k(1− vk)N/k

=
1

N

∑
k|N

φ(k)
∑
i,j≥0

(
N/k + i− 1

N/k − 1

)(
N/k + j − 1

N/k − 1

)
ukivkj .

Only the terms with k | e will contribute to the coefficient of ueve and we finally obtain that the rank of
Z(Repη(slN ))0 is

1

N

∑
k|gcd(e,N)

φ(k)

(
N/k + e/k − 1

N/k − 1

)2

=
N

M2

∑
k|gcd(M,N)

φ(k)

(
M/k

N/k

)2

,

the last equality is obtained using e+N = M . □
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Lemma 5B.2. Let m ∈ Z. If m | gcd(N, e), then the number of simple objects of Z(Repη(slN ))0 with
stabilizer of order m under Leω1,eω1

⊗ − is

c(N,M,m) =
mN

M2

∑
k|gcd(N/m,M/m)

µ(k)

(
M/mk

N/mk

)2

,

and is 0 otherwise.

Proof. The count is similar to the count of Theorem 2E.10.(c). The base case is dealt by Lemma 5B.1, and, at
the end of the inductive step, we use the fact Euler’s totient function is the convolution of the Möbius function
and of the identity function. □

Each orbit of X+(e)2 of stabilizer of order m will contribute to m simple objects in the modular closure of
Z(Repη(slN ))0, and there are m

N c(N,M,m) such orbits. Hence, the rank of Z(Repη(slN )0) is∑
m|gcd(M,N)

m2

N
c(N,M,m) =

1

M2

∑
m|gcd(M,N)

∑
k|gcd(M/m,N/m)

m3µ(k)

(
M/mk

N/mk

)2

=
1

M2

∑
m|gcd(M,N)

∑
k|m

k3µ
(m
k

)(M/m

N/m

)2

.

We obtain the formula in (c) since J3 is the convolution of the Möbius function µ and the cube function.

Part (e). We will use the description of the modular closure of R =
(
Repη(slN )⊠Repη(slN )rev

)
0

as
in [Müg00, Definition 3.12]. Recall that it is obtained as the idempotent completion of the category where
the objects are the same as in R, but morphisms between X and Y are

⊕
i∈Z/NZ HomR(X, Leωi,eωi ⊗ Y ). If

we denote by γ an isomorphism Lm,k ≃ Leω1,eω1 ⊗ Lm,k different from the identity and of order stabm,k, then
the primitive idempotents of End(Lm,k) in the modular closure are pj =

1
stabm,k

∑stabm,k

k=1 ξjkγk for j ∈ Z/NZ,
where ξ is a primitive stabm,kth root of unity. Using similar notations for the object Lm′,k′ , we have

S(m,k,i),(m′,k′,j) = Tr(pi ⊗ p′j ◦ βLm,k,Lm,k
◦ βLm,k,Lm,k

)

=
1

stabm,k

stabm,k∑
k=1

ξikTr(γk ⊗ p′j′ ◦ βLm′,k′ ,Lm,k
◦ βLm,k,Lm′,k′ ).

Therefore, summing over i, we obtain
stabk,m∑

i=1

S(m,k,i),(m′,k′,i′) = Tr(id⊗ p′j′ ◦ βLm′,k′ ,Lm,k
◦ βLm,k,Lm′,k′ ) =

1

stabm,k
Tr(βLm′,k′ ,Lm,k

◦ βLm,k,Lm′,k′ ),

since the other terms in the sum defining p′j′ are of trace 0, as they are traces of morphisms between different
objects in R.

Now suppose that N is prime. Then Lemma 5B.2 shows that there exists a unique pair (m,k) ∈ X+(e)2

with χc(Lm) = χc(Lk) and stabm,k ̸= 1 if and only if e ≡ 0 mod N , and one easily checks that m = k =
(e/N, . . . , e/N) provides such a pair. A similar argument as above shows that S(m,k,i),(m,k,j) = S(m,k,i′),(m,k,j′)

if i− j ≡ i′ − j′ mod N .
We now use the relation τ−T−1ST−1 = STS, where τ− is the Gauss sum as in [EGNO15, Definition 8.15.1].

This relation is satisfied since the modular closure is a modular category. The entry ((m,k, 0), (m,k, i)) of
this relation gives

τ−θ2m,kS(m,k,0),(m,k,i) =
∑

(m′,k′ )̸=(m,k)

θ−1
m′,k′S(m,k,0),(m′,k′)S(m′,k′),(m,k,0)

+ θ−1
m,k

N∑
j=1

S(m,k,0),(m,k,j)S(m,k,j),(m,k,i).

Let k ̸≡ 0 mod N . Multiplying by ξik and summing then gives

τ−θ3mk

N∑
i=1

ξikS(m,k,0),(m,k,i) =

N∑
i,j=1

ξikS(m,k,0),(m,k,j)S(m,k,j),(m,k,i)

=

N∑
i,j=1

ξikS(m,k,0),(m,k,j)S(m,k,0),(m,k,j−i) =
( N∑
i=1

ξikS(m,k,0),(m,k,i)

)2
.
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But
∑N

i=1 ξ
ikS(m,k,0),(m,k,i) ̸= 0 since a similar calculation shows that

N∑
i=1

ξikS(m,k,0),(m,k,i) =

N∑
i=1

(S2)(m,k,0),(m,k,i)

and that S2 is, up to a nonzero constant, the permutation matrix given by the duality on simple objects.
We finally obtain that

S(m,k,i),(m,k,j) =
1

N2

{
S(m,k),(m,k) +N(N−1)θ3m,kτ

− if i = j,

S(m,k),(m,k) −Nθ3m,kτ
− if i ̸= j.

It remains to notice that the Gauss sum τ− is equal to dim Repη(slN )/N . □

Now we come to Section 3B, so the reader might want to recall the various terminology. We define an action
of Z/MZ on Ψ(Y, π) as follows. Given f ∈ Ψ(Y, π) and k ∈ Z/MZ, we define f + k as the unique function
Y → {0, . . . ,M − 1} such that (f + k)(y) ≡ f(y) + k mod M for all y ∈ Y , and f+k as the unique function
in Ψ(Y, π) such that f+k(π−1(i)) = (f + k)(π−1(i)) for all i ∈ Z≥0. Given f ∈ Ψ(Y, π), we denote by s(f)
the cardinal of the stabilizer of f for this action of Z/MZ. The unipotent characters lying in the family F
are then indexed by pairs ([f ], i) where [f ] is an equivalence class of Ψ(Y, π) under the action of Z/MZ and
1 ≤ i ≤ s(f).

We define a map ι : Ψ(Y, π) → (X+(e))2, f 7→ (mf ,kf ) where

mf = (f(2)− f(1)− 1, . . . , f(N)− f(N − 1)− 1)→rf and kf = (f̄(2)− f̄(1)− 1, . . . , f̄(N)− f̄(N − 1)− 1),

with rf ∈ Z being the unique integer such that
∑N

i=1(f(i)− f̄(i)) = rfe.

Proof of Theorem 3B.3. Part (a). The computation of the cardinal of F is similar to Theorem 3A.5(c). We
replace the N dimensional space of the proof of Lemma 5B.1 by a M dimensional space, and the symmetric
powers by exterior powers, and we obtain

|Ψ(Y, π)| = 1

M

∑
k|gcd(N,M)

φ(k)

(
M/k

N/k

)2

.

A similar argument as in Lemma 5B.2 shows that the number of f ∈ Ψ(Y, π) with s(f) = m is

m

M

∑
k|gcd(N/m,M/m)

µ(k)

(
M/mk

N/mk

)2

.

The end of the proof is then the same as Theorem 3A.5(c).

Before proving part (b) and (c) of Theorem 3B.3, we show that ι induces an isomorphism between F and
Si(Z(aM,M,N )).

Lemma 5B.3. For any f ∈ Ψ(Y, π), we have χc(Lmf
) = χc(Lkf

).

Proof. Easy and omitted. □

Lemma 5B.4. The map ι induces a bijection between the orbits of Ψ(Y, π) under the action of Z/MZ and
the orbits of {(m,k) ∈ (X+(e))2 | χc(Lm) = χc(Lk)} under the action of Z/NZ.

Proof. We first show that ι is constant on the orbits of Ψ(Y, π) under the action of Z/MZ. Let f ∈ Ψ(Y, π)
and we discuss whether f(N) and f̄(N) are equal to M − 1 or not. If f(N) = M − 1 and f̄(n) ̸= M − 1
then f+(1) = 0, f+(i) = f(i − 1) + 1 for all 1 < i ≤ N and f̄+(i) = f̄(i) + 1 for all 1 ≤ i ≤ N . Therefore
rf+ = rf − 1 and ι(f+) = ι(f). The other cases are similar.

We now prove that if f, g ∈ Ψ(Y, π) are such that ι(f) and ι(g) are in the same orbit of (X+(e))2 under
the action of Z/NZ, then f and g are in the same orbit of Ψ(Y, π) under the action of Z/MZ. Let 1 ≤ l ≤ N
such that ι(f) = ι(g)→l, and 0 ≤ k < M such that ḡ(N − l + 1) = M − k. Then ι(g+k) = ι(g)→l and we may
and will suppose that ι(f) = ι(g). Since ι is constant on the orbits of Ψ(Y, π) under −

→, we also may and will
suppose that f̄(N) = ḡ(N).

With these extra assumptions, it remains to show that f = g. Since f̄(N) = ḡ(N) and kf = kg, we easily
deduce that f̄(i) = ḡ(i) for all 1 ≤ i ≤ N . Let 0 ≤ r′f , r

′
g < N such that r′f = rf mod N and r′g = rg mod N .

Since mf = mg we have:

0 =

N−1∑
i=1

i(mf,i −mg,i) =

N∑
i=1

(g(i)− f(i)) +N(f(N − r′f )− g(N − r′g)) +M(r′f − r′g)

= M(r′f − rf + rg − r′g) +N(f(N − r′f )− g(N − r′g)).
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We hence deduce that M divides f(N − r′f ) − g(N − r′g), which is between −M + 1 and M − 1 so that
f(N − r′f ) = g(N − r′g). The equality mf = mg then implies that f(i − r′f ) = g(i − r′g) for all i and that
rf = rg since M(rf − rg) =

∑N
i=1(f(i)− g(i)). We obtain that f = g as expected.

Therefore ι induces an injection between the Z/MZ orbits of Ψ(Y, π) and the Z/NZ orbits of {(m,k) ∈
(X+(e))2 | χc(Lm) = χc(Lk)}. Since the number of such orbits is the same we deduce that this injection is a
bijection. □

Recall that the symmetric group SN acts on the weights. We will denote by • the action shifted by ρ. We
need the following two technical lemmas.

Lemma 5B.5. Let f ∈ Ψ(Y, π) and w ∈ SN . Then

(w •mf )i = f(w−1(i+ 1)− rf )− f(w−1(i)− rf )− 1 mod M and

(w • kf )i = f̄(w−1(i+ 1))− f̄(w−1(i))− 1 mod M.

Proof. It suffices to treat the case of a simple reflection sj through the hyperplane orthogonal to αj . By
definition, we have sj • kf = kf − ⟨kf + ρ, α∨

j ⟩αj . Since ⟨kf + ρ, α∨
j ⟩ = f̄(j + 1)− f̄(j) mod M , we conclude

using αj = −ωj−1 + 2ωj − ωj+1. The proof for sj •mf is similar. □

Lemma 5B.6. Let f ∈ Ψ(Y, π) and w,w′ ∈ SN . Then w •mf − w′ • kf =
∑N−1

i=1 νiαi with

νi =

i∑
j=1

(f̄(w′−1(j))− f(w−1(f)− rf )) mod M.

Proof. By definition of the fundamental roots, we have νi = ⟨w •mf − w′ • kf , ωi⟩. As in Lemma 5B.5, we
have

νi = M⟨ωrf , ωi⟩+
N−1∑
j=1

(f(w−1(j + 1)− rf )− f(w−1(j)− rf )− f̄(w′−1(j + 1)) + f̄(w′−1(j)))⟨ωj , ωi⟩

= M⟨ωrf , ωi⟩+
N∑
j=1

(f(w−1(j)− rf )− f̄(w′−1(j)))⟨ωj−1 − ωj , ωi⟩.

Since ⟨ωi, ωj⟩ = min(i, j)− ij
N , we deduce that

νi = M⟨ωrf , ωi⟩+
i

N

N∑
j=1

(f(w−1(j)− rf )− f̄(w′−1(j)))−
j∑

j=1

(f(w−1(j)− rf )− f̄(w′−1(j)))

= M min(rf , i) +

j∑
j=1

(f̄(w′−1(j))− f(w−1(j)− rf )),

the last equality following from the definition of rf . □

Part (b). We first give another expression for the pre-Fourier matrix of the family F , which will be more
suitable for the comparison with the modular data arising from the asymptotic category.

Lemma 5B.7. Let 0 ≤ i1 < . . . < ie ≤ M − 1 and 0 ≤ j1 < . . . < je ≤ M − 1. Let i be the e-tuple
(i1, . . . , ie), j be the e-tuple (j1, . . . , je) and ci be the strictly increasing n-tuple obtained from the complement
of i in {0, . . . ,M − 1} and similarly for cj. Then

(ΛeS)i,j = (−1)
∑e

k=1(
cik+

cjk)
det(S)
MN

(
ΛNS

)
ci,cj

.

Proof. Since 1
M S̄ is the inverse of S, the inverse of ΛNS is 1

MΛN S̄. But the inverse of ΛNS can also be
expressed in terme of the Nth adjugate matrix of S. The lemma follows then from the explicit form of the
adjugate matrix. □

As τ = (−1)(
M
2 ) det(S), we then deduce that, given f, g ∈ Ψ(Y, π), the pre-Fourier matrix of F have the

following expression:

S̃[f ],[g] =
(−1)

∑N
i=1(f̄(i)+ḡ(i))ε(f)ε(g)

MN−1

∑
w,w′∈SN

(−1)l(w)+l(w′)
N∏
i=1

η2(f(w(i))g(i)−f̄(w′(i))ḡ(i)).
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Given f, g ∈ Ψ(Y, π), using the explicit formula for S-matrix of Z(aM,M,e)0, we have

Sι(f),ι(g) =

∑
w,w′∈SN

(−1)l(w)+l(w′)η2⟨mf+ρ,w(mg+ρ)⟩−2⟨kf+ρ,w′(kg+ρ)⟩∑
w,w′∈SN

(−1)l(w)+l(w′)η2⟨ρ,w(ρ)⟩−2⟨ρ,w′(ρ)⟩ .

We are then concerned with the value, modulo M , of ⟨mf + ρ, w(mg + ρ)⟩ − ⟨kf + ρ, w′(kg + ρ)⟩. Using the
shifted action of the symmetric group, we have

⟨mf + ρ, w(mg + ρ)⟩ − ⟨kf + ρ, w′(kg + ρ)⟩ = ⟨mf − kf , w
′ • kg + ρ⟩+ ⟨w •mg − w′ • kg, w

′ • kg + ρ⟩

Using Lemma 5B.5 and Lemma 5B.6, we find

⟨mf − kf , w
′ • kg + ρ⟩ =

N−1∑
j=1

(ḡ(w′−1(N))− ḡ(w′−1(j)))(f̄(j)− f(j − rf )) mod M

and

⟨w •mg − w′ • kg, w
′ • kg + ρ⟩ =

N−1∑
j=1

(f(n− rf )− f(j − rf ))(ḡ(w
′−1(j))− g(w−1(j)− kg) mod M.

Since f ∈ Ψ(Y, π) we have
∑N

i=1(f(i)− f̄(i)) = 0 mod M and similarly for g. Therefore, we obtain

⟨mf + ρ, w(mg + ρ)⟩ − ⟨kf + ρ, w′(kg + ρ)⟩ =
N∑
j=1

(f(j − rf )− g(w−1(j)− rg)− f̄(j)ḡ(w′−1(j))) mod M

and since w 7→ (j 7→ w(j + rg)− rg) is a signature preserving bijection of SN we have

Sι(f),ι(g) =

∑
w,w′∈SN

(−1)l(w)+l(w′)
∏N

i=1 η
f(w(j))g(j)−f̄(w′(j))ḡ(j)∑

w,w′∈SN
(−1)l(w)+l(w′)η2⟨ρ,w(ρ)⟩−2⟨ρ,w′(ρ)⟩ .

It remains to renormalize the S-matrix by the positive square root of the categorical dimension of Z(aM,M,N ).
By [EGNO15, Corollary 8.23.12], we have dim(Z(Repη(slN ))) = N2 dim(Z(aM,M,N )). Since Repη(slN ) is
modular, we deduce that dim(Z(Repη(slN ))) = dim(Repη(slN ))2. Using [BK01, Theorem 3.3.20], we find

that the positive square root of Z(aM,M,N ) is then dim(Repη(slN ))

N = MN−1|
∑

w∈SN
(−1)l(w)η2⟨ρ,w(ρ)⟩|−2.

Part (c). We first rewrite slightly the eigenvalue of the Frobenius.

Lemma 5B.8. Given f ∈ Ψ(Y, π) and 1 ≤ i ≤ s(f), we have Frob([f ], i) = η−α(f) with

α(f) ≡ −2

N∑
i=1

(f̄(i)− f(i− rf ))

i−1∑
j=1

f̄(j)−
i∑

j=1

f(j − rf )

 mod 2M.

Proof. The value of α(f) is given in (3B.2). First, using the definition of f̄ , we have∑
y∈Y

(f(y)2 +Mf(y)) =

N∑
i=1

(f(i)2 +Mf(i)− f̄(i)2 −Mf̄(i)) +

M∑
j=1

(j2 +Mj)

so that α(f) ≡
∑N

i=1(f̄(i)
2 + Mf̄(i) − f(i)2 − Mf(i)) mod 2M . Now, we rewrite f̄(N) using the fact that

f ∈ Ψ(Y, π) and we obtain

f̄(N)2 +Mf̄(N) =

(
f(N − rf ) +

N−1∑
i=1

(f(i− rf )− f(i))− erf

)2

+M

(
f(N − rf ) +

N−1∑
i=1

(f(i− rf )− f(i))− erf

)
.

Expanding the square, we obtain

f̄(N)2 +Mf̄(N) ≡ f(N − rf )
2 +

(
N−1∑
i=1

(f(i− rf )− f(i))

)2

+ 2f(N − rf )

N−1∑
i=1

(f(i− rf )− f(i))

+M

(
f(N − rf ) +

N−1∑
i=1

(f(i− rf )− f(i))

)
mod 2M.
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We then check that this implies that

α(f) ≡ 2

N−1∑
i=1

(f(i− rf )− f̄(i))

 N∑
j=i+1

f(j − rf )−
N−1∑
j=i

f̄(j)

 mod 2M,

and we conclude the proof using once again that
∑N

i=1(f̄(i)− f(i)) ≡ 0 mod M . □

Given g ∈ Ψ(Y, π), the value for the ribbon in Z(aM,M,N ) is θι(f) = η⟨mf ,mf+2ρ⟩−⟨kf ,kf+2ρ⟩. We notice the
equality ⟨mf ,mf + 2ρ⟩ − ⟨kf ,kf + 2ρ⟩ = ⟨mf − kf ,mf − kf ⟩+ 2⟨mf − kf ,kf + ρ⟩. On the one hand, using
Lemma 5B.6, ⟨αi, αj⟩ = ai,j and

∑N
i=1(f(i)− f̄(i)) ≡ 0 mod M we have

⟨mf − kf ,mf − kf ⟩ ≡ 2

N∑
i=1

 i∑
j=1

(f̄(j)− f(j − rf ))

 (f̄(i)− f(i− rf )) mod 2M.

On the other hand, using once again Lemma 5B.6, we have

⟨mf − kf ,kf + ρ⟩ ≡
N−1∑
i=1

 i∑
j=1

(f̄(j)− f(j − rf ))

 (f̄(i+ 1)− f̄(i)) ≡ −
N∑
i=1

f̄(i)(f̄(i)− f(i− rf )) mod M

Therefore θι(f) = η2β(f), where

β(f) =

N∑
i=1

(f̄(i)− f(i− rf ))

i−1∑
j=1

f̄(j)−
i∑

j=1

f(j − rf )

 .

Then Lemma 5B.8 shows that the ribbon and the eigenvalue of the Frobenius coincide, and we conclude since
the T -matrix is the diagonal matrix with entries the inverse of the ribbon. □

Proof of Theorem 3C.3.(d). Since AM,M,N is a matrix category over aM,M,N , we first compute the Artin–
Wedderburn decomposition of [aM,M,N ]C⊕, which is a subring of MatN ([Repη(slN )]C⊕), by determining all the
primitive central idempotents.

It is easy to see that the center of [aM,M,N ]C⊕ consists of diagonal matrices with entries in the center
of [Repη(slN )0]

C
⊕. A central idempotent of [aM,M,N ]C⊕ is then a diagonal matrix with coefficients central

idempotents of [Repη(slN )0]
C
⊕.

Lemma 5B.9. The primitive central idempotents of [Repη(slN )0]
C
⊕ are in bijection with the Leω1

⊗ −-orbits
on Si(Repη(slN )).

Proof. Since Repη(slN )0 is a braided fusion category, its complexified Grothendieck ring is commutative
and semisimple. The primitive central idempotents of [Repη(slN )0]

C
⊕ are then in bijection with the char-

acters [Repη(slN )0]
C
⊕ → C. Given Lm ∈ Si(Repη(slN )), the linear extension χm of [Lk] 7→ Ssl

m,k/dim(Lm)

is a character of [Repη(slN )0]
C
⊕, see [EGNO15, Proposition 8.13.11]. Since Repη(slN ) is a modular cate-

gory, it follows from [EGNO15, Theorem 8.20.7 and Corollary 8.20.11] that all this exhaust all characters
[Repη(slN )0]

C
⊕ → C, and that χm = χm′ if and only if Lm and Lm′ are in the same (Repη(slN )0)

′-module
component. Here, (Repη(slN )0)

′ denotes the centralizer of Repη(slN )0 in Repη(slN ) as in [EGNO15, Sec-
tion 8.20]. One may easily show that (Repη(slN )0)

′ is the fusion subcategory generated by Leω1
, which implies

that Lm and Lm′ are in the same (Repη(slN )0)
′-module component if and only if Lm and Lm′ are in the same

orbit under Leω1
⊗ −. □

The idempotent of [Repq(slN )]C⊕ corresponding to the object Lm is then a scalar multiple of Rm =∑
X∈Si(Repη(slN )) χm(X)[X∗]. Let us denote by Rm,i =

∑
X∈Si(Repη(slN )i)

χm(X)[X∗] so that the idem-
potent em of [Repq(slN )0]

C
⊕ corresponding to the object Lm is a scalar multiple of Rm,0. One can also check

that Rm,0[Lk] = χm([Lk])Rm,−i for Lk a simple object of color i.

Lemma 5B.10. Let m ∈ X+(e). Define Am = {i ∈ Z/NZ|∃Lk, χm(Lk) ̸= 0 and χc(Lk) = i}. Then Am is a
subgroup of Z/NZ and the diagonal matrix Em,i+Am supported by the right coset i+Am with nonzero entries
equal to em is a primitive central idempotent of [aM,M,N ]C⊕.

Proof. First, it is clear that Am is an additive subgroup of Z/NZ. One may easily show that each diagonal
matrix supported by a right coset of Am with nonzero entries equal to em is a central idempotent of [aM,M,N ]C⊕.

Let f be a primitive central idempotent of [aM,M,N ]C⊕ and choose i such that the diagonal entry fi,i is
nonzero. Since e is primitive, there exists m such that fi,i = em. Suppose that there exists a simple object
Lk of color j such that χm(Lk) ̸= 0 and consider x ∈ [aM,M,N ]C⊕ whose only non zero entry is at the position
(i, i + j) and is equal to [Lk]. Then, since f is central, we obtain that xi,i+jfi+j,i+j = fi,ixi,i+j = em[Lk]
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which is a scalar multiple of Rm,−j . Since χm(Lk) ̸= 0, the element Rm,j is nonzero as well as xi,i+jfi+j,i+j .
In particular, the coefficient fi+j,i+j of f is nonzero and a scalar multiple of Rm,0. Therefore fi+j,i+j = em.
We deduce that f = Em,i+Am . □

In the Artin–Wedderburn decomposition of [aM,M,N ]C⊕, the idempotent Em,i+Am will contribute to a matrix
algebra of size |Am|. Let Stabm be the stabilizer subgroup of Lm under the action Leω1

⊗ −.

Lemma 5B.11. Let m ∈ X+(e) and r ∈ Z/NZ. Then r ∈ Stabm if and only if ri ≡ 0 mod N for all i ∈ Am.

Proof. Using Lemma 2C.2, we have, for any m,k ∈ X+(e) and r ∈ Z≥0:

χm→r (Lk) =
dim(Lk)

dim(Lm)
χk(Lm→r ) =

dim(Lk)

dim(Lm)
χk(Lm)χk(Leωr

) = η−2reχc(Lk)/Nχm(Lk).

Suppose that r ∈ Stabm and let i ∈ Am. We then choose k ∈ X+(e) such that χc(Lk) = i and χm(Lk) ̸= 0.
By assumption, m→r = m and therefore we have χm(Lk) = χm→r (Lk) = η−2reχc(Lk)/Nχm(Lk). As χm(Lk) ̸=
0, we obtain that rχm(Lk) ≡ 0 mod N .

Conversely, suppose that ri ≡ 0 mod N for all i ∈ Am. Since Repη(slN ) is modular, χm = χm→r implies
that Lm ≃ Lm→r . Let k ∈ X+(e). If χc(Lk) ̸∈ Am then χm(Lk) = 0 and χm→r (Lk) = η−2reχc(Lk)/Nχm(Lk) = 0.
Otherwise, rχc(Lk) ≡ 0 mod N and we have χm→r (Lk) = η−2reχc(Lk)/Nχm(Lk) = χm(Lk). Therefore the
characters χm and χm→r conicide. □

We hence deduce that |Am| is equal to the cardinal of the orbit of Lm under Leω1 ⊗ −.

Lemma 5B.12. We have

[aM,M,N ]C⊕ ≃
⊕

m|gcd(M,N)

MatN/m(C)⊕nm , [AM,M,N ]C⊕ ≃
⊕

m|gcd(M,N)

MatN !/m(C)⊕nm ,

where nm = m2

M

∑
k|gcd(N/m,M/m) µ(k)

(
M/mk
N/mk

)
.

Proof. To obtain the Artin–Wedderburn decomposition of aM,M,N , it remains to compute the number of orbits
of simple objects of Repη(slN ) under Leω1

⊗− of a given cardinality m, which is done similarly to Lemma 5B.2.
Indeed, each such orbit gives rise to m idempotents with a matrix algebra of size N/m. The Artin–Wedderburn
decomposition of AM,M,N follows from the definition of the big asymptotic category. □

To finish the proof, it remains to understand the dimensions of the representations of the Calogero–Moser
family F0.

Lemma 5B.13. The Calogero–Moser family F0 contains only representations of dimension N !/m for every
m| gcd(M,N). The number of representations of dimension N !/m is nm.

Proof. Recall that in term of M -partitions of N , the representations of F0 are indexed by orbits of multi-
partitions with entries equal to (1) or ∅ under the action of Z/MZ by cyclic shifting. Each orbit of size m
parametrizes M/m representations of dimension N !/m.

To count the number of representations of a given dimension, one may proceed similarly to the proof of
Theorem 3B.3.(a). □

The proof is complete. □

5C. Missing proofs for Section 4 and type D graphs.

Proof of Lemma 4A.10. We have two things to check: that the map is well-defined and that it is injective.
The first is significantly more difficult than in [MMMT20].

Well-defined. To see that the Θwi
satisfy the defining relations of T∞ in (4A.7) we first observe that

Θwi
Θwi

= [N ]v! · Θwi
as follows from, for example, [Eli16b, (2.8)] or [Bon17, Proposition 10.5.2.(d)] since

#Wi = N !. The second relation in (4A.7) is much more difficult to prove and we use (QSH) to do so:
under (QSH) going from θk to θk+i corresponds to tensoring with Lωi and from θk+i to θk+i+j corresponds to
tensoring with Lωj

, and similarly, but reversed, for the other side of the equation. In particular, this equation
in H(ÃN−1) holds since we have Lωj

⊗ Lωi
∼= Lωi

⊗ Lωj
.

Injective. The same argument as in [MMMT20, Proof of Lemma 3.2] works. □

Proof of Theorem 4B.4. We start with a lemma.

Lemma 5C.1. Let σ ∈ V′
e. The stabilizer of σ is of order gcd

(
{j|Zj(σ) ̸= 0} ∪ {N}

)
.

Proof. Let m be such that Zj(σ) = 0 if m ∤ j. By Lemma 5A.3, we have Zi(σ
→) = ζ−iZi(σ) for all 1 ≤ i ≤ N .

This implies that Zi

(
σ→N/m

)
= Zi(σ), either because Zi(σ) = 0, if m ∤ j, or because ζ−iN/m = 1, otherwise.

By Lemma 5A.1, we have σ→N/m = σ. □
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(a). Since Zj(σ) = 0 if j ̸≡ 0 mod m, the representation M(σ) decomposes as L(σ)0 ⊕ ...⊕ L(σ)m−1 where
θi, θi+m, ..., θi+(N/m−1)m act on L(σ)i by the matrices

κ

(
[N ]v Zm(σ) Z2m(σ) ... Z(N/m−1)m(σ)
0 0 0 ... 0

... ... ... ... ...

0 0 0 ... 0

)
, κ

 0 0 0 ... 0
Z(N/m−1)m(σ) [N ]v Zm(σ) ... Z(N/m−2)m(σ)

0 0 0 ... 0

... ... ... ... ...

0 0 0 ... 0

, ...,

κ

(
0 0 ... 0 0

... ... ... ... ...

0 0 ... 0 0
Zm(σ) Z2m(σ) ... Z(N/m−1)(σ) [N ]v

)
and by zero otherwise.

Lemma 5C.2. The endomorphism ring of L(σ)i is one dimensional.

Proof. Let f be a matrix intertwiner for L(σ)i. Since [N ]v ̸= 0, we immediately obtain that f must be a
diagonal matrix diag(f0, ..., fN/m−1). The relation fθi+km = θi+kmf implies that fkZrm(σ) = Zrm(σ)fk+r

so that fk = fk+r for all 0 ≤ k < N/m and 0 < r < N/m such that Zrm(σ) ̸= 0, where the indices are taken
modulo N/m. By Lemma 5C.1, the set {1 ≤ r < N/m|Zrm(σ) ̸= 0} generates Z/(N/m)Z. Therefore, we
obtain that f is diagonal. □

Since [N ]v ̸= 0, the explicit form of the matrices above implies that the representations L(σ)i are pair-
wise nonisomorphic. They are moreover simple because their endomorphism rings are one dimensional by
Lemma 5C.2.

(b). This follows from (a) and the following lemma.

Lemma 5C.3. The representations M(σ) and M(σ′) are isomorphic if and only if σ and σ′ are in the same
orbit.

Proof. We have two directions.
Case ⇐. Let j be such that σ′ = σ→j . By Lemma 5A.3, this implies that Zi(σ

′) = ζ−ijZi(σ). An easy
calculation shows that, for all i ∈ I, we have

Mi(σ
′) = diag(1, ζj , ..., ζ(N−1)j)Mi(σ)diag(1, ζ

j , ..., ζ(N−1)j)−1.

Therefore the representations M(σ) and M(σ′) are isomorphic.
Case ⇒. As in the proof of Lemma 5C.2, an invertible matrix intertwiner M(σ) → M(σ′) is necessarily

a diagonal matrix diag(f0, ..., fN−1). The relation Mi(σ)f = fMi(σ
′) implies that fiZk(σ) = Zk(σ

′)fi+k for
all 0 ≤ i < N and 1 ≤ k < N . Since f is invertible, we obtain that Zk(σ

′) = 0 if and only if Zk(σ) = 0. By
Lemma 5C.1, the stabilizers of σ and σ′ have the same order m.

If for all 1 ≤ k < N we have Zk(σ) = Zk(σ
′) = 0, then, by Lemma 5A.1, we have σ = σ′. We then

suppose that all Z-functions do not vanish at σ (and consequently at σ′). By Lemma 5C.1, m is a generator
of the subgroup of Z/NZ generated by the 1 ≤ j < N with Zj(σ) ̸= 0. Therefore, using the relations
fiZk(σ) = Zk(σ

′)fi+k with k such that Zk(σ) ̸= 0 ̸= Zk(σ
′), one may show that the ratios fi/fi+m are all

equal. As

1 =
f0
fm

· fm
f2m

...
f(N/m−1)m

f0
=

(
f0
fm

)N/m

,

the ratio f0/fm is equal to ζ−mj for some j.
The relation f0Zk(σ) = Zk(σ

′)fk gives then Zk(σ
′) = ζ−jkZk(σ). Indeed, either k is a multiple of m and

this follows from f0 = ζ−mjrfrm, either k is not a multiple of m and Zk(σ) = Zk(σ
′) = 0. We finally obtain

that Zk(σ
′) = Zk(σ

→j) for all 1 ≤ k < N and then σ′ = σ→j by Lemma 5A.1. □

(c).+(d). The simple representations we found in (a) satisfy

dimCv(M0)
2 +

∑
σ∈orbits

m−1∑
i=0

dimCv(L(σ)i)
2 = dimCv(Te).

This follows from Theorem 2E.10.(c). Indeed, each orbit in Ve with stabilizer of order m defines m represen-
tations of dimension N/m and there are m

N
N
M

∑
k| gcd(N/m,M/m) µ(k)

(
M/mk
N/mk

)
such orbits.. Hence

∑
σ∈orbits

m−1∑
i=0

dimCv(L(σ)i)
2 =

∑
m| gcd(N,e)

m
m

N

N2

m2

N

M

∑
k| gcd(N/m,M/m)

µ(k)

(
M/mk

N/mk

)

=
N2

M

∑
m| gcd(N,e)

∑
k| gcd(N/m,M/m)

µ(k)

(
M/mk

N/mk

)
(⋆)
=

N2

M

(
M

N

)
= NpNe ,
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where the equality (⋆) follows from the convolution property of the Möbius function. The result now follows
from classical theory. □

We also construct other examples of Ncolored graph through the fusion rules of module categories over
Repη(slN ), constructed as categories of modules over an algebra in Repη(slN ). This is similar to the orbifold
procedure of [Kos88].

Given a rank N and e, the pointed subcategory generated by Leωi
has the fusion rules of Z/NZ. However,

this subcategory is not a symmetric subcategory in general. Recall, for a finite group G and a central element
z ∈ G with z ̸= 1 and z2 = 1, the braided fusion category Rep(G, z) as in [EGNO15, Example 9.9.1.(3)].
Let g = gcd(N, e) and p = N/g.

Lemma 5C.4. The pointed subcategory P generated by Leωp
is a symmetric subcategory of Repη(slN ). More-

over P is braided equivalent to Rep(Z/gZ, z) if (e/g and p are odd and g is even) and to Rep(Z/gZ) otherwise.

Proof. The twist of the simple object Leωi is given by η(eωi,eωi+2ρ) = exp
(
iπi(N − i)/N

)
. Therefore, since

Leωpi
⊗ Leωpj

≃ Leωp(i+j)
, we have βLeωpi

,Leωpj
= θeωp(i+j)

θ−1
eωpi

θ−1
eωpj

= id, and the subcategory P is symmetric.
By [EGNO15, Corollary 9.9.25], it remains to compute the braiding of the generating object Leωp

with itself.
Since the object Leωp

⊗Leωp
is simple, the braiding βLeωp ,Leωp

is a scalar multiple of the identity. By [EGNO15,
Exercise 8.10.15], since the invertible object Leωp

is of quantum dimension 1, we have βLeωp ,Leωp
= θeωp

. One
may check that θeωp = (−1)ep(g−1)/gid, which is equal to −1 if and only if e/g, p and g − 1 are all odd. □

Let AD be the algebra in P corresponding to the algebra of functions on Z/gZ.

Lemma 5C.5. In Repη(slN ), we have AD ≃ L0 ⊕ Leωp ⊕ ... ⊕ Leω(g−1)p.

Proof. The categories Rep(Z/gZ) and Rep(Z/gZ, z) are equivalent to the category of Z/gZ-graded vector
spaces. We now apply [EGNO15, Example 7.8.3.(4)]. □

Remark 5C.6. For N = 3, in [MMMT20, Proposition 5.4.3] the calculation of the algebra object AD was
done using symmetric webs [RT16], [RW20], [LT21]. We instead use a corollary of Deligne theorem on
Tannakian categories, see [EGNO15, Theorem 9.9.22]. 3

We consider the category M of (right) modules over AD in Repη(slN ). In the case case P is equivalent to
Rep(Z/gZ), the category M is the de-equivariantization of Repη(slN ), it is a braided Z/gZ-crossed category.

Lemma 5C.7. The category M is a finite semisimple module category over Repη(slN ).

Proof. The only nontrivial statement is the semisimplicity, which follows from the separability of AD, by
[EGNO15, Proposition 7.8.30]. By Remark 5C.6, separability is equivalent to the digon scalar to be invertible,
which is immediate from the definition of symmetric webs. □

There is Z/NZ-grading on M. The simple objects of M are all obtained as summands of free objects
AD ⊗ Lm. Since all summands of AD are of color 0, AD ⊗ Lm is of color χc(Lm). This grading is moreover
compatible with the grading of Repη(slN ).

We define the graph graph of type D of rank N and level e as the graph Γ with set of vertices Si(M),
colored with the above Z/NZ-grading, and the vertices X and Y are adjacent if and only if Y is a summand of⊕N−1

i=1 Lωi
⊗ X. The graph Γi is then the fusion graph of the object Lωi

.

Proof of Theorem 4C.12. For type A, this is explained in [Zub98, Section 1.3, Example 2]. We give a self-
contained proof.

Lemma 5C.8. For Γ of type A of rank N and level e, the matrices (A(Γ1), ..., A(ΓN−1)) can be simultaneously
diagonalized and their joint spectrum is the Koornwinder variety Ve.

Proof. The matrix A(Γi) is the fusion matrix of Lωi in the category Repη(slN ). The S-matrix diagonalizes
the fusion rules [EGNO15, Corollary 8.14.5] and the joint spectrum of (A(Γ1), ..., A(ΓN−1)) is:{(

Ssl
k,ω1

/Ssl
k,0, ..., S

sl
k,ωN−1

/Ssl
k,0

)∣∣∣k ∈ X+(e)
}
.

A direct application of Weyl character formula shows that

Ssl
k,ωi

Ssl
k,0

=
∑
j

η2(k+ρ,wi
j) = Zi

(
2π

e+N
(k+ ρ)

)
.

We conclude using Lemma 2E.8 and Theorem 2E.10. □

By definition of the Koornwinder variety and Lemma 4C.5, M(Γ) is a Te-representation for Γ of type A. □
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