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FRAMIZATION OF SCHUR–WEYL DUALITY AND

YOKONUMA–HECKE TYPE ALGEBRAS

ABEL LACABANNE AND LOÏC POULAIN D’ANDECY

Abstract. We study framizations of algebras through the idea of Schur–Weyl duality.
We provide a general setting in which framizations of algebras such as the Yokonuma–
Hecke algebra naturally appear and we obtain this way a Schur–Weyl duality for many
examples of these algebras which were introduced in the study of knots and links. We
thereby provide an interpretation of these algebras from the point of view of represen-
tations of quantum groups. In this approach the usual braid groups is replaced by the
framed braid groups. This gives a natural procedure to construct framizations of algebras
and we discuss in particular a new framized version of the Birman–Murakami–Wenzl al-
gebra. The general setting is also extended to encompass the situation where the usual
braid group is replaced by the so-called tied braids algebra, and this allows to collect in
our approach even more examples of algebras introduced in the knots and links setting.
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1. Introduction

The Yokonuma–Hecke algebra is a natural generalization of the usual Hecke algebra
in the sense that the Hecke algebra originally appeared in the study of the permutation
representation of GLn(Fq) with respect to its Borel subgroup, while the Yokonuma–Hecke
algebra plays a similar role when replacing the Borel subgroup by its unipotent radical.

The Yokonuma–Hecke algebra was also studied from the point of view of knots and
links, and was used to produce invariants [19, 22] generalizing the well-known construction
of the Jones and HOMFLY–PT polynomials from the usual Hecke algebra. The precise
topological meaning of these invariants in relation with the HOMFLY–PT polynomial
was then elucidated [7, 33]. In this context, the Yokonuma–Hecke algebra is referred to
as a “framization” of the usual Hecke algebra, and there were subsequent attempts to
“framize” other known algebras and use them for knot theory [6, 10, 13, 14, 15, 21]. These
framizations are usually defined via generators and relations and it is not always clear
what the correct definition should be (e.g. the different versions for the Temperley–Lieb
algebras [14]).

The usual Hecke algebra also appears in another famous context, which is the quantum
Schur–Weyl duality, relating it to the representation theory of the quantum groups Uq(glN)
[18, 35]. The Schur–Weyl duality completes the picture in which the Jones and HOMFLY–
PT polynomials are seen as particular cases of Reshetikhin–Turaev invariants associated
to quantum groups. Thus a similar interpretation of the Yokonuma–Hecke algebra in a
Schur–Weyl duality with quantum groups seems desirable and natural to expect.

The first goal of this paper is to prove a Schur–Weyl duality statement for the Yokonuma–
Hecke algebra, as well as for various related algebras such as framizations of the Temperley–
Lieb algebra, and the so-called algebra of braids and ties [2, 36]. We will thus find the
precise meaning of all these algebras from the point of view of quantum groups.

The usual Hecke algebra can be seen as a deformation of the group algebra of the
symmetric group, and the Yokonuma–Hecke algebra has a similar interpretation in terms
of a deformation of the wreath product (Z/dZ)n⋊Sn, also known as the complex reflection
group G(d, 1, n). A Schur–Weyl duality context for this group exists and a quantization
of this duality can be obtained in terms of the Ariki–Koike algebra, which is another
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deformation of the groupG(d, 1, n), and in terms of the quantum group Uq(glN1
⊕· · ·⊕glNd

),
see [29, 38] and references therein. We prove that a Schur–Weyl duality with Uq(glN1

⊕
· · ·⊕glNd

) also applies to the Yokonuma–Hecke algebra instead of the Ariki–Koike algebra.
Nonetheless, we find that the extension of the Schur–Weyl duality of the Hecke algebra to
the Yokonuma–Hecke algebra is easier and more natural than for the Ariki–Koike algebra,
and is in fact a particular case of a general procedure developed in this paper. Here, the
action of a braid group that factors through the Hecke algebra is replaced by an action of
the framed braid group that naturally factors through the Yokonuma–Hecke algebra.

The second goal of the paper is to provide a general procedure to construct framizations
of algebras from the point of view of the Schur–Weyl duality. This general procedure
culminates in Theorem 3.3 that contains in particular the following statement.

Theorem. We have a morphism of algebras Φ : kFBd,n → EndA(V
⊗n).

Here the space V = V1 ⊕ · · · ⊕ Vd is a direct sum where each Vb is a representation of
a bialgebra Ab with the property that the usual braid group acts on the tensor products
V ⊗k
b and centralizes the action of Ab. Of course the main example we have in mind is when

the algebra Ab is a quantum group acting on a finite-dimensional representation Vb. The
algebras in Schur–Weyl duality in the theorem are then the tensor product A = A1⊠· · ·⊠Ad

and the group algebra kFBd,n of the framed braid group. The particular case factoring
through the Yokonuma–Hecke algebra is found when Ab = Uq(glNb

) and Vb is the vector
representation of dimension Nb, so that V is the natural vector representation of dimension
N1 + · · ·+Nd of A = Uq(glN1

⊕ · · · ⊕ glNd
).

In this approach, the Yokonuma–Hecke algebra is naturally obtained and we recover as
well the natural framization of the Temperley–Lieb algebra. This also allows us to give a
natural definition of a framization of the Birman–Murakami–Wenzl algebra, which seems
to be new. Any algebra appearing in a Schur–Weyl duality can be framized following this
procedure. The one-boundary extension of the previous theorem is also proved, involving
the framed affine braid group, and is applied to affine versions of framizations of algebras,
such as the affine and cyclotomic Yokonuma–Hecke algebras.

This procedure of framization is mostly used to construct invariants of knots and links,
and sometimes several versions of a framization of an algebra are proposed. For example,
there have been at least three tentatives of framization of the Temperley–Lieb algebra [14].
With our procedure of framization, we find that the correct framization of the Temperley–
Lieb algebra should be the Schur–Weyl dual of the quantum group Uq(gl2⊕· · ·⊕gl2). One
of the three proposed framizations is then natural to consider from our point of view, as it
was also advocated in [8], see also Remark 5.8.

Another advantage of the approach through the Schur–Weyl duality is that we recover
naturally some isomorphism theorems for the framizations of algebras (see Remark 5.3 for
example). In fact, we advocate the point of view that the correct framization of a given
algebra should be isomorphic to a direct sum of matrix algebras over tensor products of the
algebra we started with. This comes up naturally in the approach through the Schur–Weyl
duality and is also natural from the point of view of invariants of knots and links [8, 16, 33].



4 ABEL LACABANNE AND LOÏC POULAIN D’ANDECY

The representation theory of the framizations of algebras is also recovered from this point
of view.

Finally we also provide the general procedure allowing to obtain algebras related to
braids and ties. One of our motivations was to explore and to generalize, from the Schur–
Weyl duality setting, the relationship between the algebra of braids and ties and the fixed
points of the Yokonuma–Hecke algebra under the action of a symmetric group. To do so in
a general setting, we first upgrade this relationship to the level of the framed braid group.
We define a natural action of the symmetric group on the group algebra of the framed
braid group, and by taking the fixed points under this action we make the connection with
the tied braid monoid of [1].

We upgrade the Schur–Weyl duality previsouly obtained by adding a natural symmetry
of the representations, so that the fixed point subalgebras for a natural action of the
symmetric group on the framizations of algebras naturally enter the picture. The general
procedure leads to the following braids and ties version of the preceding theorem (see
Theorem 7.1).

Theorem. We have a morphism of algebras Ψ : TBn → EndA⋊Sd
(V ⊗n).

Here the algebra TBn is the tied braid algebra while A and V are as in the first theorem,
with the additional assumption that all bialgebras Ab are the same and all representations
Vb are the same. In this situation, the symmetric group Sd naturally acts on A and V
naturally becomes a representation of the smash product.

The algebraic description of the centralizers in these Schur–Weyl duality settings will
thus provide braids and ties versions of well-known algebras. For example, we recover the
algebra of braids and ties from the Yokonuma–Hecke algebra [2] and we recover a braids and
ties version for the Temperley–Lieb algebra, also called partition Temperley–Lieb algebra
[20] (see also [4] for related constructions). We also propose a definition by generators and
relations of a BMW algebra of braids and ties, which seems natural in our approach and
which seems different from the one in [3].

Our goal is not to be exhaustive concerning the framizations of algebras and their braids
and ties versions, but is more to provide a Schur–Weyl duality setting in which these
framizations naturally appear. We give many examples, some of those are well known
and many others deserve a more thorough study. We also note that the Yokonuma–Hecke
algebra appears as a special case in [25] where a Schur–Weyl duality statement different
from ours is given.

Acknowledgements. LPA is supported by Agence Nationale de la Recherche Projet AHA
ANR-18-CE40-0001 and the international research project AAPT of the CNRS. AL is
supported by a PEPS JCJC grant from INSMI (CNRS). The authors thank Catharina
Stroppel and Pedro Vaz for useful discussions.

2. Algebraic preliminaries

Let us start with some short and easy algebraic lemmas. Let k be a field.
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2.1. External tensor products of algebras. Let d ∈ N∗ . For all 1 ≤ b ≤ d, let Ab be a
unital k-bialgebra. Recall that this means in particular that we can make tensor products
of Ab-modules and that we have a notion of a trivial representation ǫb : Ab → k, that we
denote 1Ab

, and which satisfies 1Ab
⊗ Vb

∼= Vb ⊗ 1Ab
∼= Vb for any Ab-module Vb, where the

isomorphisms are given by the trivial identity map.
We consider the algebra

A = A1 ⊠ · · ·⊠Ad .

As a vector space, this is the usual tensor product, and the multiplication is performed
independently in each factor for pure tensors and extended linearly. Given Ab-modules
Wb for b = 1, . . . , d, the tensor product becomes naturally a representation of A that we
denote W1 ⊠ · · ·⊠Wd. The tensor product of two such representations of A is defined by
performing the tensor product of Ab-modules in each factor.

Now we fix an Ab-module Vb for each b = 1, . . . , d. We see it as an A-module, namely,
we make the following identification:

(1) Vb = 1A1 ⊠ · · ·⊠ 1Ab−1
⊠ Vb ⊠ 1Ab+1

⊠ · · ·⊠ 1Ad
.

Finally, we define the following A-module:

V = V1 ⊕ · · · ⊕ Vd .

Explicitly, the action of an element a1 ⊗ · · · ⊗ ad in A is given by

a1 ⊗ · · · ⊗ ad · v =

(

∏

c 6=b

ǫc(ac)

)

ab · v , ∀v ∈ Vb and b = 1, . . . , d .

We have the following relation between the centralizer of A in V ⊗n and the centralizers of
the various Ab.

Lemma 2.1. Suppose that for all 1 ≤ b ≤ d and r 6= s we have HomAb
(V ⊗r

b , V ⊗s
b ) = 0.

Then we have

(2) EndA(V
⊗n) ≃

⊕

ν�dn

Mat(nν)

(

EndA1(V
⊗ν1
1 )⊗ · · · ⊗ EndAd

(V ⊗νd
d )

)

,

the sum being taken over all d-compositions ν = (ν1, . . . , νd) of n.

The multinomial coefficients appearing as sizes of the matrix algebras are:
(

n

ν

)

=
n!

ν1! . . . νd!
.

Proof. We have the following decomposition of the vector space V ⊗n:

V ⊗n =

d
⊕

a1,...,an=1

Va1 ⊗ · · · ⊗ Van .

Looking at (1), we see that the summand Va1 ⊗ · · ·⊗Van is an A-submodule isomorphic to
V ⊗ν1
1 ⊠ · · ·⊠ V ⊗νd

d , where νb is the number of indices among a1, . . . , an which are equal to
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b. There are therefore
(

n
ν

)

summands corresponding to the composition ν. Therefore we
have the following decomposition of V ⊗n as an A-module:

(3) V ⊗n ≃
⊕

ν�dn

(

V ⊗ν1
1 ⊠ · · ·⊠ V ⊗νd

d

)⊕(nν) .

The statement of the lemma follows from the general fact that given Ab-modules Wb,W
′
b,

we have

HomA(W1 ⊠ · · ·⊠Wd,W
′
1 ⊠ · · ·⊠W ′

d) = HomA1(W1,W
′
1)⊗ · · · ⊗ HomAd

(Wd,W
′
d) ,

together with the hypothesis which implies that there is no homomorphism commuting
with A between summands corresponding to different compositions. �

Remark 2.2. Without the assumption, the isomorphism in the lemma remains valid if we
replace the full centralizer EndA(V

⊗n) by its subalgebra generated by the subspaces:

HomA(Va1 ⊗ · · · ⊗ Vad, Vb1 ⊗ · · · ⊗ Vbd) ,

for a’s and b’s giving the same composition, namely such that |{i | ai = x}| = |{i | bi = x}|
for all x = 1, . . . , d.

Remark 2.3. One can explicitly give the isomorphism of Lemma 2.1 using the idempo-
tents πν corresponding to the projections on the summands of the decomposition V ⊗n ≃
⊕

ν�dn

(

V ⊗ν1
1 ⊠ · · ·⊠ V ⊗νd

d

)⊕(nν). If πb : V → V is the projection on the summand Vb of V ,
the idempotent πν for ν �d n is given by

πν =
∑

(b1,...,bn)∈{1,...,d}n

|{i|bi=k}|=νk

πb1 ⊗ · · · ⊗ πbn ∈ EndA(V
⊗n).

The isomorphism of the lemma then sends f ∈ EndA(V
⊗n) to the family (πνfπν)ν�dn. The

assumption of Lemma 2.1 indeed implies that if ν 6= µ then πνfπµ = 0.

2.1.1. Consequences. The isomorphism of the lemma implies a Morita equivalence between
EndA(V

⊗n) and the direct sum of the algebras inside the matrix algebras. In particular,
the irreducible representations of the direct sum in the right hand side of (2) are indexed
by

(ν, ρ1, . . . , ρd) with ν �d n and ρb ∈ Irr
(

EndAb
(V ⊗νb

b )
)

,

the dimension of this representation being
(

n
ν

)
∏d

b=1 dim(ρb). The total dimension of the
algebra is of course:

∑

ν�dn

(

n

ν

)2

d(1)ν1 . . . d(d)νd
, where d(b)νb

= dim
(

EndAb
(V ⊗νb

b )
)

.
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2.2. One-boundary extension. We keep the same context, and suppose that we are
moreover given for all 1 ≤ b ≤ d an Ab-module Mb. To lighten the notations, we denote:

C(b)
n = EndAb

(Mb ⊗ V ⊗n
b ) .

We consider the A-module M = M1 ⊠ · · ·⊠Md and we have the following one-boundary
generalization of Lemma 2.1.

Lemma 2.4. Suppose that for all 1 ≤ b ≤ d and r 6= s we have HomAb
(Mb ⊗ V ⊗r

b ,Mb ⊗
V ⊗s
b ) = 0. Then we have

EndA(M ⊗ V ⊗n) ≃
⊕

ν�dn

Mat(nν)
(C(1)

ν1 ⊗ · · · ⊗ C(d)
νd

) ,

the sum being taken over all d-compositions ν = (ν1, . . . , νn) of n.

Proof. We use the decomposition (3) of V ⊗n in M ⊗ V ⊗n, and conclude with the same
argument as in the proof of Lemma 2.1. �

Similar consequences as in Section 2.1.1 can be deduced.

2.3. Centralizer and group action. Let A be a unital k-algebra. Suppose that we are
given a finite group G that acts by algebra automorphisms on A. We denote the action
G×A → A by (g, a) 7→ ga. We can now define the smash product algebra A⋊G of A and
k[G] as the k-vector space A⊗k k[G] equipped with the following multiplication:

(a⊗ g) · (b⊗ h) = a gb⊗ gh, ∀a, b ∈ A , ∀g, h ∈ G.

We will often identify a ∈ A with a⊗ 1 ∈ A⋊G and g ∈ G with 1⊗ g ∈ A⋊G.
We now fix an A⋊G-module W . The centralizer algebra EndA(W ) inherits of an action

of G by conjugation. Namely, this action is defined, for g ∈ G and φ ∈ EndA(W ), by

(g · φ)(v) = g · φ(g−1 · v), ∀v ∈ W.

Indeed, we have that g · φ ∈ EndA(W ) since

(g ·φ)(a ·v) = g ·φ(g−1a ·v) = g ·φ(g
−1

a g−1 ·v) = g g−1

a ·φ(g−1 ·v) = a g ·φ(g−1 ·v) = a ·(g ·φ)(v) .
Lemma 2.5.

(i) The centralizer algebra EndA⋊G(W ) of A⋊G is the fixed point subalgebra of EndA(W ):

EndA⋊G(W ) = EndA(W )G .

(ii) Assume that |G| is invertible in k. Let X be an algebra equipped with an action of
G by algebra automorphisms. If we have a surjective algebra morphism

ϕ : X → EndA(W ) ,

commuting with the action of G, then ϕ restricts to a surjective algebra morphism

ϕ : XG → EndA(W )G .
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Proof. For the first item, note that W , being an A ⋊ G-module, is in particular both
an A-module and a G-module, and that centralizing the action of A ⋊ G is equivalent
to centralizing both actions of A and G. Then it is immediate that for an element in
EndA(W ), centralizing the action of G is equivalent to being in EndA(W )G.

For the second item, since ϕ commutes with the action of G, it is clear that XG is sent
to the fixed points EndA(W )G. To check the surjectivity, take an element y in EndA(W )G.
From the surjectivity of ϕ, there is an element x in X such that ϕ(x) = y. Now taking
the average 1

|G|

∑

g∈G g.x, it is straightforward to see that this is an element in XG which

is sent to y. �

2.3.1. Main example. We take the general setting of Section 2.1 with the additional as-
sumption that all bialgebras A1, . . . , Ad are equal to one and the same bialgebra A(0), and
all modules V1, . . . , Vd are equal to one and the same A(0)-module V (0):

A = A(0)
⊠ · · ·⊠ A(0) and V1 = · · · = Vd = V (0) .

In this case, the algebra A is equipped naturally with an action of the symmetric group
Sd, obtained by permuting the tensorands:

σ · (x1 ⊗ · · · ⊗ xd) = xσ−1(1) ⊗ · · · ⊗ xσ−1(d) ∀σ ∈ Sd , ∀x1, . . . , xd ∈ A(0) .

Therefore we consider the algebra A⋊Sd defined by this action.
There is also a natural action of Sd on V by permuting the d summands. We extend

diagonally this Sd-action to V ⊗n. Explicitly, the resulting action of σ ∈ Sd permutes the
summands of V ⊗n as follows:

V ⊗n =
d
⊕

a1,...,an=1

Va1 ⊗ · · · ⊗ Van and σ : Va1 ⊗ · · · ⊗ Van → Vσ(a1) ⊗ · · · ⊗ Vσ(an) .

Together with the action of A, this yields an action of A ⋊ Sd on V ⊗n. We recall from
Lemma 2.5 that

EndA⋊Sd
(V ⊗n) = EndA(V

⊗n)Sd ,

where the action of Sd on EndA(V
⊗n) is by conjugating with the action of Sd on V ⊗n.

Example 2.6. Our main example will be A(0) = Uq(glN) so that

A = Uq(glN)⊠ · · ·⊠ Uq(glN)
∼= Uq(glN ⊕ · · · ⊕ glN )

and the module V (0) is the standard vector representation CN , so that V is the standard
vector representation CN ⊕ · · · ⊕ CNby block-diagonal matrices.

As before, we aim at a description of the centralizer EndA⋊Sd
(V ⊗n) as a direct sum of

matrix algebras (over tensor products of A(0)-centralizers). To do this, we introduce some
notations.

Given a k-algebra B and a finite group G, we define the algebra CG(B) of G-circulant
matrices with coefficients in B by

CG(B) =
{

(

f(h−1g)
)

g,h∈G
| f : G → B

}

.
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We see elements of CG(B) as matrices of size |G| with coefficients in B by fixing an ordering
of the elements of G.

Remark 2.7. The matrix
(

f(h−1g)
)

g,h∈G
in CG(B) is the matrix with coefficients in B

representing the right multiplication of the element
∑

g f(g)g on the group ring B[G].

Therefore CG(B) is an algebra isomorphic to B[G] ∼= B ⊗k k[G]. Note that we recover the
usual circulant matrices when G is a cyclic group of finite order.

We are ready to formulate the final result of this section. To lighten the notation, we

denote by B
(0)
k the endomorphism algebras EndA(0)((V (0))⊗k).

Lemma 2.8. Suppose that for all r 6= s we have HomA(0)((V (0))⊗r, (V (0))⊗s) = 0. Then
we have

(4) EndA⋊Sd
(V ⊗n) ≃

⊕

λ⊢n
l(λ)≤d

Mat(nλ)/l1!···ln!

(

CSl1
×···×Sln

(

B
(0)
λ1

⊗ · · · ⊗B
(0)
λd

))

,

where a partition λ in the sum is written as (1l1, 2l2 , . . . , nln), that is, li is the number of i
occurring in λ and l(λ) = l1 + · · ·+ ln.

Proof. We introduce some notations. We will denote a = (a1, . . . , an) ∈ {1, . . . , d}n. Such
an element a corresponds to a composition ν = (ν1, . . . , νd) �d n, where νi counts the
number of elements of a equal to i. We denote Cν the set of all a corresponding to ν. The
sets Cν are the orbits for the Sn-action on {1, . . . , d}n by place permutations. We can
write the space V ⊗n as

V ⊗n =
⊕

ν�dn

⊕

a∈Cν

Va1 ⊗ · · · ⊗ Van .

Now, from Lemma 2.5, we need to calculate the fixed points under the Sd-action of
EndA(V

⊗n). The Sd-action comes from the action on {1, . . . , d}n extended diagonally
from the natural action on {1, . . . , d}. This action permutes the sets Cν corresponding to
compositions having the same components in different order. With this Sd-action, any
composition ν is equivalent to a partition λ of n with at most d non zero parts, and we
write ν ∼Sd

λ if this is the case. So now we have

V ⊗n =
⊕

λ⊢n
l(λ)≤d

⊕

ν∼Sd
λ

⊕

a∈Cν

Va1 ⊗ · · · ⊗ Van .

The assumption of the lemma implies that there is no A-linear morphisms between two
subspaces corresponding to different compositions, so we get:

EndA⋊Sd
(V ⊗n) =

⊕

λ⊢n
l(λ)≤d

(

⊕

ν∼Sd
λ

EndA

(

⊕

a∈Cν

Va1 ⊗ · · · ⊗ Van

)

)Sd

.

For a given λ, the group Sd permutes transitively the summands corresponding to different
ν. So a fixed point must have equal components in all these summands, and it is enough
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to look at the summand corresponding to ν = λ. But still there is a residual action inside
the summands. Writing λ = (1l1 , 2l2, . . . , nln), we obtain

EndA⋊Sd
(V ⊗n) ∼=

⊕

λ⊢n
l(λ)≤d

EndA

(

⊕

a∈Cλ

Va1 ⊗ · · · ⊗ Van

)Gλ

,

where Gλ is a subgroup of Sd isomorphic to Sl1 × · · · × Sln . More precisely, Gλ is the
subgroup of elements permuting the numbers in {1, . . . , d} which appear with equal mul-
tiplicities in a ∈ Cλ. In particular it leaves stable the subset Cλ of {1, . . . , d}n.

Then we decompose the set Cλ as a union of orbits for the action of Gλ:

Cλ = C1
λ ⊔ · · · ⊔ Ck

λ .

Note that we have not included in Gλ the subgroup permuting the numbers in {1, . . . , d}
appearing with zero multiplicities in a ∈ Cλ. As a result, it is easy to see that the stabilizers
of elements of Cλ for theGλ-action are all trivial. In other words, each orbit C i

λ is equivalent
to Gλ with its left regular action.

Now, as before, we see elements of EndA

(

⊕

a∈Cλ
Va1 ⊗ · · · ⊗ Van

)

as matrices with

coefficients in B
(0)
λ1

⊗ · · · ⊗ B
(0)
λd

and with lines and columns indexed by Cλ. We write
such a matrix M as a block matrix using the decomposition of Cλ into Gλ-orbits. So
M = (Mij)i,j=1,...,k and the block Mij has its lines indexed by C i

λ and its columns by

Cj
λ. As discussed above, this means that the coefficients of Mij can be indexed by pairs

(g, h) where g, h ∈ Gλ. Finally, it is now immediate to check that the condition of being
fixed by Gλ is equivalent to the condition that for each block Mij , the coefficient indexed
by (g, h) actually only depends on h−1g. This means that each block is an element of

CGλ

(

B
(0)
λ1

⊗ · · · ⊗ B
(0)
λd

)

.

The cardinal of Cλ is
(

λ
n

)

while the cardinal of each C i
λ is |Gλ| = l1! · · · ln!. Thus the

number k of blocks in the matrix above is
(

λ
n

)

1
l1!...ln!

. This concludes the proof. �

Remark 2.9. One can make a remark similar to Remark 2.2. Namely, if we remove the
assumptions in the lemma above, we still have a subalgebra of the centralizer isomorphic
to the right hand side of (4). In fact, what we really have proven is that taking the fixed
points under Sd of the direct sum of matrix algebras found in Lemma 2.1 results in the
right hand side of (4).

2.3.2. Consequences. As in Section 2.1.1, the isomorphism of Lemma 2.5 implies a Morita
equivalence, and in particular a description of the irreducible representations, which can
also be obtained by applying Clifford theory to the fixed point subalgebra (see for example
[17, §3] and also Remark 2.7). We have that the irreducible representations are indexed by

(λ, ρ1, . . . , ρd,Λ1, . . . ,Λn) where











λ ⊢ n with ℓ(λ) ≤ d ,

ρb ∈ Irr(B
(0)
λb
) ,

Λi ∈ Irrk(Sli) ,
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where we have denoted a partition λ = (λ1, . . . , λd) = (1l12l2 . . . nln). The dimension of
this representation is

(

n

λ

)∏d
b=1 dim ρb

∏n
i=1 dimΛi

l1! . . . ln!
.

Note that the total dimension of the direct sum of matrix algebras in (4) is

(5)
∑

λ⊢n
l(λ)≤d

(

n

λ

)2
dλ1 . . . dλd

l1! . . . ln!
, where dk = dim(B

(0)
k ).

Explicit examples will be given in Section 7.

3. Framed braid group and centralizers of tensor products

In this section, we keep the setting of the previous section and we will add the assumption
that for each algebra Ab and its module Vb, we have a morphism from the braid group Bn

to the centralizer EndAb
(V ⊗n

b ). This assumption will imply that a certain “framization” of
the braid group naturally appears when looking at the centralizers of the algebra A.

In this section, d is still a fixed positive integer and we assume that the field k contains
a primitive d-th root of unity ζ , and that d is invertible in k. In particular k contains d
distinct d-th roots of unity, which are all powers ζb, with b = 0, . . . , d− 1.

3.1. Braid group and framed braid group.

3.1.1. The Artin–Tits braid group of type A. We will denote by Bn the Artin–Tits braid
group of type An−1. A presentation using generators and relations is given by

Bn = 〈s1, . . . , sn−1|sisj = sjsi if |i− j| > 1, sisjsi = sjsisj if |i− j| = 1〉 .

3.1.2. The framed braid group. The framed braid group FBd,n (of type A) is defined as the
wreath product Bn ≀ Z/dZ, where the braid group Bn acts on (Z/dZ)n via permutations.
An explicit presentation by generators and relations is given by the following

FBd,n =

〈

s1, . . . , sn−1,
t1, . . . , tn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

sisj = sjsi if |i− j| > 1,
sisjsi = sjsisj if |i− j| = 1,
tdi = 1 for all 1 ≤ i ≤ n,
titj = tjti for all 1 ≤ i, j ≤ n,
sitj = tsi(j)si for all 1 ≤ i < n and 1 ≤ j ≤ n

〉

.

Here si acts on indices 1, . . . , n as the transposition (i, i+ 1).
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3.2. Framed braid group and centralizers. For all b ∈ {1, . . . , d}, we assume the
existence of an element Ř(b) ∈ End(Vb ⊗ Vb) such that, for any n ≥ 2, we have an algebra
morphism given by

(6) φb :
kBn → EndAb

(V ⊗n
b )

si 7→ Ř
(b)
i (i = 1, . . . , n− 1) ,

where as usual Ř
(b)
i denotes the map which acts as Ř(b) on factors i and i+1 in V ⊗n

b . Since

Ř
(b)
i and Ř

(b)
j obviously commute when |i − j| > 1, the assumption amounts to the braid

relation Ř
(b)
i Ř

(b)
i+1Ř

(b)
i = Ř

(b)
i+1Ř

(b)
i Ř

(b)
i+1 being satisfied.

Note that we slightly abuse notations by not indicating the dependence on n for the
maps φb. The relevant n will always be clear from the context. Note also that φb is also
trivially defined for n = 0, 1 since in these cases the braid group Bn is the trivial group.

Example 3.1. If Ab is a quasi-triangular Hopf algebra, the action of the R-matrix of A
on the tensor product Vb ⊗ Vb provides a map Ř(b) satisfying the above assumptions.

Our main examples will be when Ab = Uq(g), namely a quantum enveloping algebra,
where g is glN or a complex simple Lie algebra. In this case, Ř(b) is obtained through the
action of the universal R-matrix on a finite-dimensional weight representation Vb. We refer
to [23] for more details on quantum enveloping algebras.

Remark 3.2. The braid group does not always generate the centralizer EndAb
(V ⊗n

b ). If
Ab is a quantum enveloping algebra of a simple complex Lie algebra, Lehrer and Zhang [26]
give a sufficient condition on the representations Vb such that the braid group generates
the centralizer algebra.

Our goal now is to define elements realizing the framed braid group in the centralizer
EndA(V

⊗n) of A in V ⊗n. First, we define τ : V → V by

τ(v) = ζb−1v if v ∈ Vb, ∀b = 1, . . . , d .

With respect to the decomposition V =
⊕d

a=1 Va, the endomorphism τ is simply block
diagonal, namely, we have:

τ =
d
⊕

b=1

ζb−1 IdVb
.

Then we define σ : V ⊗ V → V ⊗ V by

σ(v ⊗ w) =

{

w ⊗ v if v ∈ Vb, w ∈ Vc with b 6= c,

Ř(b)(v ⊗ w) if v, w ∈ Vb.

Note that the subspaces Vb⊗Vc and Vc⊗Vb are simply permuted by σ if b 6= c, and Vb⊗Vb

is globally fixed by σ. An equivalent description of σ is:

σ =
d
⊕

b=1

Ř(b)|Vb⊗Vb
⊕
⊕

b6=c

P |Vb⊗Vc⊕Vc⊗Vb
,
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where P |Vb⊗Vc⊕Vc⊗Vb
is the flip operator sending v ⊗ w to w ⊗ v.

To denote endomorphisms of V ⊗n, we use the following standard notations:

τi = Id⊗i−1
V ⊗τ ⊗ Id⊗n−i

V and σi = Id⊗i−1
V ⊗σ ⊗ Idn−i−1

V .

We are ready to state the relation between the framed braid group and the centralizer of
A in V ⊗n. Recall that the maps φb denote the morphisms from the usual braid group to
the centralizers EndAb

(V ⊗n
b ), set up in (6).

Theorem 3.3. Let n ≥ 1.

(i) We have the following morphism into the centralizer of A in V ⊗n:

Φ :

kFBd,n → EndA(V
⊗n)

ti 7→ τi (i = 1, . . . , n) ,

si 7→ σi (i = 1, . . . , n− 1) .

(ii) We have:

(7) Φ(kFBd,n) ≃
⊕

ν�dn

Mat(nν)

(

φ1(kBν1)⊗ · · · ⊗ φd(kBνd)
)

.

Proof. (i) As in the proof of Lemma 2.1, we look at the following decomposition of V as a
direct sum of A-modules:

(8) V ⊗n =

d
⊕

a1,...,an=1

Va1 ⊗ · · · ⊗ Van ≃
⊕

ν�dn

(

V ⊗ν1
1 ⊠ · · ·⊠ V ⊗νd

d

)⊕(nν) ,

where each (a1, . . . , an) corresponds to a composition ν such that νj is the number of
elements among a1, . . . , ad which are equal to j.

The map τi, i = 1, . . . , n, is equal to ζai−1 Id on the summand Va1 ⊗ · · · ⊗ Van , and

therefore commutes with the action of A. If ai = ai+1 = b, the map σi is equal to Ř
(b)
i on

Va1 ⊗ · · · ⊗ Van , that is it acts as Ř
(b) on factors i and i + 1 and as the identity on other

factors. This also commutes with A, since only Ab acts non-trivially on Vb ⊗ Vb and its
action is centralized by Ř(b). Finally, if ai 6= ai+1 then the summand Va1 ⊗ · · · ⊗ Van is
isomorphic to the summand with Vai and Vai+1

exchanged. This isomorphism of A-modules
is given by the flip operator acting on factors i and i + 1. This coincides with the action
of σi in this case, which therefore commutes with the action of A.

We have shown that the image of the given map indeed takes values in the centralizer
of A. Now it is straightforward to check that the relations of the framed braid group are
satisfied. For example, to check the braid relation between σi and σi+1, the action is non-
trivial only on Vai ⊗Vai+1

⊗Vai+2
, and one splits the verification in several cases, depending

on which among ai, ai+1, ai+2 are equal to each other.

(ii) First of all, the summands corresponding to different sequences (a1, . . . , an) in (8)
are distinguished by the eigenvalues of the commuting operators τ1, . . . , τn. Therefore, in
the image of the framed braid group, we have all projections onto the different summands
Va1 ⊗ · · · ⊗ Van .
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Then for two summands Va1 ⊗ · · · ⊗ Van and Vb1 ⊗ · · · ⊗ Vbn corresponding to the same
composition, one is obtained from the other by a permutation of the indices. The corre-
sponding permutation operator is the corresponding isomorphism of A-modules. It is easy
to see that such a permutation operator is in the image of the framed braid group, using
suitable σ’s for permuting factors with different indices.

Now for a composition ν, we consider the simplest summand Va1⊗· · ·⊗Van corresponding
to ν, namely, the summand

V ⊗ν1
1 ⊗ · · · ⊗ V ⊗νd

d ,

which is obtained by taking a1 = · · · = aν1 = 1, aν1+1 = · · · = aν1+ν2 = 2 and so on. At
this point, it remains to show that the subalgebra

φ1(kBν1)⊗ · · · ⊗ φd(kBνd)

of its endomorphism algebra is obtained in the image of kFBd,n. This is the case since this
subalgebra is generated by the restrictions of the operators σ1, . . . , σν1−1, and σν1+1, . . . , σν1+ν2−1,
and so on. �

We can strengthen the conclusion of the preceding theorem if we add some natural
assumptions on the centralizers of the algebras Ab. First, assume that for all b = 1, . . . , d,
the image of the braid group Bn generates the centralizer algebra EndAb

(V ⊗n
b ) for all n ≥ 0.

In other words, the maps φb are all surjective. In this case, the formula in the second item
becomes obviously:

(9) Φ(kFBd,n) ≃
⊕

ν�dn

Mat(nν)

(

EndA1(V
⊗ν1
1 )⊗ · · · ⊗ EndAd

(V ⊗νd
d )

)

.

Comparing with Lemma 2.1, we see that this is the full centralizer EndA(V
⊗n) if we add

the further assumption that HomAb
(V ⊗r

b , V ⊗s
b ) = 0 if r 6= s. We summarize in the following

statement.

Corollary 3.4. For all b = 1, . . . , d, assume that HomAb
(V ⊗r

b , V ⊗s
b ) = 0 if r 6= s and that

for all n ≥ 0, the image of the braid group Bn generates the centralizer algebra EndAb
(V ⊗n

b ).
Then the centralizer algebra EndA(V

⊗n) is generated by the image of FBd,n.

Example 3.5. The assumptions of the corollary are satisfied for Uq(glN) with its funda-
mental vector representation or for Uq(gl2) with any of its irreducible representations.

Note that the assumption HomAb
(V ⊗r

b , V ⊗s
b ) = 0 if r 6= s will not always be satisfied if

Ab = Uq(slN). For example if Vb is the vector representation, we have HomAb
(V

⊗(N+k)
b , V ⊗k

b ) 6=
0 for any k ≥ 0. Here the assumption will be satisfied if r, s < N .

3.3. The idempotents Ei,j. We define elements Ei,j, for i, j = 1, . . . , n, which will be
important in the following. They are defined in the commutative subalgebra of the group
algebra kFBd,n generated by t1, . . . , tn:

Ei,j =
1

d

d
∑

a=1

tai t
−a
j and Ei = Ei,i+1 .
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The elements Ei,j are idempotents, which satisfy obviously Ei,j = Ej,i and:

tiEi,j = tjEi,j .

Moreover, their relations with the other generators s1, . . . , sn−1 are

skEi,j = Esk(i),sk(j)sk and in particular siEi = Eisi .

To calculate the images of the idempotents Ei,j by Φ, the map given in Theorem 3.3, we
introduce the following operator on V ⊗ V :

ε =

d
⊕

b=1

IdVb⊗Vb
⊕
⊕

b6=c

0Vb⊗Vc
,

or equivalently

ε(v ⊗ w) =

{

v ⊗ w if v, w ∈ Vb ,

0 if v ∈ Vb, w ∈ Vc with b 6= c .

For any i 6= j, we denote εi,j the endomorphism of V ⊗n acting as ε on factors i and j, and
as the identity on the other factors. As before, we denote εi = εi,i+1.

Proposition 3.6. We have:

εi,j = Φ(Ei,j) and in particular εi = Φ(Ei) .

Proof. We have that Φ(Ei,j) is
1
d

∑d
a=1 τ

a
i τ

−a
j and thus if we have a vector in Vb in the i-th

factor and a vector in Vc in the j-th factor, we find that it is multiplied by 1
d

∑d
a=1 ζ

(b−c)a.
This is 1 if b = c and 0 otherwise. �

3.3.1. Framization of a characteristic equation. The idempotents Ei,j and their images εi,j
are useful to find relations satisfied in the centralizer algebra EndA(V

⊗n) in addition to the
relations of the framed braid group. We show how it works when we know a characteristic
equation for the maps Ř(b) ∈ End(V ⊗ V ), namely we assume that we know non-zero
elements λ1, . . . , λk of k such that:

(Ř(b) − λ1) . . . (Ř
(b) − λk) = 0 , b = 1, . . . , d ,

The point is that the eigenvalues of Ř(b) are the same for all b = 1, . . . , d.
This assumption easily implies the following relations for the images of the generators

of the framed braid group FBn in the centralizer EndA(V
⊗n):

(10) εi(σi − λ1) . . . (σi − λk) = 0 and (1− εi)(σ
2
i − 1) = 0 .

This is immediate, since σi is the flip operator when restricted to the kernel of the projector

εi, while it is the direct sum of the operators Ř
(b)
i , b = 1, . . . , d, when restricted to the kernel

of 1−εi. We note that any linear combination with two non-zero coefficients of the relations
above implies both relations. Explicit examples will be given in Section 5.
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4. The framed affine braid group and one-boundary centralizers

In this section, we give the variants of the preceding section involving the affine braid
group and its framed version when we consider the one-boundary setting.

4.1. The affine braid group and its framed version. We denote by Baff
n the affine

braid group (or type Bn Artin–Tits braid group) with generators s0, s1, . . . , sn−1 and defin-
ing relations:

(11)

s0s1s0s1 = s1s0s1s0
sisj = sjsi for all i, j = 0, 1, . . . , n− 1 such that |i− j| > 1,

sisi+1si = si+1sisi+1 for all i = 1, . . . , n− 2.

The framed affine braid group FB
aff
d,n is defined as the wreath product Baff

n ≀ Z/dZ,

where the braid group Baff
n acts on (Z/dZ)n as follows. The generators s1, . . . , sn−1 act

as permutations as before, and the additional generator s0 acts trivially. An explicit
presentation of FB

aff
d,n is with generators s0, s1, . . . , sn−1 and t1, t2, . . . , tn, with defining

relations (11) and

(12)

tdj = 1 for all j = 1, . . . , n,

titj = tjti for all i, j = 1, . . . , n,

tjs0 = s0tj for all j = 1, . . . , n,

tjsi = sitsi(j) for all j = 1, . . . , n and i = 1, . . . , n− 1.

4.2. Framed affine braid group and centralizers. As before for the one-boundary
situation, we add into the picture an A-module M = M1 ⊠ · · ·⊠Md where each Mb is an
Ab-module, and we look at the centralizer of A in M ⊗ V ⊗n.

Note that we keep our assumption (6) of the existence of a morphism from the usual
braid group to each centralizer EndAb

(V ⊗n
b ). Here, we assume moreover that, for all b ∈

{1, . . . , d}, we have an element Ǩ(b) ∈ EndAb
(Mb ⊗ Vb) satisfying on Mb ⊗ Vb ⊗ Vb

Ǩ(b)Ř(b)Ǩ(b)Ř(b) = Ř(b)Ǩ(b)Ř(b)Ǩ(b) ,

where we have extended Ǩ(b) to Mb ⊗ V ⊗2
b by acting trivially on the last factor and Ř(b)

to Mb ⊗ V ⊗2
b by acting trivially on the first factor. This means that we have the following

morphism:

(13) φaff
b :

kBaff
n → EndAb

(Mb ⊗ V ⊗n
b )

s0 7→ Ǩ(b) ,

si 7→ Ř
(b)
i (i = 1, . . . , n− 1) ,

where we have extended naturally Ǩ(b) to act on Mb ⊗ V ⊗n
b by acting trivially on all but

the two first factors (also Ř
(b)
i acts on V ⊗n

b as before and trivially on Mb). The morphisms
φaff
b extend the morphisms φb from (6).
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Example 4.1. The main example of such maps arises from the double braiding in a braided
category. If Mb and Vb are two objects of a braided category, the map Ǩ(b) = ŘVb,Mb

ŘMb,Vb

satisfy our assumptions. In the case of quantum groups, this situation have been considered,
for example, in [31].

Our goal now is to define elements realizing the framed affine braid group in the central-
izer EndA(M⊗V ⊗n). We have already the action of the framed braid group on V ⊗n, realized
by the elements τ1, . . . , τn and σ1, . . . , σn−1. We extend naturally these actions to M⊗V ⊗n

by acting as the identity on M . So it remains to define an operator σ0 : M ⊗ V → M ⊗ V .
Recall that V = V1 ⊕ · · · ⊕ Vd. We will define σ0 on each summand in the direct sum

M ⊗ V = M ⊗ V1 ⊕ · · · ⊕M ⊗ Vd .

Let b ∈ {1, . . . , d} and write

M ⊗ Vb = (M1 ⊠ · · ·⊠Mb ⊠ · · ·⊠Md)⊗ Vb .

In words, the action of σ0 is defined by acting with Ǩ(b) on legs Mb and Vb of the tensor
product and trivially on the other factors. More precisely, we define

σ0 : (m1 ⊗ · · · ⊗mb ⊗ · · · ⊗md)⊗ vb 7→
∑

(m1 ⊗ · · · ⊗m′ ⊗ · · · ⊗md)⊗ v′ ,

where Ǩ(b)(mb ⊗ vb) =
∑

m′ ⊗ v′. Of course σ0 is extended to M ⊗V ⊗n by acting trivially
on the last n− 1 factors.

We have the natural one-boundary generalization of Theorem 3.3. Recall that the maps
φaff
b denote the morphisms from the affine braid group to the centralizers EndAb

(Mb⊗V ⊗n
b ),

set up in (13).

Theorem 4.2. Let n ≥ 1.

(i) We have the following morphism into the centralizer of A in M ⊗ V ⊗n:

Φaff :

kFB
aff
d,n → EndA(M ⊗ V ⊗n)

ti 7→ τi (i = 1, . . . , n) ,

si 7→ σi (i = 0, . . . , n− 1) .

(ii) We have:

(14) Φaff(kFB
aff
d,n) ≃

⊕

ν�dn

Mat(nν)

(

φaff
1 (kBaff

ν1
)⊗ · · · ⊗ φaff

d (kBaff
νd
)
)

.

Proof. (i) We only need to check that σ0 is in the centralizer and that the relations of
FB

aff
d,n involving s0 are satisfied. Write the following immediate decomposition as a direct

sum of A-modules:

(15) M ⊗ V ⊗n =
d
⊕

a1,...,an=1

M ⊗ Va1 ⊗ · · · ⊗ Van .
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On a given summand, the map σ0 acts as Ǩ(a1) on the factors Ma1 and Va1 and trivially
elsewhere. This commutes with A since only Aa1 acts non-trivially on these factors and its
action is centralized by Ǩ(a1).

For the relations of FB
aff
d,n that we need to check, the commutation of σ0 with all gener-

ators τi is immediate since τi acts as the multiple of the identity ζai−1 Id on the summand
M ⊗ Va1 ⊗ · · · ⊗ Van , which is stable by σ0. The commutation of σ0 with σ2, . . . , σn−1 is
also immediate. For the braid relation involving s0, let us apply it on one given summand
M ⊗ Va1 ⊗ · · · ⊗ Van .

If a1 = a2 = a, the relation acts non-trivially only on the factorsMa, Va1, Va2 of the tensor
product, and it becomes on these factors the relation Ǩ(a)Ř(a)Ǩ(a)Ř(a) = Ř(a)Ǩ(a)Ř(a)Ǩ(a).
This is satisfied by our running hypothesis (13).

If a1 = a and a2 = b with a 6= b, the relation acts non-trivially only on the factors
Ma,Mb, Va, Vb of the tensor product. Ignoring the other factors, let us apply it on a vector of
the formma⊗mb⊗va⊗vb. DenoteK(a)(ma⊗va) =

∑

m′⊗v′ andK(b)(mb⊗vb) =
∑

m′′⊗v′′,
and recall that σ1 acts on va ⊗ vb as the flip. An easy calculation shows that both sides of
the relation σ0σ1σ0σ1 = σ1σ0σ1σ0 gives the same result:

ma ⊗mb ⊗ va ⊗ vb 7→
∑

m′ ⊗m′′ ⊗ v′ ⊗ v′′ .

(ii) We can reproduce verbatim the reasoning in the proof of item (ii) of Theorem 3.3
until we are left with checking that we have in the image of Φaff the subalgebra

φaff
1 (kBaff

ν1
)⊗ · · · ⊗ φaff

d (kBaff
νd
)

of the endomorphism algebra for the summand

M ⊗ V ⊗ν1
1 ⊗ · · · ⊗ V ⊗νd

d .

The first factor φaff
1 (kBaff

ν1
) is generated by the operators σ0, σ1, . . . , σν1−1. For the action

φaff
2 (s0) of the generator s0 ofB

aff
ν2
, one needs to consider the operator σν1 . . . σ1σ0σ

−1
1 . . . σ−1

ν1
,

since the σi’s around σ0 act as permutation operators in this case. The remaining gener-
ators of φaff

2 (kBaff
ν2
) are obtained with σν+1, . . . , σν1+ν2−1. And similarly one can get any

φaff
b (kBaff

νb
) in the subalgebra generated by σ0, σ1, . . . , σn−1. �

With the same reasoning as before Corollary 3.4, we get its analogue for the one-
boundary case.

Corollary 4.3. Assume that for all b = 1, . . . , d, the image of the affine braid group Baff
n

generates the centralizer algebra EndAb
(Mb ⊗ V ⊗n

b ) for all n ≥ 0. Then we have

(16) Φaff(kFB
aff
d,n) ≃

⊕

ν�dn

Mat(nν)

(

EndA1(M1 ⊗ V ⊗ν1
1 )⊗ · · · ⊗ EndAd

(Md ⊗ V ⊗νd
d )

)

.

If moreover we assume that HomAb
(Mb ⊗ V ⊗r

b ,Mb ⊗ V ⊗s
b ) = 0 when r 6= s, then the

centralizer algebra EndA(M ⊗ V ⊗n) is generated by the image of FB
aff
d,n.

Example 4.4. When Ab = Uq(glN) and Vb is the vector representation, the surjectivity is
satisfied [31]. IfMb is a finite-dimensional irreducible representations, the other assumption
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is satisfied as well. Again, one has to be careful for this second assumption in other examples
such as Uq(slN).

5. Recollection of framizations of algebras

In this section, we consider several algebras appearing in the literature as framizations
and we provide a new example for the Birman–Murakami–Wenzl algebra. Each example
will be seen as a centralizer algebra for a certain (product of) quantized enveloping algebras.

In this section, we take an indeterminate q and the field k = C(q).

5.1. The quantum Schur–Weyl duality. We recall the well-known statements called
quantum Schur–Weyl duality [18, 35]. Let N > 1 and Uq(glN ) denote the quantum group
associated to the Lie algebra glN . Let V be the vector representation of Uq(glN). The
centralizer EndUq(glN )(V

⊗n) is described with the help of the Hecke algebra Hn. We fix the
normalizations such that the Hecke algebra Hn is defined as the quotient of the braid group
algebra kBn by the following quadratic relations:

(17) s2i = (q − q−1)si + 1 , i = 1, . . . , n− 1.

Theorem 5.1. There is a surjective morphism from the Hecke algebra to the centralizer:

(18) φ : Hn → EndUq(glN )(V
⊗n) .

It is an isomorphism if and only if n ≤ N .

Moreover, if n > N , the kernel of φ is generated by the q-antisymmetrizer on N + 1-
points. For N = 2, the (unnormalised) q-antisymmetrizer on 3 points is given by

(19) Λ3 = 1− q−1s1 − q−1s2 + q−2s1s2 + q−2s2s1 − q−3s1s2s1 .

5.2. The Yokonuma–Hecke algebra. For each b = 1, . . . , d, we take Ab to be the quan-
tum group Uq(glNb

), for some integer Nb > 1, and Vb its vector representation of dimension
Nb. Then the algebra A is

A = Uq(glN1
)⊠ · · ·⊠ Uq(glNd

) ∼= Uq(glN1
⊕ · · · ⊕ glNd

) ,

the quantum group associated to the Lie algebra of block-diagonal matrices with block sizes
N1, . . . , Nd. The representation V of A is the natural vector representation of dimension
N1 + · · ·+Nd.

The Yokonuma–Hecke algebra YHd,n is defined as the quotient of the framed braid group
algebra kFBd,n by the additional relation

(20) s2i = (q − q−1)Eisi + 1 , i = 1, . . . , n− 1,

where we recall that Ei =
1
d

∑d
s=1 t

s
i t

−s
i+1.

Theorem 5.2. There exists a surjective homomorphism

Φ : YHd,n → EndA(V
⊗n) .

It is an isomorphism if and only if n ≤ Nb for all 1 ≤ b ≤ d.
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Proof. Recall that we already have the algebra morphism

Φ : kFBd,n → EndA(V
⊗n)

following from Theorem 3.3. From the discussion of the action of Ei in Section 3.3, namely
Formula (10), we know that the following relations are satisfied in the image by Φ:

Ei(s
2
i − (q − q−1)si − 1) = 0 and (1−Ei)(s

2
i − 1) = 0 .

The sum of these two relations gives the additional relation (20) of the algebra YHd,n.
Therefore, the morphism Φ factors through the algebra YHd,n.

The surjectivity is obtained by an application of Corollary 3.4, whose hypotheses are
satisfied here.

If n ≤ Nb for all 1 ≤ b ≤ d, the centralizers EndAb
(V ⊗n

b ) are all isomorphic to the Hecke
algebra Hn, from the usual Schur–Weyl duality in Theorem 5.1. Thus the second item of
Theorem 3.3 reads in this case:

(21) Φ(YHd,n) ≃
⊕

ν�dn

Mat(nν)
(

Hν1 ⊗ · · · ⊗Hνd

)

.

The right hand side has dimension

∑

ν�dn

(

n

ν

)2

ν1! . . . νd! = n!
∑

ν�dn

(

n

ν

)

= n!dn .

It is easy to see that YHd,n is spanned by elements ta11 . . . tann sw, where a1, . . . , an ∈
{1, . . . , d} and elements sw are indexed by elements w of the symmetric group Sn (see
for example [9, 19]). This shows that the dimension of YHd,n is less or equal than n!dn.
We conclude that Φ is an isomorphism. �

Remark 5.3. The proof shows that the Yokonuma–Hecke algebra YHd,n is isomorphic to
the direct sum of matrix algebras in the right hand side of (21). This was also shown
directly in [16] over the ring C[q, q−1]. The representation theory of YHd,n can be deduced,
see [9, 17] and Section 2.1.1.

5.3. Framization of the Temperley–Lieb algebra. We keep the setting of the pre-
ceding section, Ab = Uq(glNb

) and Vb the vector representation of dimension Nb, and we
consider the case N1 = · · · = Nd = 2.

The Temperley–Lieb algebra TLn is defined as the quotient of the Hecke algebra Hn by
the additional relation, if n > 2,

1− q−1s1 − q−1s2 + q−2s1s2 + q−2s2s1 − q−3s1s2s1 = 0 .

Note that this relation implies the same relation with s1, s2 replaced by si, si+1. Since all
Nb’s are equal to 2, the Temperley–Lieb algebra is isomorphic to the centralizer EndAb

(V ⊗n
b )

for any b = 1, . . . , d, as was recalled in Section 5.1.
The following analogue of the Temperley–Lieb algebra in the framized situation was

defined in [15], see also [8, 14].
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Definition 5.4. The framization of the Temperley–Lieb algebra, denoted FTLd,n, is the
quotient of the Yokonuma–Hecke algebra YHd,n by the relation:

(22) E1E2(1− q−1s1 − q−1s2 + q−2s1s2 + q−2s2s1 − q−3s1s2s1) = 0 .

Here again, the same relation with indices 1, 2 replaced by i, i+ 1 is implied. Note that
from the properties of the elements Ei recalled in Section 3.3, the product E1E2 commutes
with s1 and s2.

Theorem 5.5. The algebra FTLd,n is isomorphic to the centralizer EndUq(gl
d
2)
(V ⊗n) where

V is the vector representation of dimension 2d.

Proof. We already have the surjective morphism

Φ : YHd,n → EndUq(gl
d
2)
(V ⊗n)

from Theorem 5.2. First we need to check that the defining relation (22) of FTLd,n is
satisfied in the image by Φ. From the description of the image by Φ of the idempotents Ei

in Proposition 3.6, we have that the product E1E2 acts as follows on V ⊗ V ⊗ V : it acts
as the identity on subspaces of the form Va ⊗ Va ⊗ Va, where a = 1, . . . , d, and acts as 0 on
all other subspaces Va ⊗ Vb ⊗ Vc.

On subspaces Va ⊗ Va ⊗ Va the relation (22) is satisfied since the q-antisymmetrizer Λ3

acts as 0 from the usual Schur–Weyl duality, and on other subspaces it is trivially satisfied
since E1E2 acts as 0.

Therefore, the morphism Φ factors through the algebra FTLd,n. The second item of
Theorem 3.3 reads in this case:

(23) Φ(FTLd,n) ≃
⊕

ν�dn

Mat(nν)
(

TLν1 ⊗ · · · ⊗ TLνd

)

.

To conclude that Φ is an isomorphism, one can show that the dimension of FTLd,n is less
or equal than the dimension of the right hand side. This can be found in [8]. �

In [8] the algebra FTLd,n is directly shown to be isomorphic to the direct sum in (23)
and the representation theory is described. This is an example of the general setting in
Section 2.1.1.

5.3.1. The Complex Temperley–Lieb algebra. Variants of the algebra FTLd,n were defined,
see [8, 14]. In particular, the so-called complex Temperley–Lieb algebra CTLd,n is defined
as the quotient of the Yokonuma–Hecke algebra YHd,n by the relation:

(24)
1

d3

d
∑

a,b,c=1

ta1t
b
2t

c
3(1− q−1s1 − q−1s2 + q−2s1s2 + q−2s2s1 − q−3s1s2s1) = 0 .

From the point of view of the action of the algebra YHd,n on V ⊗n from the preceding
sections, the meaning of the prefactor

d
∑

a,b,c=1

ta1t
b
2t

c
3 = (

1

d

d
∑

a=1

ta1)E1E2
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is easy to explain. It acts on V ⊗V ⊗V as follows: it is proportional to the identity on the
subspace V1 ⊗ V1 ⊗ V1, and it acts as 0 on all other subspaces Va ⊗ Vb ⊗ Vc. In particular,
on all these latter subspaces, the relation (24) is automatically satisfied. On the subspace
V1 ⊗ V1 ⊗ V1 it is satisfied only if the dimension of V1 is 2.

From the preceding discussion, using the same reasoning as in the preceding subsection,
we get the following interpretation of the algebra CTLd,n as a centralizer. We need to take
A = Uq(gl2 ⊕ glN2

⊕ · · · ⊕ glNd
) (and V is of dimension 2 +N2 + · · ·+Nd).

Theorem 5.6. There exists a surjective homomorphism

Φ : CTLd,n → EndA(V
⊗n) .

It is an isomorphism if and only if n ≤ Nb for all 2 ≤ b ≤ d.

Again, as in the preceding subsection, we recover the isomorphism

CTLd,n ≃
⊕

ν�dn

Mat(nν)
(

TLν1 ⊗Hν2 ⊗ · · · ⊗ Hνd

)

,

which was proved directly in [8] along with the representation theory of CTLd,n, which is
a particular case of Section 2.1.1.

Remark 5.7. It is straightforward to generalize the above picture, by taking various
idempotents and various q-antisymmetrizers in relations similar to (22) or (24), in order
to relate to centralizers EndA(V

⊗n) for various values of N1, . . . , Nd. For example, one can

take s ∈ {1, . . . , d} and replace the prefactor in (24) by
∑d

a,b,c=1 ζ
−a(s−1)ta1t

b
2t

c
3 to relate to

the centralizers when Ns is of dimension 2 and other Nb’s arbitrary.

Remark 5.8. We conclude from this subsection, as was also advocated in [8], that the most
natural framized versions of the Temperley–Lieb algebra are, first, the algebra FTLd,n and,
second, the algebra CTLd,n. The other variant called Yokonuma–Temperley–Lieb algebra,
see [14], does not seem to be naturally related to any centralizer.

5.4. Framization of the Birman–Murakami–Wenzl algebra. In this section, we work
over the field k = C(q, a) with two indeterminates. The Birman–Murakami–Wenzl algebra,
BMW algebra for short, is defined as the quotient of the braid group algebra kBn by the
additional relations

eisi = a−1ei for i = 1, . . . , n− 1 ,(25)

eis
±1
j ei = a±1ei for |i− j| = 1 ,(26)

where

(27) ei = 1−
si − s−1

i

q − q−1
.

We will denote this algebra by BMWn(q, a) or BMWn if the parameters are clear from
the context. As a consequence of the defining relations, the generators si’s satisfy a cubic
relation:

(28) (si − a−1)(s2i − (q − q−1)si − 1) = 0.
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The quotient by the relations ei = 0 gives back the Hecke algebra. Other implied relations
in BMWn(q, a) are

e2i =

(

a− a−1

q − q−1
+ 1

)

ei ,(29)

eiejei = ei for |i− j| = 1 .(30)

The algebra BMWn can be seen as a deformation of the Brauer algebra and its dimension

is equal to (2n)!
2nn!

= (2n− 1) · (2n− 3) · · ·5 · 3 · 1.
An instance of Schur–Weyl duality [35, Sections 5 and 6] shows that for specific special-

izations of a, this algebra is related to a centralizer algebra for Uq(sp2N ) or Uq(so2N ). Let
V be the vector representation of Uq(sp2N ) or Uq(so2N ).
Theorem 5.9.

(i) Specialize a to qN−1. There is a surjective morphism from the BMW algebra to the
centralizer

(31) φ : BMWn(q, q
N−1) → EndUq(so2N )(V

⊗n) .

It is an isomorphism if and only if n ≤ N .
(ii) Specialize a to −qN+1. There is a surjective morphism from the BMW algebra to

the centralizer

(32) φ : BMWn(q,−qN+1) → EndUq(sp2N )(V
⊗n) .

It is an isomorphism if and only if n ≤ N .

Remark 5.10. A similar statement also exists for Uq(so2N+1) but one needs to add a
square root of q.

In [21], a definition of the framization of the BMW algebra is proposed and seems not
to be related to the context of the present article. We propose a different definition for
the framization of the BMW algebra that we can relate with a centralizer. Recall the
idempotents Ei introduced in Section 3.3.

Definition 5.11. The framization of the BMW algebra, denoted FBMWd,n(q, a), is the
quotient of the framed braid group algebra kFBd,n by the additional relations

eisi = a−1ei for i = 1, . . . , n− 1 ,(33)

eis
±1
i+1eiEi+1 = a±1eiEi+1 for i = 1, . . . , n− 2 ,(34)

where

(35) ei = Ei −
si − s−1

i

q − q−1
.

Note that the definition of ei in the algebra FBMWd,n(q, a) involves the idempotent Ei.
As a consequence, the cubic relation (28) is replaced by

(36) (si − a−1)(s2i − (q − q−1)siEi − 1) = 0.
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The quotient by the relations ei = 0 now gives back the Yokonuma–Hecke algebra. As for
the usual BMW algebra, some additional relations are implied.

Lemma 5.12. The following relations are satisfied in FBMWd,n(q, a):

eiEi = ei,(37)

e2i =

(

a− a−1

q − q−1
+ 1

)

ei ,(38)

eiEj = Ejei for all i, j ,(39)

eiejei = eiEj for |i− j| = 1 .(40)

Proof. Using the definition of ei, it is clear that eiti = ti+1ei. Therefore

tiei = atisiei = asiti+1ei = asieiti = eiti = ti+1ei

and tit
−1
i+1ei = ei. Then Relation (37) follows from the definition of Ei in terms of ti, ti+1.

Relation (38) follows immediately from (37).
As for Relation (39), first note that si commutes with Ej if j 6= i + 1. Moreover, si

commutes with Ei+1Ei. Recall also that all Ei’s commute. Now we claim that these facts
together with (37) imply Relation (39). First, for j 6= i+1, this is immediate. Second, for
j = i+ 1, we have:

Ei+1ei = Ei+1Eiei = eiEi+1Ei = eiEiEi+1 = eiEi+1 .

Finally, Relation (40) immediately follows replacing ej by its definition and using the
previous relations. �

The main purpose of Definition 5.11 is that the framization of the BMW algebra relates
to some centralizers of Uq(so2N⊕· · ·⊕so2N) and Uq(sp2N⊕· · ·⊕sp2N). Note that, unlike the
glN situation with the Yokonuma–Hecke algebra, here we have a single integer N involved.
This is because this dimension fixes the value of the parameter a and therefore can not
vary.
Proposition 5.13.

(i) For each b = 1, . . . , d, we choose the algebra Ab = Uq(so2N) and Vb its vector
representation of dimension 2N . There exists a homomorphism

Φ : FBMWd,n(q, q
N−1) → EndA(V

⊗n) .

(ii) For each b = 1, . . . , d, we choose the algebra Ab = Uq(sp2N ) and Vb its vector
representation of dimension 2N . There exists a homomorphism

Φ : FBMWd,n(q,−qN+1) → EndA(V
⊗n) .

Proof. We only prove the case of A = Uq(so2N )
⊗d, the case of sp2N is similar. We already

have the algebra morphism

Φ : kFBd,n → EndA(V
⊗n)

following from Theorem 4.2. It suffices to show that the relations of the framed BMW
algebra are satisfied. Let v = v1 ⊗ · · · ⊗ vn ∈ V ⊗n with vi being in the summand Vai of V .
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Let us start with (33). If ai 6= ai+1, then Ei acts by 0 and si acts on v by permuting the
components vai and vai+1

. Therefore the element ei acts by 0 on v and the relation (33) is
satisfied. If ai = ai+1, then Ei acts by the identity on v and the relation (33) is satisfied
by Theorem 5.9.

Relation (34) is proven in the same fashion. The term eiEi+1 acts on v by 0 unless
ai = ai+1 = ai+2 where it acts by the identity on v. In that second case, Relation (34) is
once again a consequence of Theorem 5.9. �

From Section 3, since the morphisms φb are surjective, we have in both cases above:

(41) Φ(FBMWd,n) ≃
⊕

ν�dn

Mat(nν)

(

EndA1(V
⊗ν1
1 )⊗ · · · ⊗ EndAd

(V ⊗νd
d )

)

.

where for simplicity we omit the parameters of the algebras. Moreover, if n ≤ N , the
morphisms φb are isomorphisms, and therefore

(42) Φ(FBMWd,n) ≃
⊕

ν�dn

Mat(nν)

(

BMWν1 ⊗ · · · ⊗ BMWνd

)

.

At this point it is natural to ask about the injectivity of Φ. One way to answer this is to
have an upper bound on the dimension of FBMWd,n corresponding to the dimension of
the right hand side of (42).

Actually, we conjecture the following natural isomorphism theorem similar to the ones
obtained for the Yokonuma–Hecke algebra and their Temperley–Lieb versions.

Conjecture 5.14. Over some subring of C(q, a), we have

(43) FBMWd,n ≃
⊕

ν�dn

Mat(nν)

(

BMWν1 ⊗ · · · ⊗ BMWνd

)

.

In particular, we conjecture that the dimension of the algebra FBMWd,n is:

dimFBMWd,n =
∑

ν�dn

(

n

ν

)2
(2ν1)! . . . (2νd)!

2nν1! . . . νd!
.

This was checked for small values of n and d. For d = 2, the sequence of dimensions start
with 1, 2, 10, 84, 1014, 16140 for n = 0, 1, 2, 3, 4, 5. This does not seem to be on [30].

5.5. Affine and cyclotomic Yokonuma–Hecke algebras. For b = 1, . . . , d, we take
once again Ab = Uq(glNb

) and Vb the vector representation of dimension Nb. We also take
a module Mb in the category O for Uq(glNb

). In this case, we have for each b a morphism

φaff
b : Haff

n → EndAb
(Mb ⊗ V ⊗n

b ) ,

where the affine Hecke algebra Haff
n is the quotient of the algebra of the affine braid group

k[Baff
n ] by the Hecke relation s2i = (q − q−1)si + 1 for all i = 1, . . . , n − 1. We refer to

[31] where it is also shown that this morphism is surjective if Mb is a finite-dimensional
irreducible module. Another situation where φaff

b is surjective is when Mb is a parabolic
universal Verma module, see [24].
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Now recall from [9] the definition of the affine Yokonuma–Hecke algebra YHaff
d,n as the

quotient of the algebra k[FB
aff
d,n] of the framed affine braid group by the quadratic relation

s2i = (q− q−1)Eisi+1 for all i = 1, . . . , n−1. The following result is obtained immediately
combining the results from Section 4.1 with the calculation already made in Theorem 5.2.

Theorem 5.15. There exists a homomorphism

Φaff : YHaff
d,n → EndA(M ⊗ V ⊗n) .

It is easily obtained using the results from Section 4.1 that it is surjective if for example
each Mb is a finite-dimensional irreducible module or a universal parabolic Verma module.

Now for simplicity, assume that all Nb’s are equal to a number N and that all Mb’s are
the same irreducible Uq(glN)-module M (0). Then all maps φaff

b factors through the same
cyclotomic quotient (or Ariki–Koike algebra)

φaff
b : Hcyc

m,n → EndAb
(Mb ⊗ V ⊗n

b ) ,

where Hcyc
m,n is the quotient of Haff

n by the relation (s0 − λ1) . . . (s0 − λm) = 0, where

the eigenvalues λ1, . . . , λm depends on the choice of the module M (0). The number m of
eigenvalues is the number of irreducible components in the decomposition of M (0) ⊗ V (0)

and these eigenvalues are computed in [11, Remark after Proposition 5.1].
In this situation, we have obviously that the morphism Φaff from Theorem 5.15 factors

through a quotient of YHaff
d,n called in [9] the cyclotomic Yokonuma–Hecke algebra. This is

defined as the quotient of YHaff
d,n by the same relation (s0 − λ1) . . . (s0 − λm) = 0 and we

denote this algebra by YHcyc
d,m,n.

We now give conditions when the map Φaff from Theorem (5.15) is an isomorphism be-
tween the cyclotomic Yokonuma–Hecke algebra and the endomorphism algebra EndA(M ⊗
V ⊗n). Suppose that M (0) is the finite dimensional representation of Uq(glN) associated to
the partition µ, which is of length at most N . The number of summands of M (0) ⊗ V (0)

is given by the number of partitions of length at most N obtained from µ by adding one
box. Denote by 1 = r1 < r2 < · · · < rm ≤ N (resp. c1 > c2 > · · · > cm) the rows (resp.
columns) of addable boxes of µ.

Lemma 5.16. The map φaff
b : Hcyc

m,n → EndA(0)(M (0) ⊗ (V (0))⊗n) is an isomorphism if and
only if n ≤ ci − ci+1, n ≤ ri+1 − ri and n ≤ N + 1− rm for all 1 ≤ i < m.

Proof. This follows from [31, Theorem 6.20], which provides the dimension of the endo-
morphism algebra. An equivalent argument would be to compare the Bratelli diagram
describing the branching rule of M (0) ⊗ (V (0))⊗n and the poset of m-partitions: they are
equal at the levels n satisfying the condition of the lemma, which implies the equality of
dimensions of Hcyc

m,n and EndA(0)(M (0) ⊗ (V (0))⊗n). �

Using the results obtained in Section 3 we immediately obtain the following proposition.

Proposition 5.17. The map Φaff : YHcyc
d,m,n → EndA(0)(M ⊗ V ⊗n) is an isomorphism if

and only if n ≤ ci − ci+1, n ≤ ri+1 − ri and n ≤ N + 1− rm for all 1 ≤ i < m.
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Proof. By Corollary 4.3 we have an isomorphism

Φaff(YHcyc
d,m,n) ≃

⊕

ν�dn

Mat(nν)

(

EndA(0)(M (0) ⊗ (V (0))⊗ν1)⊗ · · ·⊗EndA(0)(M (0) ⊗ (V (0))⊗νd)
)

.

Using Lemma 5.16, we obtain that EndA(0)(M (0) ⊗ (V (0))⊗νk) ≃ Hcyc
m,n for all 1 ≤ k ≤ d.

Therefore Φaff(YHcyc
d,m,n) is of dimension

∑

ν�dn

(

n

ν

)2

mν1ν1! · · ·m
νdνd! = mnn!

∑

ν�dn

(

n

ν

)

= (dm)nn! = dim(YHcyc
d,m,n),

and therefore Φaff is an isomorphism. The last equality above is proved in [10]. �

As in the previous sections, we recover an isomorphism proved in [32]

YHcyc
d,m,n ≃

⊕

ν�dn

Mat(nν)
(Hcyc

m,ν1
⊗ · · · ⊗Hcyc

m,νd
).

Indeed, given d, n and m, it suffices to find a partition µ and an integer N large enough
such that the conditions of Proposition 5.17 are satisfied. For example, one can choose
N ≥ mn and µ = (((m − 1)n)n, ((m − 2)n)n, . . . , nn), the exponent being repetition of
entries:

µ =

n

n

n

n

n

n

..
.

Similar results can be obtained if M (0) is a universal parabolic Verma module, using the
surjectivity result in [24, Theorem 4.2].

Remark 5.18. We could as well consider specific choices of N and of M (0), where the
quotient of Hcyc

m,n isomorphic to the endomorphism algebra of M (0)⊗(V (0))⊗n has an explicit
description in terms of generators and relations. For example,

(1) if N = 2 and M (0) is the k-th symmetric power of the vector representation of gl2,
then for n ≤ k, the centralizer of M (0) ⊗ (V (0))⊗n is isomorphic to a specialization
of the blob algebra of Martin and Saleur [27], also known as the one-boundary
Temperley–Lieb algebra. See also [34] for generalizations to glN .

(2) ifM (0) is the irreducible representation of glN given by the partition ((N−1)k, (N−
2)k, . . . , k), then for n ≤ k, the centralizer of M (0) ⊗ (V (0))⊗n is isomorphic to a
specialization of the generalized blob algebra of Martin and Woodcock [28].

In these two cases, we leave to the reader to find a presentation by generators and
relations of the quotient of YHcyc

d,m,n (m = 2 in the first case, m = N in the second case)

isomorphic to the centralizer EndA(M ⊗ V ⊗n), thereby defining framizations of the one-
boundary Temperley–Lieb algebra and of the generalized blob algebra.
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6. Tied braid algebra and fixed points subalgebra of k[FBd,n]

In the section, we still suppose that d is invertible in our base field k and that a primitive
d-th root of unity exists in k. We then fix once again a primitive d-th root of unity ζ .

6.1. Another presentation of the group algebra of FBd,n. We give another presen-
tation of the group algebra, over the field k, of the framed braid group. This is similar to
[17, Section 2.2], where another presentation of the Yokonuma–Hecke is given, in terms of
idempotents.

Definition 6.1. An ordered partition of n in d parts is a d-tuple (I1, . . . , Id) of subsets of
{1, . . . , n} such that

(1) if a 6= b then Ia ∩ Ib = ∅,
(2) I1 ∪ · · · ∪ Id = {1, . . . , n}.

We denote by Pd(n) the set of ordered partitions of n in d parts.

Note that a part Ia is allowed to be empty and that the order of the sets (I1, . . . , Id) in
such an ordered partition is relevant. A direct application of the multinomial theorem shows
that |Pd(n)| = dn. Another explanation of this equality is that the set Pd(n) parametrizes
the one-dimensional representations of the group (Z/dZ)n, as developed below. We define
the position of j in an ordered partition I = (I1, . . . , Id), denoted by posj(I), as the unique
integer 1 ≤ a ≤ d such that j ∈ Ia.

Given an element I ∈ Pd(n), we define an element EI in the group algebra of the group
(Z/dZ)n, that we also consider in the group algebra of the framed braid group FBd,n, by

(44) EI =
n
∏

i=1

(

1

d

d
∑

l=1

ζ−l(posi(I)−1)tli

)

.

The elements (EI)I∈Pd(n) form a complete family of mutually orthogonal minimal central
idempotents in k[(Z/dZ)n]. They satisfy:

tiEI = EIti = ζposi(I)−1EI .

Note that we can recover the element ti from the EI ’s:

ti =
d
∑

a=1

ζ (a−1)
∑

I∈Pd(n)
posi(I)=a

EI .

Since {tk11 · · · tknn σ | 1 ≤ ki ≤ d, σ ∈ Bn} is a basis of k[FBd,n] we deduce that

{EIσ | I ∈ Pd(n), σ ∈ Bn}

is a basis of k[FBd,n]. We also have immediately the following alternative presentation of
the algebra k[FBd,n].
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Proposition 6.2. The group algebra k[FBd,n] has a presentation with generators s1, . . . , sn−1

and EI , I ∈ Pd(n) with relations

sisj = sjsi, if |i− j| > 1,

sisjsi = sjsisj, if |i− j| = 1,

EIEJ = δI,J , for I, J ∈ Pn(d),
∑

I∈Pn(d)

EI = 1,

siEI = Esi(I)si, for 1 ≤ i < n and I ∈ Pd(n).

Here, si(I) denotes the element of Pd(n) obtained from I = (I1, . . . , Id) by applying the
transposition (i, i+ 1) to each Ik.

6.2. Action of Sd on k[FBd,n]. The above presentation of the algebra k[FBd,n] makes
apparent an action by automorphisms of the symmetric group Sd. Indeed the symmetric
group Sd acts on the set Pd(n) by

w · (I1, . . . , Id) = (Iw−1(1), . . . , Iw−1(d)) for w ∈ Sd and I ∈ Pd(n).

This action naturally endows k[FBd,n] with an action of Sd by linearly extending

(45) w · (EIσ) = Ew·Iσ , for w ∈ Sd , I ∈ Pd(n) and σ ∈ Bn.

From the presentation in Proposition 6.2, it follows easily that this induces an action of Sd

on k[FBd,n] by automorphisms of algebras (the only argument needed is that the action of
Sd on Pd(n) permuting the subsets commutes with the action of Sn permuting the letters
1, . . . , n).

6.3. Fixed points subalgebra (k[FBd,n])
Sd. The set of unordered partitions of {1, . . . , n}

in at most d parts is then in bijection with the set of orbits of Pd(n) under the action of
the symmetric group Sd:

Pd(n)/Sd ≃ {{I1, . . . , Id} | I1 ∪ · · · ∪ Id = {1, . . . , n} and Ia ∩ Ib = ∅ for 1 ≤ a 6= b ≤ d}.

Once again, we stress that some of the Ia might be empty. We denote by Bd(n) the cardinal
of Pd(n)/Sd. It is easy to see that:

(46) Bd(n) = |Pd(n)/Sd| =
∑

λ⊢n
ℓ(λ)≤d

(

n

λ

)

1

l1! . . . ln!
.

where li in the sum is the number of parts of λ equal to i, namely λ = (1l1, 2l2 , . . . , nln).
For d ≥ n, the number Bd(n) does not depend on d any more and is equal to the Bell
number.

Given I ∈ Pd(n) we denote by [I] its orbit in Pd(n) under the action of Sd. For such
an orbit [I], we then define an element E[I] ∈ k[FBd,n] fixed under the action of Sd:

E[I] =
∑

J∈[I]

EJ .
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From the formula (45) giving the action of Sd on the group algebra of FBd,n, it is imme-
diate that the set

{E[I]σ | [I] ∈ Pd(n)/Sd, σ ∈ Bn}

is a k-basis of (k[FBd,n])
Sd .

Finally, recall that we have introduced for 1 ≤ i, j ≤ d the elements

Ei,j =
1

d

d
∑

a=1

tai t
−a
j and Ei = Ei,i+1 .

Multiplying Ei,j by
∑

I∈Pn(d)
EI (which is 1), we obtain that:

Ei,j =
∑

I∈Pn(d)
posi(I)=posj(I)

EI

Moreover, one also easily checks (as in [17, Lemma 4.1]) that

E[I] =
∏

1≤i,j≤n
posi(I)=posj(I)

Ei,j

∏

1≤i,j≤n
posi(I)6=posj(I)

(1− Ei,j).

A statement similar to [17, Proposition 4.2] follows straightforwardly.

Proposition 6.3. The subalgebra (k[FBd,n])
Sd of k[FBd,n] is the subalgebra generated by

s1, . . . , sn−1 and E1, . . . , En−1.

6.4. The tied braid algebra. The tied braid monoid has been introduced by Aicardi
and Juyumaya in [1]. In this section, we relate the algebra of the tied braid monoid to

the subalgebra of fixed points (k[FBd,n])
Sd . This is similar to [17, Section 4], where a

relationship is obtained between the algebra of braids and ties and the fixed points of the
Yokonuma–Hecke algebra under the action of Sd.

Let us start by defining the tied braid algebra as the algebra of the tied braid monoid.

Definition 6.4. The tied braid algebra TBn on n strands is the k-algebra with generators
s̃1, . . . , s̃n−1 that we require to be invertible and satisfying the usual braid relations, together
with additional generators Ẽ1, . . . , Ẽn−1 satisfying the relations

ẼiẼj = ẼjẼi for all 1 ≤ i, j < n, Ẽ2
i = Ẽi for all 1 ≤ i < n,

s̃iẼi = Ẽis̃i for all 1 ≤ i < n, s̃iẼj = Ẽj s̃i for |i− j| > 1,

Ẽis̃j s̃i = s̃j s̃iẼj for |i− j| = 1, Ẽis̃j s̃
−1
i = s̃j s̃

−1
i Ẽj for |i− j| = 1,

ẼiẼj s̃i = Ẽj s̃iẼj = s̃iẼjẼi for |i− j| = 1.

Arcis and Juyumaya showed [5, Proposition 4.8] that the tied braid monoid is a semidi-
rect product between the partition monoid and the braid group. As a consequence, one
can describe a basis of the tied braid algebra. Since the elements s̃i for 1 ≤ i ≤ n satisfy
the braid relations, we have a well defined element σ̃ ∈ TBn corresponding to an element
σ ∈ Bn.
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For 1 ≤ i < j ≤ n we set

Ẽi,j = s̃j−1 · · · s̃i+1Ẽis̃
−1
i+1 · · · s̃

−1
j−1

and also Ẽi,i = 1 for i ∈ {1, . . . , n}. Note that Ẽi,i+1 = Ẽi. Finally, a set partition of
{1, . . . , n} having at most n non-empty parts can be identified with an unordered partition
[I] ∈ Pn(n)/Sn and we set

f̃[I] =
∏

1≤i<j≤n
posi(I)=posj(I)

Ẽi,j.

This element is an idempotent of TBn and the description by Arcis–Juyumaya [5] of the
tied monoid as a semidirect product immediately shows that

{f̃[I]σ̃ | [I] ∈ Pn(n), σ ∈ Bn}

is a basis of TBn. Therefore, TBn is free over k[Bn] of rank the usual Bell number Bn(n).

Moreover, a triangular change of basis easily shows that the elements f̃[I] can be replaced

by the elements Ẽ[I] where

Ẽ[I] =
∏

1≤i,j≤n
posi(I)=posj(I)

Ẽi,j

∏

1≤i,j≤n
posi(I)6=posj(I)

(1− Ẽi,j) .

Similarly to [17, Corollary 4.5], we have:

Theorem 6.5. The following map defines a surjective morphism of algebras:

TBn → k[FBd,n]
Sd

s̃i 7→ si

Ẽi 7→ Ei

which is an isomorphism if and only if d ≥ n.

Proof. The assertion that the assignment s̃i 7→ si and Ẽi 7→ Ei defines a morphism of
algebras boils down to a simple calculation using the relations in k[FBd,n]. The surjectivity
follows from Proposition 6.3. If d ≥ n, en element [I] ∈ Pd(n)/Sd can be identified with
an unordered partition in Pn(n)/Sn (by removing some empty subsets in [I]). In this
case, one has immediately that a basis of TBn is sent to a basis of k[FBd,n]

Sd , and the
morphism therefore becomes an isomorphism.

If d < n, elements [I] ∈ Pd(n)/Sd are identified with a strictly smaller subset of
Pn(n)/Sn (the set partitions with at most d non-empty parts). In this case, a strictly
smaller subset of the basis of TBn is sent onto the basis of k[FBd,n]

Sd and the morphism
cannot be injective. �
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7. Tied braid algebra and centralizers of tensor products

We now study the action of the tied braid algebra on centralizers, in the spirit of Sec-
tion 2.3. We start from the construction of Section 3, with the additional assumption that
all bialgebras A1, . . . , Ad are equal to one and the same k-bialgebra A(0), and all modules
V1, . . . , Vd are equal to one and the same A(0)-module V (0):

A = A(0)
⊠ · · ·⊠ A(0) and V1 = · · · = Vd = V (0) .

So we have an algebra morphism from the braid group algebra to the centralizer of A(0)

on (V (0))⊗n (for any n ≥ 0):

(47) φ(0) : kBn → EndA(0)

(

(V (0))⊗n
)

.

Note that in this section this single morphism plays the role of the morphisms φb, for all
b = 1, . . . , d. This allowed us to define, in Theorem 3.3, a morphism of algebras

(48) Φ : k[FBd,n] → EndA(V
⊗n) .

This morphism was given explicitly on the generators ti, si of FBd,n. Below we will also
give it on the new generators EI , defined in (44), of k[FBd,n].

7.1. Centralizers of semi-direct product. As explained in Section 2, we have the nat-
ural action of Sd on A (permuting the factors) and the corresponding algebra A ⋊ Sd

acting on V ⊗n. Moreover, we recall that:

EndA⋊Sd
(V ⊗n) = EndA(V

⊗n)Sd .

The action of Sd on the centralizer EndA(V
⊗n) is simply by conjugating with the ac-

tion of Sd on V ⊗n. We recall for convenience of the reader that we have the following
decomposition of V ⊗n:

(49) V ⊗n =
d
⊕

a1,...,an=1

Va1 ⊗ · · · ⊗ Van .

and that an element σ ∈ Sd acts by permuting the summands as

(50) σ : Va1 ⊗ · · · ⊗ Van → Vσ(a1) ⊗ · · · ⊗ Vσ(an) .

Note that this is different from the action of Sn by permuting the factors.

7.2. Action of the tied braid algebra. The image of the element EI under the mor-
phism Φ in (48) is easily seen to be the projector onto one summand of the decomposition
(49) of V ⊗n:

(51) Φ(EI) : V ⊗n → Vpos1(I) ⊗ · · · ⊗ Vposn(I) .

Indeed, recall that EI is the idempotent associated to the irreducible representation of
(Z/dZ)n corresponding to ti 7→ ζposi(I)−1. In view of the action of Φ(ti) in Theorem 3.3,
the above description of Φ(EI) follows immediately.
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We are ready to state the general result relating the tied braid algebra with centralizers
of tensor products. Note that the images by Φ of the elements si and Ei of the framed
braid group algebra were described explicitly in Section 3.

Theorem 7.1. For any d ≥ 1, we have a morphism of algebras

(52) Ψ :

TBn → EndA⋊Sd
(V ⊗n)

s̃i 7→ Φ(si) (i = 1, . . . , n− 1) ,

Ẽi 7→ Φ(Ei) (i = 1, . . . , n− 1) .

This morphism is surjective if the morphism Φ in (48) is surjective.

Proof. We start by checking that the morphism Φ in (48) isSd-equivariant and thus induces
an algebra morphism

(53) k[FBd,n]
Sd → EndA(V

⊗n)Sd .

The equivariance of the morphism Φ on the generators si amounts to the fact that the action
of Sd on V ⊗n commutes with the image Φ(si). This follows easily from the description
of Φ(si) = σi in Section 3. Indeed either Φ(si) sends a summand . . . Vai ⊗ Vai+1

. . . to
. . . Vai+1

⊗ Vai . . . , in which case it commutes with the action (50), or it acts inside a given
summand . . . Vai ⊗ Vai+1

. . . (if ai = ai+1) in which case its action does not depend on the
value of ai, since all algebras Ab are the same, and it also commutes with the action (50).

For the equivariance of the morphism Φ on the generators EI , we have that Φ(σ ·
EI) = Φ(Eσ·I) acts as the projector on the summand Vpos1(σ·I) ⊗ · · · ⊗ Vposn(σ·I). Since
posj(σ · I) = σ(posj(I)), it is equal to the conjugate by the action of σ in (50) of the
projector on Vpos1(I) ⊗ · · · ⊗ Vposn(I). This concludes the proof of the equivariance.

Composing the morphism in (53) with the one obtained in Theorem 6.5 sending TBn to
k[FBd,n]

Sd, we get the morphism Ψ

Ψ : TBn → EndA(V
⊗n)Sd = EndA⋊Sd

(V ⊗n) ,

the last equality being in Lemma 2.5. The statement about the surjectivity of the morphism
follows from the general fact in Lemma 2.5. �

7.3. Examples of algebras of braid and ties. In this section, we take an indeterminate
q and the field k = C(q).

7.3.1. The Hecke algebra of braids and ties. We take A(0) = Uq(glN) and V (0) the vector

representation of Uq(glN) of dimension N . Then the algebra A is isomorphic to Uq(gl
⊕d
N )

and the representation V is the vector representation of dimension dN .
The Hecke algebra of braids and ties BTH

n is the quotient of the tied braid algebra TBn

by the additional quadratic relation of the Yokonuma–Hecke algebra

s̃2i = (q − q−1)s̃iẼi + 1.

This algebra was defined in [2] but we have slightly modified the name.
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Theorem 7.2. We have a surjective morphism

Ψ : BTH
n → EndUq(gl

⊕d
N

)⋊Sd
(V ⊗n) .

This is an isomorphism if and only if n ≤ d and n ≤ N .

Proof. We already have a surjective morphism TBn → EndUq(gl⊕d
n )⋊Sd

(V ⊗n) thanks to The-
orem 7.1. It then suffices to recall that the quadratic relation is satisfied in the centralizer
as shown in Theorem 5.2.

Then we have to show that Ψ is injective if and only if n ≤ d and n ≤ N . One can
forget about the Uq(gl

⊕d
N ) ⋊Sd-module structure and consider only the resulting map to

Endk(V
⊗n). Then the injectivity follows from the results of [37]. �

Here we take d = n and we use the above theorem for N ≥ n. Applying the general
results from Section 2.3, we deduce the following isomorphism

(54) BTH
n
∼=
⊕

λ⊢n

Mat(nλ)/l1!···ln!

(

CSl1
×···×Sln

(Hλ1 ⊗ · · · ⊗Hλn
)
)

,

where we recall that a partition λ in the sum is written as (1l1 , 2l2, . . . , nln), that is, li is
the number of i occurring in λ. The algebras Hλi

are usual Hecke algebras. We recover,
with a slightly different formulation, an isomorphism theorem proved in [12].

Specifying the setting of Section 2.3.2, we find an indexation of irreducible representa-
tions over C(q) of BTH

n by

(λ, ρ1, . . . , ρn,Λ1, . . . ,Λn) , where λ ⊢ n , ρi ⊢ λi , Λi ⊢ li ,

where we have identified the irreducible representations of the symmetric group and of the
Hecke algebra with partitions. The dimension of this representation is:

(

n

λ

)∏n
i=1 dim ρi dimΛi

l1! . . . ln!
.

We recover the description of the semisimple representation theory of BTH
n , see [17, 36].

Note that the general formula for the total dimension of the direct sum of matrix algebras
simplifies nicely and we find:

dimBTH
n =

∑

λ⊢n

(

n

λ

)2
λ1! . . . λn!

l1! . . . ln!
= n!

∑

λ⊢n

(

n

λ

)

1

l1! . . . ln!
= n!B(n) .

where B(n) is the Bell number. The sequence n!B(n) starting from n = 0 with 1, 1, 4, 30, 360
is the sequence A137341 on [30].

7.3.2. The Temperley–Lieb algebra of braids and ties. We keep the same setting and we
impose moreover that N = 2. In view of Section 5.3, it is natural to define the Temperley–
Lieb algebra of braids and ties BTTL

n as the quotient of the Hecke algebra of braids and
ties BTH

n by the additional relation:

Ẽ1Ẽ2(1− q−1s̃1 − q−1s̃2 + q−2s̃1s̃2 + q−2s̃2s̃1 − q−3s̃1s̃2s̃1) = 0 .
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Theorem 7.3. We have a surjective morphism

Ψ : BTTL
n → EndUq(gl

⊕d
2 )⋊Sd

(V ⊗n) .

This is an isomorphism if and only if n ≤ d.

Proof. We already have a surjective morphism in Theorem 7.2 from the Hecke algebra
of braids and ties BTH

n . Moreover, the fact that the additional relation defining BTTL
n

is satisfied in the centralizer was already proved in Theorem 5.5. As for the preceding
theorem, the injectivity statement follows from the results of [37]. We skip the details. �

Applying the general results from Section 2.3 (and taking d = n), we obtain the following
isomorphism in terms of usual Temperley–Lieb algebras:

(55) BTTL
n

∼=
⊕

λ⊢n

Mat(nλ)/l1!···ln!

(

CSl1
×···×Sln

(TLλ1 ⊗ · · · ⊗ TLλn
)
)

.

Specifying the setting of Section 2.3.2, we find an indexation of irreducible representations
over C(q) of BTTL

n by

(λ, ρ1, . . . , ρn,Λ1, . . . ,Λn) , where λ ⊢ n , ρi ⊢ λi (ℓ(ρi) ≤ 2) , Λi ⊢ li ,

where we have identified the irreducible representation of TLk with partitions of k with no
more than two parts. The dimension of this representation is the same as for the algebra
BTH

n . The total dimension is:

dimBTTL
n =

∑

λ⊢n

(

n

λ

)2
Cλ1 . . . Cλn

l1! . . . ln!
,

where Ck = 1
k+1

(

2k
k

)

is the Catalan number. This sequence starts (from n = 0) with

1, 1, 4, 29, 334, 5512 and does not seem to be on [30]. The algebra BTTL
n is also called

partition Temperley–Lieb algebra, see [37, Section 5] and [20].

7.3.3. The BMW algebra of braids and ties. Here we extend our ground field with another
indeterminate k = C(q, a). We define the BMW algebra of braids and ties BTBMW

n as the
quotient of the tied braids algebra TBn by the relations:

eis̃i = a−1ei for i = 1, . . . , n− 1 ,(56)

eiẼi = ei for i = 1, . . . , n− 1 ,(57)

eis̃
±1
j eiẼj = a±1eiẼj for |i− j| = 1 ,(58)

where ei is defined as ei = Ẽi −
s̃i−s̃−1

i

q−q−1 .

Note that Relations (56)) and (58) were defining relations of the framization of the BMW
algebra FBMWd,n. On the other hand, Relation (57) was a consequence of the defining
relations in FBMWd,n. However, it was proved using the explicit definition of the element
Ei in terms of ti, ti+1. Such an argument is not available here and that is why we put (57)
as a defining relation of BTBMW

n . And indeed one can check for n = 2 that it is not implied
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by the other relations. It is easy to check that all other relations from Lemma 5.12 are
also satisfied in BTBMW

n .
In fact our goal is to have defining relations for BTBMW

n which are enough to prove the
expected isomorphism:

BTBMW
n

∼=
⊕

λ⊢n

Mat(nλ)/l1!···ln!

(

CSl1
×···×Sln

(BMWλ1 ⊗ · · · ⊗ BMWλn
)
)

and in particular, to lead to a resulting dimension of BTBMW
n given by

dimBTBMW
n =

∑

λ⊢n

(

n

λ

)2
(2λ1)! . . . (2λn)!

2nl1! . . . ln!λ1! . . . λn!
.

This sequence of dimensions starts (from n = 0) with 1, 1, 5, 48, 747 and is not on [30]. We
have checked that the defining relations above give the correct dimension for n ≤ 3.

For some specializations of a, we leave to the reader to formulate the obvious analogues
of Proposition 5.13 (adding the Sd-action into the picture, as above).
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A.L.: Laboratoire de Mathématiques Blaise Pascal (UMR 6620), Université Clermont
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