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Strong Stability with respect to weak limit for a

Hyperbolic System arising from Gas Chromatography

C. Bourdarias ∗, M. Gisclon †and S. Junca ‡

Abstract

We investigate a system related to a particular isothermal gas-solid chromatography process,
called “Pressure Swing Adsorption”, with two species and instantaneous exchange kinetics. This
system presents the particularity to have a linearly degenerate eigenvalue: this allows the velocity
of the gaseous mixture to propagate high frequency waves. In case of smooth concentrations with
a general isotherm, we prove L1 stability for concentrations with respect to weak limits of the
inlet boundary velocity. Using the Front Tracking Algorithm (FTA), we prove a similar result for
concentrations with bounded variation (BV) under some convex assumptions on the isotherms. In
both cases we show that high frequency oscillations with large amplitude of the inlet velocity can
propagate without affecting the concentrations.

Key words: systems of conservation laws, boundary conditions, BV estimates, entropy solu-
tions, linearly degenerate fields, convex isotherms, Front Tracking Algorithm, waves interaction,
geometric optics.

MSC Numbers: 35L65, 35L67, 35Q35.

1 Introduction

“Pressure Swing Adsorption (PSA) is a technology used to separate some species from a gas under
pressure according to the molecular characteristics and affinity of the species for an adsorbent
material. Special adsorptive materials (e.g. zeolites) are used as a molecular sieve, preferentially
adsorbing the undesired gases at high pressure. The process then swings to low pressure to desorb
the adsorbent material” (source: Wikipedia).

A typical PSA system involves a cyclic process where a number of connected vessels containing
adsorbent material undergo successive pressurization and depressurization steps in order to produce
a continuous stream of purified product gas. We focus here on a step of the cyclic process, restricted
to isothermal behavior.
As in general fixed bed chromatography, each of the d species (d ≥ 2) simultaneously exists under
two phases, a gaseous and movable one with velocity u(t, x) and concentration ci(t, x) or a solid
(adsorbed) other with concentration qi(t, x), 1 ≤ i ≤ d. We assume that mass exchanges between
the mobile and the stationary phases are infinitely fast, thus the two phases are constantly at
composition equilibrium: the concentrations in the solid phase are given by some relations qi =
q∗i (c1, ..., cd) where the functions q∗i are the so-called equilibrium isotherms. A theoretical study of
a model with finite exchange kinetics was presented in [5] and a numerical approach was developed
in [6].
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†Université de Savoie, LAMA, UMR CNRS 5127, 73376 Le Bourget-du-Lac. gisclon@univ-savoie.fr
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In gas chromatography, velocity variations accompany changes in gas composition, especially in
the case of high concentration solute: it is known as the sorption effect. In the present model, the
sorption effect is taken into account through a constraint on the pressure (or on the density in this
isothermal case). See [31] and [35] for a precise description of the process and [10] for a survey on
various related models.

The system for two species (d = 2) with three unknowns (u, c1, c2) is:

∂t(c1 + q∗1(c1, c2)) + ∂x(u c1) = 0, (1)
∂t(c2 + q∗2(c1, c2)) + ∂x(u c2) = 0, (2)

c1 + c2 = ρ(t), (3)

with suitable initial and boundary data. The function ρ represents the given total density of the
mixture. The experimental device is realized so that it is a given function depending only upon
time and in the sequel we assume that ρ ≡ 1 (which is not really restrictive from a theoretical
point of view). First existence results of large solutions satisfying some entropy criterium in the
case of two chemical species were obtained in [8, 9]. In the previous system, it appears that we can
expect strong singularities with respect to time for the velocity u. For instance, let c1(t, x) ≡ c1 be
a constant, c2(t, x) ≡ 1− c1, u(t, x) ≡ ub(t) where ub is any L∞ function, then (c1, c2, u) is a weak
solution of (1),(2),(3). So we can build solutions with a strong oscillating velocity for this system.
Furthermore high oscillations of the incoming velocity ub slightly perturb the concentration as we
will see. Notice that we seek positive solutions (c1, c2), thus, in view of (3) with ρ ≡ 1, c1, c2 must
satisfy

0 ≤ c1, c2 ≤ 1.

We use the following notations, introduced in [9]: we set c = c1 ∈ [0, 1] and

qi(c) = q∗i (c, 1− c), i = 1, 2,
h(c) = q1(c) + q2(c),
I(c) = c+ q1(c).

Adding (1) and (2) we get, thanks to (3):

∂t(q1(c) + q2(c)) + ∂xu = 0,

thus our purpose is to study the following system:
{

∂tI(c) + ∂x(u c) = 0,

∂th(c) + ∂xu = 0,
(4)

supplemented by initial and boundary data:




c(0, x) = c0(x) ∈ [0, 1], x > 0,

c(t, 0) = cb(t) ∈ [0, 1], t > 0,

u(t, 0) = ub(t) > 0, t > 0.

(5)

Notice that we assume in (5) an incoming flux at the boundary, i.e. ∀t > 0, ub(t) > 0. In the case
where the first species is inert, that is q1 = 0, the I function reduces to identity.

System (4) has a null eigenvalue as the system exposed in [4], but, instead [4], we cannot
reduce this system to a single equation for general solutions with shocks. In [3] is studied another
interesting 2x2 system with a linearly degenerate eigenvalue which modelises some traffic flow. As
in [17, 18, 16, 15, 30], the zero eigenvalue makes possible the existence of stratified solutions or the
propagation of large-amplitude high frequency waves. Usually, for genuinely nonlinear conservation
laws, only high oscillating solutions with small amplitude can propagate: see for instance [22, 14].

In this paper we prove, for large data, that the velocity is a stratified solution in the following
sense: u(t, x) = ub(t) v(t, x) where v is as regular as the concentration c and more than the boundary
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data ub. This decomposition for the velocity allows high oscillations with large amplitude for
velocity to propagate, without affecting the concentration. For this quasilinear system we have
propagation of high oscillations with large amplitude for velocity as in a semilinear system, see for
instance [24, 25, 27], and we have strong profile for u with double scale as in [26].

This also permits to pass to the weak limit for u at the boundary and to the strong limit in the
interior for the concentration. For the smooth case, we have no restriction on the isotherms, but
for the realistic case with shock-waves, we restrict ourselves to the classical treatment of hyperbolic
systems: eigenvalues are linearly degenerate or genuinely nonlinear. Furthermore we obtain better
interaction estimates when the shock and rarefaction curves are monotonous. It is the case for
instance for an inert gas and an active gas with the Langmuir isotherm. We conjecture that our
result is still valid for general isotherms with piecewise genuinely nonlinear eigenvalue.

The paper is organized as follows. In Section 2 we recall some basics results from [9] concerning
hyperbolicity, entropies, weak entropy solutions of System (4).

In Section 3, we study the case where concentration is smooth and the velocity is only L∞.
In the remainder of the paper we study the case with only BV concentrations. In short section

4 we briefly expose the Front Tracking Algorithm (FTA) for System (4).
Section 5 is devoted to the study of both shock and rarefaction curves. We state the assumptions

that we need to perform estimates with the Front Tracking Algorithm. These assumptions restrict
us to convex (or concave) isotherms and we give some examples from chemistry. We obtain the
fundamental interaction estimates in Section 6 and BV estimates for v in Section 7. Finally, we
obtain strong stability for concentration with respect to weak limit on the boundary velocity in
Section 8.

2 Hyperbolicity and entropies

In order the paper to be self contain, we recall without any proof some results exposed in [9].
It is well known that it is possible to analyze the system of Chromatography, and thus System

(4), in terms of hyperbolic system of P.D.E. provided we exchange the time and space variables and

u > 0: see [32] and also [34] for instance. In this framework the vector state will be U =
(
u
m

)

where m = u c is the flow rate of the first species. In this vector state, u must be understood as
u ρ, that is the total flow rate.

In the sequel, we will make use of the function f = q1 c2 − q2 c1 introduced by Douglas and al.
in [28], written here under the form

f(c) = q1 c2 − q2 c1 = q1(c)− c h(c). (6)

Any equilibrium isotherm related to a given species is always increasing with respect to the corre-

sponding concentration (see [28]) i.e.
∂q∗i
∂ci

≥ 0. Since c = c1 and c2 = 1− c, it follows:

q′1 ≥ 0 ≥ q′2. (7)

Let us define the function H by

H(c) = 1 + (1− c) q′1(c)− c q′2(c) = 1 + q′1(c)− ch′(c). (8)

From (7), H satisfies H ≥ 1 and we have the following relation between f , H and h:

f ′′(c) = H ′(c)− h′(c).
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2.1 Hyperbolicity

Concerning hyperbolicity, we refer to [20, 36, 37]. System (4) takes the form

∂xU + ∂tΦ(U) = 0 with U =
(
u
m

)
and Φ(U) =




h(m/u)

I(m/u)


 . (9)

The eigenvalues are:

0 and λ =
H(c)
u

,

thus in view of (8) the system is strictly hyperbolic. The zero eigenvalue is of course linearly

degenerate, moreover the right eigenvector r =
(

h′(c)
1 + q′1(c)

)
associated to λ satisfies dλ · r =

H(c)
u2

f ′′(c), thus λ is genuinely nonlinear in each domain where f ′′ 6= 0.

Proposition 2.1 ([9] Riemann invariants)
System (4) admits the two Riemann invariants:

c and w = ln(u) + g(c) = L+ g(c), where g′(c) =
−h′(c)
H(c)

and L = ln(u).

Furthermore this system can be rewritten for smooth solutions as:

∂xc+
H(c)
u

∂tc = 0, ∂x(ln(u) + g(c)) = ∂xw = 0. (10)

2.2 Entropies

Dealing with entropies, it is more convenient, as shown in [9], to work with the functions

G(c) = exp(g(c)), W = exp(w) = uG(c).

Notice that G is a positive solution of HG′ + h′G = 0.
Denote E(c, u) any smooth entropy and Q = Q(c, u) any associated entropy flux. Then, for smooth
solutions, ∂xE + ∂tQ = 0. Moreover:

Proposition 2.2 ([9] Representation of all smooth entropies)
The smooth entropy functions for System (4) are given by

E(c, u) = φ(w) + uψ(c)

where φ and ψ are any smooth real functions. The corresponding entropy fluxes satisfy

Q′(c) = h′(c)ψ(c) +H(c)ψ′(c).

Moreover, in [7], the authors looked for convex entropies for System (9) (i.e. System (4) written
in the (u,m) variables) in order to get a kinetic formulation. The next proposition gives us a family
of degenerate convex entropies independently of convexity of f or of the isotherms.

Proposition 2.3 ([9] Existence of degenerate convex entropies)
If ψ is convex or degenerate convex, i.e. ψ′′ ≥ 0, then E = uψ(c) is a degenerate convex entropy.

There are some few cases (water vapor or ammonia for instance) where the isotherm is convex.
There is also the important case with an inert carrier gas and an active gas with a concave or
convex isotherm (see [8, 9, 10]). In these cases, the next proposition ensures the existence of λ-
Riemann invariants which are also strictly convex entropies. In such cases, w is monotonous with
respect to x for any entropy solution.
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Proposition 2.4 ([9] When λ-Riemann invariant is a convex entropy)
There are strictly convex entropy of the form E = φ(w) if and only if G′′ does not vanish.
More precisely, for α > 0, Eα(c, u) = uαGα(c) is an increasing entropy with respect to the Riemann
invariant W . It is strictly convex for α > 1 if G′′ > 0 and for α < 1 if G′′ < 0.

Unfortunately, when G has an inflexion point such system does not admit any strictly convex
entropy. When one gas is inert, it is always the case if the sign of the second derivative of the
isotherm changes. See for instance [9] for the BET isotherm.

Remark 2.1 In general, System (4) is not in the Temple class. It is the case if and only if f ′′

does not vanish and ∂xW = 0 for all entropy solution ([11]). For instance, System (4) with two
linear isotherms is in the Temple class.

Proposition 2.5 ([9] Non Existence of strictly convex entropy)
If sign of G′′ changes then System (4) does not admit strictly convex smooth entropy.

2.3 Definition of weak entropy solution

We have seen that there are two families of entropies: uψ(c) and φ(uG(c)).
The first family is degenerate convex (in variables (u, uc)) provided ψ′′ ≥ 0. So, we seek after weak
entropy solutions which satisfy ∂x (uψ(c)) + ∂tQ(c) ≤ 0 in the distribution sense.
The second family is not always convex. There are only two interesting cases, namely ±G′′(c) > 0
for all c ∈ [0, 1]. When G′′ > 0 and α > 1, we expect to have ∂x(uG(c))α ≤ 0 from Proposition 2.4.
But, the mapping W 7→Wα is increasing on R+. So, the last inequality reduces to ∂x(uG(c)) ≤ 0.
In the same way, if G′′ < 0, we get ∂x(uG(c)) ≥ 0.
Now, we can state a mathematical definition of weak entropy solutions.

Definition 2.1 Let be T > 0, X > 0, u ∈ L∞((0, T )× (0, X),R+), 0 ≤ c(t, x) ≤ ρ ≡ 1 for almost
all (t, x) ∈ (0, T )× (0, X). Then (c, u) is a weak entropy solution of System (4)-(5) with respect
to the family of entropies uψ(c) if, for all convex (or degenerate convex) ψ:

∂

∂x
(uψ(c)) +

∂

∂t
Q(c) ≤ 0, (11)

in D′([0, T [×[0, X[), where Q′ = Hψ′ + h′ψ, that is, for all φ ∈ D([0, T [×[0, X[):
∫ X

0

∫ T

0

(uψ(c) ∂xφ+Q(c) ∂tφ) dt dx+
∫ T

0

ub(t)ψ(cb(t))φ(t, 0) dt+
∫ X

0

Q(c0(x))φ(0, x) dx ≥ 0.

Remark 2.2 If ±G′′ ≥ 0 then uψ = ±uG(c) is a degenerate convex entropy, with entropy flux
Q ≡ 0, contained in the family of entropies uψ(c). So, if G′′ keeps a constant sign on [0, 1], (c, u)
has to satisfy:

± ∂

∂x
(uG(c)) ≤ 0, if ±G′′ ≥ 0 on [0, 1]. (12)

Notice that the entropies uψ(c) and the entropy uG(c) are linear with respect to the velocity u.

2.4 About the Riemann Problem

The implementation of the Front Tracking Algorithm used extensively from Section 4 requires some
results about the solvability of the following Riemann problem:

{
∂xu+ ∂th(c) = 0,

∂x(uc) + ∂tI(c) = 0,
(13)

c(0, x) = c− ∈ [0, 1], x > 0,
{

c(t, 0) = c+ ∈ [0, 1],
u(t, 0) = u+ > 0, t > 0. (14)

We are classically looking for a selfsimilar solution, i.e.: c(t, x) = C(z), u(t, x) = U(z) with

z =
t

x
> 0. The answer is given by the three following results ([9]).
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Proposition 2.6 Assume for instance that 0 ≤ a < c− < c+ < b ≤ 1 and f ′′ > 0 in ]a, b[. Then
the only smooth self-similar solution of (13)-(14) is such that :





C(z) = c−, 0 < z < z−,
dC

dz
=

H(C)
z f ′′(C)

, z− < z < z+,

C(z) = c+, z+ < z,

(15)

where z+ =
H(c+)
u+

, z− = z+ e−Φ(c+) with Φ(c) =
∫ c

c−

f ′′(ξ)
H(ξ)

dξ. Moreover u− =
H(c−)
z−

and U is

given by: 



U(z) = u−, 0 < z < z−,

U(z) =
H(C(z))

z
, z− < z < z+,

U(z) = u+ z+ < z.

(16)

Proposition 2.7 If (c−, c+) satisfies the following admissibility condition equivalent to the Liu
entropy-condition ([29]):

for all c between c− and c+,
f(c+)− f(c−)

c+ − c−
≤ f(c)− f(c−)

c− c−
,

then the Riemann problem (13)-(14) is solved by a shock wave defined as:

C(z) =
{
c− if 0 < z < s,
c+ if s < z

, U(z) =
{
u− if 0 < z < s,
u+ if s < z,

(17)

where u− and the speed s of the shock are obtained through

[f ]
u− [c]

+
1 + h−

u−
= s =

[f ]
u+ [c]

+
1 + h+

u+
,

where [c] = c+ − c−, [f ] = f+ − f− = f(c+)− f(c−), h+ = h(c+), h− = h(c−).

Proposition 2.8 Two states U− and U+ are connected by a contact discontinuity if and only if
c− = c+ (with of course u− 6= u+), or c− 6= c+ and f is affine between c− and c+.

It appears from these results that we can build a weak entropy solution of the Riemann problem
(13)-(14) in a very simple way (see [9]), similar to the scalar case with flux f , for any data. In
particular, if f ′′ has a constant sign (which is the framework in Section 4), the Riemann problem
is always solved by a simple wave.

3 Case with smooth concentration

System (4) has the strong property that there exist weak entropy solutions with smooth concentra-
tion c on (0, T )× (0, X) but not necessarily smooth velocity u, for some positive constants T and
X. Furthermore, c is the solution of a scalar conservation law.

3.1 Existence of weak entropy solutions with smooth concentration

For this section, we refer to [16], [15]. We have a similar result in [8] but only with smooth velocity.
Here, we obtain by the classical method of characteristics existence and uniqueness of a weak
entropy solution with smooth concentration and only L∞ velocity.
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Theorem 3.1 (Unique weak entropy solution with smooth concentration)
Let T0 > 0, X > 0, c0 ∈W 1,∞([0, X], [0, 1]), cb ∈W 1,∞([0, T0], [0, 1]), lnub ∈ L∞([0, T0],R).

If c0(0) = cb(0) then there exists T ∈]0, T0] such that System (4)-(5) admits a unique weak entropy
solution (c, u) on [0, T ]× [0, X] with

c ∈W 1,∞([0, T ]× [0, X], [0, 1]), lnu ∈ L∞([0, T ],W 1,∞([0, X],R)).

Furthermore, for any ψ ∈ C1([0, 1],R), setting

F ′(c) = (H(c)G(c))−1 and Q′ = H ψ′ + h′ ψ,

(c, u) satisfies:

∂x(uψ(c)) + ∂tQ(c) = 0, ∂x(uG(c)) = 0, (18)

∂tc+ ub(t)G(cb(t)) ∂xF (c) = 0. (19)

Proof: we build a solution using the Riemann invariants and we check that such a solution is
an entropy solution. Next, we prove uniqueness.
Using the Riemann invariant W = uG(c) (∂xW = 0) and the boundary data we define u by:

u(t, x) =
ub(t)G(cb(t))
G(c(t, x))

,

so u is smooth with respect to x. Then, the first equation of (10) can be rewritten as follows:

∂tc+ µ∂xc = 0, with µ = λ−1 =
u

H(c)
=
ub(t)G(cb(t))
H(c)G(c)

= µ(t, c). (20)

We solve (20) supplemented by initial-boundary value data (c0, cb) by the standard characteristics
method. Let us define, for a given (τ, x), X(·, τ, x) as the solution of:

dX(s, τ, x)
ds

= µ(s, c(s,X(s, τ, x))), X(τ, τ, x) = x.

Since
dc

ds
(s,X(s, τ, x)) = 0 from (20), we have

X(s, τ, x) = x− b(s, τ)F ′(c(τ, x)) with b(s, τ) =
∫ τ

s

ub(σ)G(cb(σ)) dσ.

Now, for some T ∈ [0, T0] defined later on, we split Ω = [0, T ]×[0, X] according to the characteristic
line Γ issuing from the corner (0, 0), i.e. we define the sets Ω± = {(t, x) ∈ Ω, ±(x−X(t, 0, 0)) ≥ 0}.
Since ∂xX(t, 0, x) = 1− b(t, 0)F ′′(c0(x)) ∂xc0(x), b(0, 0) = 0 and b(., 0) ∈W 1,∞(Ω+), the mapping
x 7→ X(t, 0, x) is a Lipschitz diffeomorphism for 0 ≤ t ≤ T with T ∈]0, T0] small enough. Then
we define on Ω+, for each t ∈ [0, T ], ξ(t, x) such as X(t, 0, ξ(t, x)) = x. Then we have c(t, x) =
c0(ξ(t, x)) on Ω+. Furthermore ∂tξ = −∂sX/∂xX and thus c is Lipschitz continuous in time and
space on Ω+.
We work in a similar way on Ω− and c ∈ W 1,∞(Ω−). Since c is continuous on Γ from the compa-
tibility conditions c0(0) = cb(0) we have c ∈W 1,∞(Ω).
By construction (c, u) satisfies (10) rewritten as follows:

∂x lnu = −∂xg(c), u ∂xc+H ∂tc = 0.

These equations imply:

∂xu = −u ∂xg(c) = −u g′(c) ∂xc = −u g′(c)
(
−H(c)

u
∂tc

)
= −h′(c) ∂tc = −∂th(c).
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Now we check that (c, u) satisfies (18). Let ψ be a C1 function. Using the identity Q′ = h′ψ+Hψ′

and the previous equations we have:

∂x(uψ(c)) + ∂tQ(c) = ψ ∂xu+ uψ′ ∂xc+Q′ ∂tc = ψ (∂xu+ h′ ∂tc) + ψ′ (u∂xc+H ∂tc)
= ψ × 0 + ψ′ × 0 = 0.

By the way (18) implies (11), so (c, u) is an entropy solution of System (4).
We now prove the uniqueness of such a weak entropy solution.
Precisely, if c ∈ W 1,∞([0, T ] × [0, X], [0, 1]) and lnu ∈ L∞((0, T ),W 1,∞(0, X)) satisfy (11) in
D′([0, T [×[0, X[) with initial-boundary data c0, cb, ub then we show that (c, u) is necessarily the
previous solution built by the method of characteristics.
Choosing the convex functions ψ(c) = ±1 and ψ(c) = ±c we obtain (4). The main ingredient to
conclude the proof is the fact that u admits a classical partial derivative only with respect to x.
Thus classical computations with smooth functions to obtain (10) as in the proof of Proposition 2.1
are still valid. Now (c, u) satisfies (10), which implies from the beginning of the proof of Theorem
3.1 that (c, u) is our previous solution. ¤

Remark 3.1

1. Notice that T,X are only depending on ‖ ln(ub)‖L∞ , ‖cb‖W 1,∞ , ‖c0‖W 1,∞ . Thus, if (uε
b)0<ε≤1

is a sequence of boundary velocity data such that (lnuε
b) is uniformly bounded in L∞(0, T0),

and if (cε0), (c
ε
b) are some initial and boundary concentration data uniformly bounded in W 1,∞

with the compatibility condition at the corner c0(0) = cb(0), then there exist T > 0 and X > 0
and Lipschitz bounds for cε, lnuε on [0, T ]× [0, X] independent of ε.

2. As in [8], we have a global solution with smooth concentration if λ is genuinely nonlinear (for
instance an inert case and a Langmuir isotherm), with monotonicity assumptions on c0 and
cb.

3.2 Strong stability with respect to velocity

In case of a Lipschitz continuous concentration, we now give a strong stability result for the con-
centration with respect to a weak limit of the boundary velocity.

Theorem 3.2 (Strong stability for smooth concentration)
Let be T0 > 0, X > 0, c0 ∈ W 1,∞([0, X], [0, 1]), cb ∈ W 1,∞([0, T0], [0, 1]) such that c0(0) = cb(0),

and (lnuε
b)0<ε≤1 a bounded sequence in L∞(0, T0). Then, there exists T ∈]0, T0[ such that System

(4) admits a unique weak entropy solution (cε, uε) with cε ∈ W 1,∞([0, T ] × [0, X], [0, 1]), lnuε ∈
L∞([0, T ],W 1,∞([0, X],R)) and with initial and boundary values:





cε(0, x) = c0(x) ∈ [0, 1], x > 0,

cε(t, 0) = cb(t) ∈ [0, 1], t > 0,

uε(t, 0) = uε
b (t) > 0, t > 0.

(21)

If (uε
b) converges towards ub in L∞(0, T0) weak−∗ when ε goes to 0, then (cε) converges in

L∞([0, T ]× [0, X]) towards the unique smooth solution of

∂tc+ ub(t)G(cb(t)) ∂xF (c) = 0, c(t, 0) = cb(t), c(0, x) = c0(x). (22)

Furthermore we have:

lim
ε→0

∥∥∥∥uε(t, x)− uε
b(t)

G(cb(t))
G(c(t, x))

∥∥∥∥
L∞([0,T ]×[0,X])

= 0.

Proof: thanks to Theorem 3.1, there exists T > 0 such that System (4), with initial and boundary
values (21) admits the unique weak entropy solution (cε, uε) with smooth concentration in the
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previous sense on [0, T ]× [0, X].
Since (cε) is bounded in W 1,∞, up to a subsequence, (cε) converges strongly in L∞ to c. Using (19)
in conservative form, we can pass to the limit and get (22). Problem (22) has a unique solution by
the method of characteristics. Thus, the whole sequence (cε) converges. We recover the last limit
for uε thanks to ∂x(uG(c)) = 0. ¤

Notice that if ub is a constant function for instance uε
b(t) = ub(t/ε) with ub periodic we can

compute the concentration with only using a constant velocity (the mean velocity) as in liquid
chromatography.

An example from geometric optics: if uε
b(t) = ub

(
t,
t

ε

)
where ub(t, θ) ∈ L∞((0, T ), C0(R/Z)),

inf ub > 0, we have a similar result with Equation (22) for c where ub(t) =
∫ 1

0

ub(t, θ) dθ and a

profile U :

lim
ε→0

∥∥∥∥uε(t, x)− U

(
t, x,

t

ε

)∥∥∥∥
L∞

= 0 where U(t, x, θ) = ub(t, θ)
G(cb(t))
G(c(t, x))

.

4 Front Tracking Algorithm

In Section 3, where c is smooth and lnub is in L∞(0, T ), we have seen that there exists a smooth
function v such that

u(t, x) = ub(t) v(t, x). (23)

Furthermore c satisfies the scalar conservation law (19). For only BV data we cannot expect to
obtain such a scalar conservation law for the concentration, except in the case of linear isotherms. In
that case, the scalar conservation law (19) and System (4) have the same solution for the Riemann
Problem, but linear isotherms are of a poor interest from Chemical Engineering point of view. The
first interesting case is the case with an inert gas and a Langmuir isotherm, first mathematically
studied in [8].

Nevertheless we guess that (23) is still true with v ∈ BV . From [8, 9] we have yet obtained BV
regularity with respect to x with a Godunov scheme. To get BV regularity with respect to t we
will use a more precise algorithm to study wave interactions, namely a Front Tracking Algorithm
(FTA).

The Front Tracking method for scalar conservation laws was introduced by Dafermos, [19]. The
method was extended to genuinely nonlinear systems of two conservation laws by DiPerna [21]. For
our purpose, we do not use the generalisation to genuinely nonlinear systems of any size by Bressan
[12] or Risebro [33].

The FTA is much more complicated when an eigenvalue is piecewise genuinely nonlinear, see
[2, 1, 23]. Then, we restrict ourselves to the case where λ is genuinely nonlinear, which allows us
to treat some relevant cases from the point of view of chemical engineering like an inert gas with a
Langmuir isotherm, two active gas with a binary Langmuir isotherm for instance. For this purpose
we work in the framework exposed in the recent and yet classical Bressan’s Book [13]. In this
framework we assume f ′′ ≥ 0, then a Riemann problem presents only two waves:

1. a contact discontinuity with speed 0,
2. a rarefaction wave with speed λ > 0

or a shock wave with speed between λ− and λ+, characteristic speeds associated to the left
and right states, respectively.

Let be δ > 0. A δ-approximate Front Tracking solution of System (4) is a pair of piecewise constant
function cδ(t, x), uδ(t, x), whose jumps are located along finitely many straight lines t = tα(x) in
the t− x plane and approximately satisfy the entropy conditions. For each x > 0 and ψ′′ ≥ 0, one
should thus have an estimate of the form:

∑
α

(
[uδ ψ(cδ)]− dtα

dx
[Q(cδ)]

)
(tα, x) ≤ O(δ), (24)
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where [u] = u+−u− is the jump across a jump line, and the sum is taken over all jump for x fixed.
Inequality (24) implies that (cδ, uδ) is “almost an entropy solution”:

∂xu
δψ(cδ) + ∂tψ(cδ) ≤ O(δ). (25)

That’s enough to get an entropy solution “issued from FTA” when δ goes to zero.
Since we want to only use piecewise constant functions, it is convenient to approximate a

continuous rarefaction wave by a piecewise constant function. For this purpose, the rarefaction
curve is dicretized with a step of order δ and then (24) still holds.

We now briefly describe an algorithm which generates these Front Tracking approximations.
The construction starts on the initial line x = 0 and the boundary t = 0 by taking a piecewise
constant approximation of initial value cb(t), ub(t) and boundary values c0(x). Let t1 < · · · < tN ,
x̃1 < · · · < x̃M be the points where initial-boundary values are discontinuous. For each α =
1, · · · , N , the Riemann problem generated by the jump of initial constant values at (tα, x = 0)
is approximately solved on a forward neighborhood of (tα, 0) in the t − x plane by a function
invariant on line t− tα = ax, for all positive a, and piecewise constant. Notice that the boundary
is characteristic, then we have only one wave associated with the speed λ in the corner (0, 0).

The approximate solution (cδ, uδ) can then be prolonged until x1 > 0 is reached, when the
first set of interactions between two wave-fronts takes place. If x1 > x̃1 we first have to solve the
characteristic boundary Riemann problem at (t = 0, x = x̃1). Since (cδ, uδ)(., x1) is still a piecewise
constant function, the corresponding Riemann problems can again be approximately solved within
the class of piecewise constant functions. The solution is then continued up to a value x2 where
the next characteristic boundary Riemann problem occurs or the second set of wave interactions
takes place, and so on.

According to this algorithm, contact discontinuity fronts travel with speed zero, shock fronts
travel exactly with Rankine-Hugoniot speed, while rarefaction fronts travel with an approximate
characteristic speed. However, one exception to this rule must be allowed if three or more fronts
meet at the same point. To avoid this situation, we must change the positive speed λ of one of the
incoming shock fronts or rarefaction fronts. Of course this change of speed can be chosen arbitrarily
small and we have again Inequality (24).

Notice that, for 2×2 system the number of wave-fronts cannot approach infinity in finite x > 0.
DiPerna shows in [21] that the process of regenerating the solution by solving local Riemann
problems yields an approximating solution within the class of piecewise constant functions that is
globally defined and that contains only a finite number of discontinuities in any compact subset of
the t − x quarter plane t ≥ 0, x ≥ 0. We then do not consider non-physical fronts as in [13] for
general n× n systems with n ≥ 3.

5 About the shock and rarefaction curves

In this section we state our assumptions to use the FTA with large data. Precisely we work in
classical hyperbolic case, namely, eigenvalues are linearly degenerate or genuinely nonlinear. We
assume:

λ =
H(c)
u

is genuinely nonlinear i.e f is convex on [0, 1]. (26)

Actually λ is genuinely nonlinear for f ′′ 6= 0, but since f = c1q2 − c2q1 (see (6)) we can assume
that f ′′ > 0 exchanging the gas labels 1 and 2 if necessary.
Our analysis of wave interactions in Section 6 is more precise with monotonous λ-wave curves, then
we also assume:

λ-wave curves are monotonous. (27)

To state precisely this last assumption let us introduce some notations. Let (c−, L−) be a left
constant state connected to (c+, L+) a right constant state by a λ-wave curve. In the genuinely
linear case, with Assumption (26), λ-wave curve is a rarefaction curve with c− < c+ or a shock
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curve with c− > c+. The sign of [c] = c+ − c− comes from the general study of the Riemann
problem in [9]. From the Riemann invariant w = lnu+ g(c) and the Rankine-Hugoniot conditions
a λ-wave curve can be written as follows (see [9]):

[L] = L+ − L− = lnu+ − lnu− = T (c+, c−) =
{ −[g] = −(g(c+)− g(c−)) if c− < c+
S(c+, c−) else (28)

We give an explicit formula for S in Lemma 5.1.
Notice that we use only one Riemann invariant, namely c, to write λ-wave curves. Indeed L = lnu
and c have quite different behavior as seen in [8, 9] and this paper. Furthermore we can give some
simple criterion to have monotonous λ-wave curves. For instance, as g′ = −h′/H, the rarefaction
curve is monotonous if and only if h is monotonous. A chemical example, investigated in [8], is the

case of an inert gas (q1 = 0) and an active gas with a Langmuir isotherm: q∗2(c2) = Q2
K2c2

1 +K2c2
.

For this case we have

f ′′ > 0, h′ < 0,
∂S

∂c−
≥ 0 ≥ ∂S

∂c+
. (29)

The first condition of (29) gives us (26) and the last one gives us (27).
Notice that if we exchange labels 1 and 2 for gas, Inequalities (29) simply become:

f ′′ < 0 < h′,
∂S

∂c−
≤ 0 ≤ ∂S

∂c+
.

Let us give some isotherm examples such that (29) is satisfied.

Proposition 5.1 For the following examples, Assumptions (26), (27) are valid:

1. one gas is inert: q1 = 0, and the other has a concave isotherm: q
′′
2 ≤ 0,

2. two active gas with linear isotherms: q∗i (c1, c2) = Kici, i = 1, 2,

3. two active gas with binary Langmuir isotherms: q∗i (c1, c2) =
QiKici

1 +K1c1 +K2c2
, i = 1, 2, where

positive constants Q1, Q2,K1 ≥ K2 satisfy: Q1K1 < Q2K2.

Furthermore, for two active gas with binary Langmuir isotherms, λ is genuinely nonlinear, i.e. (26)
is satisfied, if Q1K1 6= Q2K2.

The first case is the most classical case when only one gas is active and his isotherm has no inflexion
point, for instance the Langmuir isotherm.
The second case is less interesting in chemistry and only valid when concentrations are near con-
stant states.
For the third case, notice that K1 ≥ K2 is not really an assumption (exchange the labels if neces-
sary).

Proof of Proposition 5.1: we use some technical Lemmas postponed to Subsection 5.1. The
point is to satisfy (29).

1. Case with an inert gas: we have h = q2, f(c) = −c h(c), f ′ = −h − ch′, f ′′ = −2h′ − c h′′,
which implies h′ = q′2 ≤ 0, h′′ = q2” ≤ 0 and then f ′′ ≥ 0. We conclude thanks to Lemmas 5.3 and
5.4.

2. Case with linear isotherms: linear isotherms are q1(c) = K1c, q2(c) = K2(1 − c) with K1 ≥
0, K2 ≥ 0 then q′1(c) = K1 ≥ 0, q′2(c) = −K2 ≤ 0, h′(c) = q′1(c) + q′2(c) = K1 − K2, f ′′(c) =
2(K2 −K1). We assume K1 ≤ K2, then we have h′ ≤ 0 ≤ f ′′. Since qi” = 0, i = 1, 2, we conclude
thanks to Lemmas 5.3 and 5.5.

3. Case with a binary Langmuir isotherm: we have q1(c) =
Q1K1c

D
, q2(c) =

Q2K2(1− c)
D

where D = 1 +K1c+K2(1− c). Then q′1(c) =
Q1K1(1 +K2)

D2
≥ 0, q′2(c) = −Q2K2(1 +K1)

D2
≤ 0,
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h′(c) = q′1(c) + q′2(c) ≤ 0 if and only if Q1K1(1 +K2) ≤ Q2K2(1 +K1),

q′′1 (c) =
2Q1K1(1 +K2)(K2 −K1)

D3
≤ 0 if and only if K1 ≥ K2,

q′′2 (c) =
2Q2K2(1 +K1)(K1 −K2)

D3
≥ 0 if and only if K1 ≥ K2,

f ′′(c) =
2(Q2K2 −Q1K1)(1 +K1)(1 +K2)

D3
≥ 0 if and only if Q2K2 ≥ Q1K1.

Since Q1K1 ≤ Q2K2, we get f” ≥ 0 and
Q1

Q2
≤ K2

K1
. 1 ≤ 1 +K1

1 +K2
because K1 ≥ K2, so we have

Q1

Q2
≤ K2

K1

1 +K1

1 +K2
, i.e. h′ ≤ 0. Now we conclude with Lemmas 5.3 and 5.5. ¤

5.1 Technical lemmas about shock curves

We express the shock curves as follows.

Lemma 5.1 We have exp{S(c+, c−)} =
u−
u+

=
α+ h−
α+ h+

, where h± = h(c±) and α =
[f ]
[c]

+ 1.

Proof: first, from the Rankine Hugoniot conditions:
[uc]

[c+ q1(c)]
=

[u]
[h]

, i.e. [h] =
[u][c+ q1(c)]

[uc]
, we

obtain

u+

u−
=

[c+ q1(c)]− c−[h]
[c+ q1(c)]− c+[h]

(30)

where [c] = c+−c− and [h] = h(c+)−h(c−) = h+−h−, and we get (30) thanks to the following
computations:

[c+ q1(c)]− c−[h] = [c+ q1(c)]− c−
[u][c+ q1(c)]

[uc]
=

[c+ q1(c)]
[uc]

([uc]− c−[u])

=
[c]u+

[uc]
[c+ q1(c)],

[c+ q1(c)]− c+[h] = [c+ q1(c)]− c+
[u][c+ q1(c)]

[uc]
=

[c+ q1(c)]
[uc]

([uc]− c+[u])

=
[c]u−
[uc]

[c+ q1(c)].

Rewriting (30) we get

u−
u+

=
[c+ q1(c)]− c+[h]
[c+ q1(c)]− c−[h]

=
[q1] + [c]− c+[h]
[q1] + [c]− c−[h]

=
[q1] + [c] + c+(h− − h+)
[q1] + [c] + c−(h− − h+)

=
[q1]− c+h+ + [c] + h−c+
[q1] + c−h− + [c]− h+c−

=
[f ] + [c] + h−[c]
[f ] + [c] + h+[c]

=
α+ h−
α+ h+

,

which concludes the proof. ¤

We need to know the sign of α+ h± before studying the sign of
∂S

∂c±
.

Lemma 5.2 If h′ ≤ 0 and c+ < c < c− then α+ h(c+) ≥ α+ h(c) ≥ α+ h(c−) > 0.
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Proof: since h′ ≤ 0 and c+ < c− we have h(c+) ≥ h(c−) and it is enough to show that
[f ]
[c]

+

1 + h(c−) > 0. This inequality is equivalent to [f ] + [c] + [c]h(c−) < 0 because [c] = c+ − c− < 0.
Since f(c) = q1(c) − ch(c) the inequality is equivalent to [q1] + [c] < c+[h]. We know that q′1 ≥ 0,
c+ < c−, h′ ≤ 0 then [q1] ≤ 0, [c] < 0, [h] ≥ 0 and then [q1] + [c] < 0 < c+[h]. ¤

Lemma 5.3 If h′ ≤ 0, if f is convex and if c+ < c− then we have
∂S

∂c+
(c+, c−) ≤ 0.

Proof: we have S(c+, c−) = [L] = ln(u+) − ln(u−) = ln(
u+

u−
) and

∂

∂c+

u+

u−
=

∂

∂c+

α+ h+

α+ h−
thanks

to Lemma 5.1. A calculus gives
∂

∂c+

α+ h+

α+ h−
=

1
(α+ h−)2

(
− ∂α

∂c+
[h] + h′(c+)(α+ h−)

)
. Now

∂α

∂c+
≥ 0 because f is convex, next [h] ≥ 0 since h′ ≤ 0 and c+ < c−. Lastly α + h− > 0 from

Lemma 5.2 and we get
∂S

∂c+
(c+, c−) ≤ 0. ¤

The following result concerns the case with an inert gas:

Lemma 5.4 If q1 = 0 and q′′2 ≤ 0 then
∂S

∂c−
≥ 0 for c− > c+.

Proof: if q1 = 0 then f(c) = −ch(c), h(c) = q2(c) then h′(c) = q′2(c) ≤ 0. By a direct computation
and thanks to Lemma 5.1, we have

u+

u−
=

[c]− c−[h]
[c]− c+[h]

=
[c]− c+[h] + [c][h]

[c]− c+[h]
= 1 +

1
1
[h]

− c+
[c]

.

But
∂

∂c−

1
[h]

< 0, −c+
[c]

decreases, then
u+

u−
increases with respect to c−. ¤

In the case of two active components we have the following result:

Lemma 5.5 If q
′′
1 ≤ 0 ≤ q

′′
2 and if f is convex then

∂S

∂c−
(c+, c−) ≥ 0.

Proof: let be c between c+ and c−. From Lemma 5.2 we have:

u(c) =
f(c+)− f(c)

c+ − c
+ 1 + h(c+) > 0, v(c) =

f(c+)− f(c)
c+ − c

+ 1 + h(c) > 0.

We rewrite S using the functions u, v. With Lemma 5.1 we get immediately:

S(c+, c−) = ln
(

[f ]/[c] + 1 + h+

[f ]/[c] + 1 + h−

)

= ln
(
u(c−)
v(c−)

)
.

The function f is convex, so u is increasing. ¿From equality f(c) = q1(c)− ch(c) we have

(v(c)− 1)(c+ − c) = q1(c+)− c+h(c+)− q1(c) + ch(c) + h(c)(c+ − c)
= q1(c+)− q1(c)− c+(h(c+)− h(c)).

Recall that h(c) = q1(c) + q2(c), so we have:

(v(c)− 1)(c+ − c) = q1(c+)− q1(c)− c+(q1(c+) + q2(c+)− q1(c)− q2(c))
= (1− c+)(q1(c+)− q1(c))− c+(q2(c+)− q2(c)).

Finally, v(c)− 1 = (1− c+)
q1(c+)− q1(c)

c+ − c
− c+ q2(c+)− q2(c)

c+ − c
with 0 ≤ c+ ≤ 1. Now, q1 is concave

and q2 is convex, so v is decreasing. Finally,
u

v
is increasing and

∂S

∂c−
≥ 0. ¤

13



6 Interactions estimates

In this section we study the evolution of the total variation of L = ln(u), denoted TV L, through
waves interactions. It is a key point to obtain some BV bounds and a special structure for velocity.

Let us denote (c0, L0), (c1, L1), (c2, L2), three constant states such that:

• the Riemann problem with (c0, L0) for the left state and (c1, L1) for the right state is solved
by a simple wave W1,

• the Riemann problem with (c1, L1) for the left state and (c2, L2) for the right state is solved
by a simple wave W2,

• W1 and W2 interact.

Just after the interaction we have two outgoing waves W∗
1 , W∗

2 , and the intermediary constant
state (c∗1, L

∗
1). We denote by TV L the total variation of lnu just before interaction:

TV L = |L0 − L1|+ |L1 − L2|.

We denote by TV L∗ the total variation of lnu just after the interaction:

TV L∗ = |L0 − L∗1|+ |L∗1 − L2|.

We use similar notation for the concentration.
Denote by α− the negative part of α: α− = max(0,−α) = −min(0, α) ≥ 0.
We have the following key estimates:

Theorem 6.1 (Variation on TV lnu and TV c through two waves interaction)
Assume (26). Then there exists Γ > 0, a true constant such that:

TV L∗ ≤ TV L+ Γ |c0 − c1| |c1 − c2|, (31)
TV c∗ ≤ TV c. (32)

Furthermore, if (27) is also satisfied then:

TV L∗ ≤ TV L+ Γ(c1 − c0)− × (c2 − c1)−, (33)

in addition, if S, from (28), satisfies the following triangular inequality:

S(c2, c0) ≤ S(c2, c1) + S(c1, c0)

when c0 > c1 > c2, then

TV L∗ ≤ TV L. (34)

Inequality (32) means that the total variation of c does not increase and Inequality (33) means
that the total variation of lnu does not increase after a wave interaction except when two shocks
interact. In this last case the increase of TV lnu is quadratic with respect to the concentration
variation.

Such estimates are only valid when f has no inflexion point. Else, λ-wave curves are only
Lipschitz and we loose the quadratic control for the total variation of L.

Proof of Inequality (32): the decay of the total variation of the concentration is straightfor-
ward since c is constant through a contact discontinuity, i.e. c∗1 = c0 :
TV c∗ = |c2 − c∗1|+ |c∗1 − c0| = |c2 − c0| ≤ |c0 − c1|+ |c1 − c2| = TV c. ¤

Proof of Inequality (31): this proof is much more complicated. We only assume (26). The
proof is a consequence of the following lemmas.

Lemma 6.1 If a λ-wave interacts with a contact discontinuity then we have TV L∗ = TV L.
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Proof: it is the simplest case. We have c1 = c2 from the contact discontinuity, so, with T defined
in (28), L1−L0 = T (c1, c0) = T (c2, c0) and, since c∗1 = c0, we have L2−L∗1 = T (c2, c∗1) = T (c2, c0).
Then

L2 − L∗1 = L1 − L0,

which implies L2 − L1 = L∗1 − L0 and TV L∗ = TV L. ¤

Lemma 6.2 There exists a constant Γ > 0 such that, for all c0, c1, c2 ∈ [0, 1]:

|T (c2, c0)− T (c2, c1)− T (c1, c0)| |≤ Γ | c2 − c1 || c1 − c0|.

Proof: we define R by R(α, β) = T (c2, c0)−T (c2, c1)−T (c1, c0). We have to prove that R(α, β) =
O(αβ), where α = c1− c0, β = c1− c2. We denote c = c2, b = c1, a = c0. We have T ∈ C3([0, 1],R)
since λ is genuinely nonlinear and T (b, b) = 0. We apply the Taylor’s formula:

T (c, a) = T (b− β, b+ α) = T (b, b)− β∂1T (b, b) + α∂2T (b, b)

+
∫ 1

0

(1− t)(β2∂2
1S + α2∂2

2T − 2αβ∂2
12T )(b− tβ, b+ tα)dt,

T (b, a) = T (b, b+ α) = T (b, b) + α∂2T (b, b) +
∫ 1

0

(1− t)α2∂2
2T (b, b+ tα)dt,

T (c, b) = T (b− β, b) = T (b, b)− β∂1T (b, b) +
∫ 1

0

(1− t)β2∂2
1T (b− tβ, b)dt,

R(α, β) = T (c, a)− T (c, b)− T (b, a)

= −T (b, b) +
∫ 1

0

(1− t)(β2(∂2
1T (b− tβ, b+ tα)− ∂2

1T (b− tβ, b)) +

α2(∂2
2T (b− tβ, b+ tα)− ∂2

2T (b, b+ tα))− 2αβ∂1∂2T (b− tβ, b+ tα))dt.

Since

∂2
1T (b− tβ, b+ tα)− ∂2

1T (b− tβ, b) = O(tα) = O(α),
∂2
2T (b− tβ, b+ tα)− ∂2

2T (b, b+ tα) = O(tβ) = O(β),
∂1∂2T (b− tβ, b+ tα) = O(1),

we conclude that R(α, β) = O(β2α+ α2β + αβ) = O(αβ). ¤
To conclude the proof of Inequality (31) it suffices to use the next lemma.

Lemma 6.3 If two λ-waves interact then we have TV L∗ ≤ TV L+ Γ|c2 − c1| |c1 − c0|.
Proof: by definition of TV L and TV L∗ it suffices to prove that

L∗1 = L0 +O(|c2 − c1| |c1 − c0|),

since TV L∗ = |L2 − L∗1|+ |L∗1 − L0| ≤ |L2 − L0|+ 2|L∗1 − L0| ≤ TV L+ 2|L∗1 − L0|.
Indeed, we have: L1 − L0 = T (c1, c0), L2 − L1 = T (c2, c1), L2 − L∗1 = T (c2, c∗1) = T (c2, c0). Next:
L2 − L0 = T (c2, c1) + T (c1, c0) and then

L∗1 − L0 = T (c2, c1) + T (c1, c0)− T (c2, c0),

which allows us to conclude the proof of Lemma 6.3 with Lemma 6.2. ¤
The proof of Inequality (31) is now complete. ¤

Proof of Inequalities (33), (34):

we assume again (27) and also (29) to fix the signs. There are more cases to study:
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• first, we have yet studied in Lemma 6.1 the interaction of a shock wave or a rarefaction wave
(λ-wave) with a contact discontinuity (1-wave): the contact discontinuity is “transparent”
since TV L∗ = TV L and the concentration variation is also invariant.

• second, we study the interaction of a shock wave with a rarefaction wave (λ-waves with
different types): see Lemmas 6.4, 6.5, 6.6 and 6.7. We get TV L∗ < TV L and the concentration
variation decreases. It is the only case where TV L and TV c decrease.

• finally, we study the interaction of two shock waves. In this situation TV L∗ ≥ TV L and TV c
is invariant.
Furthermore, if S satisfies some “triangular inequality”, we get TV L∗ = TV L.

In order to simplify the notations we denote by D a contact discontinuity, R a rarefaction wave and
S a shock wave. “ RD → DR ” means that a rarefaction wave coming from the left interacts with
a contact discontinuity and produces a new left wave, namely a contact discontinuity, and a new
right wave, namely a rarefaction.
Since a contact discontinuity has a null speed and a λ-wave has a positive speed, the only cases for
W1, W2 are: RD, SD, RS, SR and SS.
For the resulting waves W∗

1 ,W∗
2 , there are 7 cases.

The first two cases RD → DR and SD → DS have yet been studied in Lemma 6.1.

Lemma 6.4 In the case RS → DR, TV L decreases i.e. TV L∗ < TV L.

Proof: at the beginning, we have a rarefaction, then c0 < c1, L0 > L1, and a shock, then c2 < c1,
L2 > L1. After the interaction, we have a contact discontinuity, then c0 = c∗1, and a rarefaction,
then c∗1 < c2, L∗1 > L2. Finally, we have c0 = c∗1 < c2 < c1 then g(c0) = g(c∗1) ≤ g(c2) ≤ g(c1). We
can write

TV L = | L0 − L1 | + | L1 − L2 |= L0 − L1 + L2 − L1,

TV L∗ = | L0 − L∗1 | + | L2 − L∗1 |=| L0 − L∗1 | +L∗1 − L2.

There are two cases:

• the simplest is L0 > L∗1, then TV L∗ = L0 − L∗1 + L∗1 − L2 = L0 − L2 < L0 − L1 < TV L,

• the second case is L0 < L∗1. Let us define L̃2 by

L0 − L̃2 = L∗1 − L2,

then L0 − L̃2 = L∗1 − L2 = g(c2) − g(c∗1) = g(c2) − g(c0) ≤ g(c1) − g(c0) = L0 − L1 because
[L] = −[g] for a rarefaction and c∗1 = c0. Since shock curves are decreasing, we know that
L̃2 > L1, so TV L∗ = L∗1−L0+L∗1−L2 = L2−L̃2+L0−L̃2 < L2−L1+L0−L1 = TV L. ¤

Lemma 6.5 In the case RS → DS we get TV L∗ ≤ TV L.

Proof: this case needs the assumption
∂S

∂c−
≥ 0. At the beginning, we have a rarefaction: c1 > c0

and L1 < L0 with a shock: c2 < c1 and L2 > L1. The state (c2, L2) is connected with a shock
(c∗1, L

∗
1): c2 < c∗1 and L∗1 < L2. The state (c0, L0) is connected with a contact discontinuity (c∗1, L

∗
1):

c0 = c∗1. Finally, we have c2 < c0 = c∗1 < c1. Then TV L =| L0−L1 | + | L1−L2 |= L0−L1+L2−L1

and TV L∗ =| L0 −L∗1 | + | L2 −L∗1 |= L2 −L∗1+ | L∗1 −L0 | . But, with the assumption,
∂S

∂c−
≥ 0,

S(c2, c0) = S(c2, c∗1) = L2 − L∗1 < S(c2, c1) = L2 − L1 then L∗1 > L1.
There are two cases:

• if L0 > L∗1 then TV L∗ = L0 − L∗1 + L2 − L∗1 < L0 − L1 + L2 − L1 = TV L,

• else L0 < L∗1 then TV L∗ = −L0 + L∗1 + L2 − L∗1 = L2 − L0 < L2 − L1 < TV L. ¤

Lemma 6.6 In the case SR → DR we have TV L∗ ≤ TV L.
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Proof: in the beginning, we have a shock who interacts with a rarefaction then c1 < c0, L1 > L0

and c2 > c1, L1 > L2.
After the interaction, we have a contact discontinuity then c0 = c∗1 and a rarefaction then c2 > c∗1
and L∗1 > L2. Finally, we have c1 < c0 = c∗1 < c2. Since g′ ≥ 0, we have g(c1) ≤ g(c0) ≤ g(c2).
For a rarefaction [L] = −[g] then L2 − L∗1 = g(c∗1)− g(c2) = g(c0)− g(c2) because c∗1 = c0,
L2 − L1 = g(c1)− g(c2) ≤ g(c0)− g(c2) because c1 < c0 and g′ ≥ 0.
So we have: L2 − L1 ≤ g(c∗1)− g(c2) = L2 − L∗1 and
TV L =| L1 − L0 | + | L2 − L1 |= L1 − L0 + L1 − L2 ≥ L1 − L2,
TV L∗ =| L∗1 − L0 | + | L2 − L∗1 |=| L∗1 − L0 | +L∗1 − L2.
There are two cases:

• the first is L∗1 > L0 then TV L∗ = L∗1−L0−L2 +L∗1 = 2L∗1−L0−L2 = −(L2−L∗1)+L∗1−L0

< −(L2−L1)+L∗1−L2 +L2−L0 < −L2 +L1−L2 +L1 +L2−L0 = 2L1−L2−L0 = TV L,

• the second case is L∗1 < L0 then TV L∗ = −L∗1 +L0 −L2 +L∗1 = L0 −L2 ≤ L1 −L2 ≤ TV L.
¤

Lemma 6.7 In the case SR → DS, TV L decreases i.e. TV L∗ ≤ TV L.

This situation is illustrated in Fig. 1.
Proof: it is the most difficult case. At the beginning, we have a shock then c1 < c0 and

L1 > L0. The shock interacts with a rarefaction then c2 > c1 and L2 < L1.
We then have TV L =| L1 − L0 | + | L2 − L1 |= L1 − L0 + L1 − L2.
The state (c2, L2) is connected to (c∗1, L

∗
1) by a shock then c2 < c∗1 and L∗1 < L2.

The state (c0, L0) is connected to (c∗1, L
∗
1) by a contact discontinuity then c0 = c∗1.

Finally, we have c1 < c2 < c∗1 = c0, S(c1, c0) = S10 > S(c2, c0) = S20 = S(c2, c∗1) = L2 − L∗1,

L1 − L0 = S10 > S20 = L2 − L∗1, because
∂S

∂c+
< 0.

There are two cases:

• if L0 < L∗1 (see Fig. 2, left) then L2 < L1 and

TV L∗ =| L∗1 − L0 | + | L2 − L∗1 |= L∗1 − L0 + L2 − L∗1 = L2 − L0 < L1 − L0 < TV L,

• if L∗1 < L0 (see Fig. 2, right) then we define L̃2 by L̃2−L0 = S20 = L2−L∗1 < S10 = L1−L0

and TV L∗ =| L∗1−L0 | + | L2−L∗1 |= L0−L∗1+L2−L∗1 = L̃2−L2+S20 < L1−L0+L1−L0 =
TV L. ¤

C0

C1
C2

C1
*

= C0

t

x

rarefactionshock

shock

contact discontinuity

Figure 1: case SR → DS.
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Figure 2: SR → DS: first case, left, and second case, right.

The following case is the only one where TV L increases, except if S satisfies a ”triangular
inequality”.

Lemma 6.8 In the case SS → DS we have

TV L∗ = TV L+ 2 max(S20 − S21 − S10, 0) = TV L+ 2 max(L0 − L∗1, 0) ≥ TV L.

Proof: at the beginning, we have a shock: c1 < c0 and L1 > L0. It interacts with an another
shock: c2 < c1 and L2 > L1.
The state (c2, L2) is connected to (c∗1, L

∗
1) by a shock then c2 < c∗1 and L∗1 < L2.

The state (c0, L0) is connected with with (c∗1, L
∗
1) by a contact discontinuity then c0 = c∗1.

Finally, we have c2 < c1 < c0 = c∗1 and L0 < L1 < L2.
With L2 − L1 = S21 > 0, L1 − L0 = S10 > 0, L2 − L∗1 = S20 > 0, we have:
TV L =| L2 − L1 | + | L1 − L0 |= L2 − L1 + L1 − L0 = S21 + S10,
TV L∗ =| L2 − L∗1 | + | L∗1 − L0 |=| S20 | + | L∗1 − L2 + L2 − L0 | = S20+ | −S20 + L2 − L0 | .
There are two cases to study:

• if −S20 + L2 − L0 ≥ 0 i.e. S20 = L2 − L∗1 ≤ S21 + S10 = L2 − L0 i.e. L0 < L∗1
then TV L∗ = S20 − S20 + L2 − L0 = L2 − L0 = TV L,

• else L∗1 < L0 and we have

TV L∗ = S20 + S20 − L2 + L0 = 2S20 − 2L2 + 2L0 + L2 − L0

= 2(S20 − (L2 − L0)) + TV L,= 2(S20 − S21 − S10) + TV L

= 2(L0 − L∗1) + TV L,

which conclude the proof of Lemma 6.8. ¤
The proof of Theorem 6.1 is now complete. ¤

7 BV estimates with respect to time for the velocity

In System (1)-(2)-(3), there is no partial derivative with respect to t for u. Nevertheless, the
hyperbolicity of this system ( with x as the evolution variable) suggests that a BV regularity of the
”initial” data ub for x = 0 is propagated. Furthermore, in the case with smooth concentration, the
Riemann invariant uG(c) suggests that when lnub is only in L∞(0, T ), we can hope u(t, x)/ub(t)
to be still BV in time for almost all x. We prove that this BV structure of the velocity is still
valid with some convexity assumptions, using a Front Tracking Algorithm (FTA). We conjecture
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that this structure is still valid for the general case without convexity assumption or, better, with
a piecewise genuinely nonlinear eigenvalue λ = H(c)/u. But, in this last case, the FTA becomes
very complicated (see Dafermos’ comments in [20]).

7.1 The case ln ub ∈ BV (0, T )

We first precise the notations used in the next theorem. We define the function cI on (0, T ) by

cI(s) =
{

c0(s) if 0 < s < X
cb(−s) if 0 < −s < T

,

and we set TV cI = TV cI [−T,X].
There exists a positive constant γ such that if (c−, L−) is connected to (c+, L+) by a λ-wave then
|L+−L−| ≤ γ |c+−c−|. That is an easy consequence of (28). Indeed, it is yet proven in [8], Lemma
3.1, with an inert gas, or in [9], Lemma 4.1, for two active gases.
The constant Γ comes from Theorem 6.1.

Theorem 7.1 [Propagation of BV regularity in time for the velocity]
Assume (26). If lnub ∈ BV (0, T ), if c0, cb ∈ BV and if (u, c) is a weak entropy solution of
System (1)-(2)-(3), coming from the Front Tracking Algorithm, then c ∈ BV ((0, T ) × (0, X)) and
u ∈ L∞((0, T ), BV (0, X)) ∩ L∞((0, X), BV (0, T )). More precisely:

max
(

sup
0<t<T

TVxc(t, .)[0, X], sup
0<x<X

TVtc(., x)[0, T ]
)

≤ TV cI ,

sup
0<t<T

TVx lnu(t, .)[0, X] ≤ TV lnub + γ TV cI ,

sup
0<x<X

TVt lnu(., x)[0, T ] ≤ TV lnub + 2γ TV cI +
Γ
2

(TV cI)2.

Compared to [8, 9], the new result is that u(t, x) is BV with respect to time if ub is in BV (0, T ) i.e.
the last inequality of the Theorem 7.1. With the Godunov scheme used in [8, 9] we do not obtain
such time regularity for the velocity. It is the reason why we use the FTA to get more precise
estimates. Notice that we consider a local (in time and space) problem for reasons of realism: we
could consider a global one as well, i.e. for (t, x) ∈ (0,+∞)2.

Proof: The easiest BV estimate on the concentration c after interaction (estimate (32) in
Theorem 6.1), which is always valid independently of the velocity u, yields to a control of c in
L∞t BVx ∩ L∞x BVx as in [9], since λ waves always have a positive speed. From Lemma 4.8 of [9]
p.80 (ore more simply Lemma 3.1 of [8] p. 557) we get L∞t,x ∩ L∞t BVx bounds for the velocity
u. It follows, from a natural adaptation of the estimates and compactness argument of the proof
of Theorem 5.1 p 563. in [8] or Theorem 6.1 p.83 in [9], that there exists a subsequence which
converges to a solution of the initial boundary value problem with the prescribed data c0, cb, ub

when δ goes to zero, thanks to the approximate entropy inequality (25). Furthermore, as in [8, 9],
we recover strong traces at t = 0 and x = 0.

Notice that this existence proof is also valid without any BV assumption on the velocity at the
boundary: we only need lnub in L∞(0, T ).

The BV estimate with respect to time for lnu, i.e. the third estimate in the theorem, is a
consequence of two following lemmas. ¤

Let (u, c) be an entropy solution coming from FTA. For δ > 0, representing the distance from
the boundary x = 0 or t = 0, let us define:

L(s, δ) =
{

lnu(t = |s|, x = δ) if − T < s < 0
lnu(t = δ, x = s) if 0 < s < X

,

TV L(0) = lim sup
δ→0

TV L(., δ)[−T,X].

For piecewise data, TV L(0) is the total variation of lnu just before the first interaction.
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Lemma 7.1 Before wave-interactions we have TV L(0) ≤ TV lnub + 2γ TV cI .

Proof: it suffices to prove this inequality for a piecewise constant approximate solution issued
from the FTA. We discretize [0, T ] and [0, X] as follows:
T = s1 > s2 · · · > sm > sm+1 = 0 < sm+2 < · · · < sN = X.
For i = 1, · · · ,m let us define the following piecewise approximations of c and lnu:

ci =
1

si − si+1

∫ si

si+1

cb(t)dt, Li =
1

si − si+1

∫ si

si+1

ln(ub(t))dt.

Since t = 0 is a characteristic boundary we define only ci for i = m+ 1, · · · , N − 1 by:

ci =
1

si − si+1

∫ si

si+1

c0(x)dx.

For i < m we solve the ith Riemann Problem with left state (ci, Li) and right state (ci+1, Li+1) and
we denote by c∗i , L

∗
i the intermediary state. Indeed c∗i = ci+1 since c is constant through a contact

discontinuity. From Lemma 3.1 p. 557 of [8] (or Lemma 4.1 p.78-79 of [9] for two active gases) we
know that:

|Li − L∗i | ≤ γ |ci − c∗i | = γ |ci − ci+1|.

We now estimate the total variation of lnu for the ith Riemann problem:

|Li − L∗i |+ |L∗i − Li+1| ≤ |Li − L∗i |+ (|L∗i − Li|+ |Li − Li+1|)
≤ 2γ |ci − ci+1|+ |Li − Li+1|.

Now, we look at the corner t = 0, x = 0 and i = m. There is only a λ-wave since the boundary is
characteristic. With the left state (cm, Lm) and only (cm+1) for the right state, the resolution of
the Riemann problem gives us a new constant value for lnu, namely Lm+1 = L∗m. We have again
the estimate |Lm − L∗m| = |Lm − Lm+1| ≤ γ |cm − cm+1|. So for i = m + 1,m + 2, · · · , N − 1 we
define Li solving the characteristic Riemann problems with the estimate:

|Li − Li+1| ≤ γ|ci − ci+1|.

Summing up with respect to i, we obtain the total variation on L just before the first wave inter-
action:

TV L ≤
∑

i<m

(2γ |ci − ci+1|+ |Li − Li+1|) +
∑

i≥m

γ |ci − ci+1|

≤ TV lnub + 2γ TV cI .

¤

Lemma 7.2 We have the following estimate: TV L ≤ TV L(0) +
Γ
2

(TV cI)2.

Proof: we prove this estimate for any constant piecewise approximation built from the FTA. The
same estimate is still true passing to the limit.

First, we enumerate the absolute value of the jump concentration initial-boundary value from
the left to the right:

αi = ci − ci−1 i = 1, · · · , N.
Notice that we have N + 1 constant states for the initial-boundary data: (c0, L0), · · · , (cN , LN ).

From Theorem 6.1, the increase of the total variation of lnu is governed by following inequality
TV L∗ ≤ TV L + Γ|αi−1||αi| if the wave number i − 1 interacts with the wave number i. Since c
is constant through a contact discontinuity (c is a 2-Riemann invariant) and the jump of c adds
up if two λ-waves interact, we consider only interaction between λ-waves. Indeed we neglect that

20



interaction with rarefaction has the tendency to reduce TV L.
We measure the strength of λ-wave with the jump of c through the wave. We have positive or
negative sign whether we have a rarefaction wave or a shock wave.
Let

(
αk

i

)
1≤i≤N−k

be the strength of the λ-wave number i (labeled from the left to the right) after
the interaction number k. We have α0

i = αi and denote by jk the index such that the interaction
number k occurs with the λ-wave number jk and jk + 1 where 1 < jk ≤ N − k. For 1 ≤ i < N − k,
the strengths of λ-waves after the interaction number k > 0 are given by:

αk
i =





αk−1
i if i < jk

αk−1
i + αk−1

i+1 if i = jk

αk−1
i+1 if i > jk

,

and the increasing of TV L is less or equal than ΓSk where, from Theorem 6.1,

S0 = 0, Sk = Sk−1 + |αk−1
i ||αk−1

i+1 |.

Let us define the integers lki as follows:
l0i = i and at each interaction

lki =
{
lk−1
i if i < jk,

lk−1
i+1 if i = jk, ..., N − k + 1.

Notice that after each interactions with two λ-waves, there is only one outgoing λ-wave. Thus, the
number of λ-waves decreases at each interactions, which proves again (see [21]) that the number of
interactions is finite and the FTA is well posed.

By induction, we see that: αk
i =

∑

lki≤l<lki+1

αl where lk1 = 1 < lk2 < · · · < lkN−k+1 = N − k + 1,

l0i = i and lki is non decreasing with respect to k. Now, from the definition of Sk, we can deduce
that:

Sk = Sk−1 +
∑

(i,j)∈Jk

|αi||αj |, (35)

where Jk = {(i, j); lk−1
jk ≤ i < lk−1

jk+1
≤ j < lk−1

jk+2
}.

Let us check that:

Sk =
∑

(i,j)∈Ik

|αi||αj |, (36)

where ∅ = I0 ⊂ I1 ⊂ · · · ⊂ Ik−1 ⊂ Ik ⊂ · · · ⊂ I = {(i, j); 1 ≤ i < j ≤ N}.
It is true for k = 0. It is true for all k if Ik−1 ∩ Jk = ∅ and then Ik = Ik−1 ∪ Jk. The point

is only to prove that Ik−1 ∩ Jk = ∅. Terms |αi||αj | in the last sum of (35) have indexes i and j
which appear in two consecutive intervals, i.e. lk−1

jk ≤ i < lk−1
jk+1

≤ j < lk−1
jk+2

and after, for i = jk,
lki = lk−1

i and lki+1 = lk−1
i+2 . So i and j live in the same interval and then terms |αi||αj | cannot

appear again in Sk+1, Sk+2, . . . , since such intervals are not decreasing.
The same is true for all indexes in Ik. They can appear at most one time in Sk. We then have
Ik−1 ∩ Jk = ∅ and (36) is true.

We easily estimate Sk, which concludes the proof:

Sk ≤
∑

(i,j)∈I

|αi||αj | ≤ 1
2

N∑

i=1

N∑

j=1

|αi||αj | = 1
2

(
N∑

i=1

|αi|
)2

≤ 1
2

(TV cI)
2
.

¤

21



7.2 The case ln ub ∈ L∞(0, T )

For lnub ∈ L∞ and c0, cb ∈ BV we get a BV structure for the velocity.

Theorem 7.2 [ BV structure for the velocity] We assume (26).
If lnub ∈ L∞(0, T ), if c0, cb ∈ BV and if (c, u) is a weak entropy solution issued from the FTA,
then

max
(

sup
0<t<T

TVxc(t, .)[0, X], sup
0<x<X

TVtc(., x)[0, T ]
)
≤ TV cI

and there exists a function v and constants γ, Γ > 0 such that u(t, x) = ub(t)× v(t, x) with

ln v ∈ {L∞((0, X), BV (0, T )) ∩ L∞((0, T ), BV (0, X))} ⊂ BV ((0, T )× (0, X)),

sup
0<t<T

TVx ln v(t, .)[0, X] ≤ γ TV cI ,

sup
0<x<X

TVt ln v(., x)[0, T ] ≤ 2 γ TV cI +
Γ
2

(TV cI)
2
.

The new result in this theorem is that
u(t, x)
ub(t)

is BV with respect to time, although ub is not

assumed to be BV, but just in L∞. The other regularity properties have yet been proved in [8, 9].

Proof: the first estimates for c are easily obtained as in Theorem 7.1 since the total variation
of the concentration does not increase after an interaction. The existence proof of such entropy
solution follows the beginning of the proof of Theorem 7.1 which is a natural adaptation of the
existence proof from [8, 9] with only L∞ velocity.
We now study the new BV estimates for v. We can define v by the relation u(t, x) = ub(t)v(t, x)
because ub > 0. Let be M = ln v and Mb = ln v(·, x = 0). The initial total variation of M on x = 0
is TVMb = 0 since v(t, x = 0) = 1.
We approach ub with a piecewise constant data (thus in BV ) and we show that the BV estimate
for M is independent of ub. Notice the fundamental relation:

[L] = lnu+ − lnu− = ln(ub(t) v+)− ln(ub(t) v−) = ln v+ − ln v− = [M ].

The equality [L] = [M ] implies that the λ-waves (28) are the same in coordinates (c, L) and (c,M).
Then, Theorem 6.1 is still valid replacing L by M . We then can repeat the proof of Theorem 7.1
to get BV estimates for v. ¤

8 Weak limit for velocity with BV concentration

When c is only in BV , we cannot reduce System (4) to a scalar conservation law for c as in section
3. Indeed, since the shock speeds depend on the velocity, we have a true 2× 2 hyperbolic system.
Nevertheless we can state following stability result.

Theorem 8.1 (Stability with respect to weak limit for the velocity )
Let (ln(uε

b))0<ε<1 be a bounded sequence in L∞(0, T ), such that

uε
b ⇀ ub in L∞(0, T ) weak *.

Let be c0 ∈ BV ((0, X), [0, 1]) and cb ∈ BV ((0, T ), [0, 1]). Let (cε, uε) be a weak entropy solution of
System (4) on (0, T )× (0, X) issuing from the FTA with initial and boundary values:





cε(0, x) = c0(x), X > x > 0,

cε(t, 0) = cb(t), T > t > 0,

uε(t, 0) = uε
b (t) , T > t > 0.
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Then, there exists (u(t, x), c(t, x)), weak entropy solution of System (4) supplemented by initial and
boundary values: 




c(0, x) = c0(x), x > 0,

c(t, 0) = cb(t), t > 0,

u(t, 0) = ub(t), t > 0,

such that, when ε goes to 0 and up to a subsequence:

cε(t, x) → c(t, x) strongly in L1([0, T ]× [0, X]),
uε(t, x) ⇀ u(t, x) weakly in L∞([0, T ]× [0, X]) weak *,

uε(t, x) = uε
b(t)× v(t, x) + o(1) strongly in L1([0, T ]× [0, X]), where v(t, x) =

u(t, x)
ub(t)

.

For the convergence of the whole sequence we need the uniqueness of the entropy solution for
initial-boundary value problem: (4), (5).
Proof: from Theorem 7.2 we know that uε(t, x) = uε

b(t)v
ε(t, x) where the sequences (ln vε)0<ε and

(cε)0<ε are uniformly bounded in BV ((0, T ) × (0, X)). Then, up to a subsequence, we have the
following strong convergence in L1((0, T )× (0, X)): vε → v, cε → c.

(cε, uε) is a weak entropy solution for (4) means for all ψ such that ψ” ≥ 0 and Q such that
Q′ = h′ψ +Hψ′ we have in distribution sense: ∂x (uε(t, x)ψ(cε)) + ∂tQ(cε) ≤ 0,which is rewritten
as follows: ∂x (uε

b(t)v
ε(t, x)ψ(cε)) + ∂tQ(cε) ≤ 0. Passing again to the weak-limit against a strong

limit we get: ∂x (ub(t)v(t, x)ψ(c)) + ∂tQ(c) ≤ 0. i.e. (c, u = ub × v) is a weak entropy solution for
System (4). We also can pass to the limit on initial-boundary data.

Since there exists δ such that 0 < δ < uε
b < δ−1, vε(t, x) → v(t, x) means uε(t, x)/uε

b(t) −
v(t, x) → 0 and also means uε(t, x)− uε

b(t)× v(t, x) → 0, which concludes the proof. ¤
An example of high oscillations for velocity: as an example of weak limit we consider the case

of high oscillations for velocity on the boundary.

Let be ub(t, θ) ∈ L∞((0, T ), C0(R/Z,R)), ub(t) =
∫ 1

0

ub(t, θ)dθ and assume inf ub > 0. With

uε
b(t) = ub

(
t,
t

ε

)
and the same notations as in Theorem 8.1 we have:

• first, oscillations do not affect the behavior of the concentration since (cε) converges strongly
in L1 towards c and the limiting system depends only on the average ub and not on oscillations;

• second, (uε) converges weakly towards ub(t)× v(t, x) and we have a strong profile for uε:

lim
ε→0

∥∥∥∥uε(t, x)− U

(
t, x,

t

ε

)∥∥∥∥
L1((0,T )×(0,X))

= 0, where U(t, x, θ) = ub(t, θ)× v(t, x).
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[36] D. Serre. Systèmes de lois de conservation I. Diderot, Paris, 1996.

[37] J. Smoller. Shock Waves and Reaction–Diffusion Equations. Springer Verlag, 1994.

25


