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Abstract

We introduce a simple and efficient sampling strategy for the Dirichlet Process
Mixture model (DPM) and its two-parameter extension, the Poisson-Dirichlet
process mixture model, also known as the Pitman-Yor process Mixture model
(PYM). Inference in DPM and PYM is usually performed using Markov Chain
Monte Carlo (MCMC) methods, specifically the Gibbs sampler. These sampling
methods are usually divided into two classes: marginal and conditional algo-
rithms. Each method has its own merits and limitations. The aim of this paper is
to propose a simple and effective strategy that combines the main advantages of
each class. Extensive experiments on simulated and real data highlight that the
proposed sampler is relevant and performs much better than its competitors.

Keywords: Bayesian nonparametrics; Dirichlet process mixture model; Pitman-Yor
process mixture model; Gibbs sampler; Slice sampling.

1 Introduction

Bayesian nonparametrics (BNP) have gained popularity in a wide range of applications
in statistics and machine learning (density estimation, clustering, image segmentation
and reconstruction, language modelling, etc.) ([1], [2], [3], [4]). The Dirichlet Process
Mixture (DPM) model [5], [6] is by far the most popular BNP model. In recent years,
models going beyond the DPM have been proposed in the literature ([7], [8], [9], [10]).

1



Let X = (X1, . . . , Xn) be an n-dimensional sample of observations defined on a
probability space (Ω,A,P) and taking values in some separable metric space X . Let F
be the space of all probability distributions in X . A BNP mixture model is a random
distribution taking values in F and defined as follows,

f(x) =

∫
p(x|θ)dH(θ), (1)

where {p(·|θ) : θ ∈ Θ} is a family of non-negative (possibly multivariate) kernels on X
such that

∫
X p(x|θ)λ(dx) = 1 for all θ ∈ Θ and for some σ-finite measure λ; the mixing

distribution H is a discrete random probability measure. In this paper, we will focus
mainly on the following two cases: (1) H ∼ DP(α,G0), that is H is a Dirichlet process
(DP) with parameters α > 0 and base distribution G0 ∈ F ; and (2) H ∼ PY(d, α,G0),
a Pitman-Yor process with discount parameter d ∈ [0, 1), strength parameter α > −d
and base measure G0. The DP is recovered as a special case of the PYP when d = 0.
PYM is an interesting alternative to DPM, allowing greater modelling flexibility.

Alternatively, we can write the model (1) under the PYP prior in the following
hierarchical form,

Xi|θi
ind∼ p(xi|θi), i = 1, . . . , n

θi|H
iid∼ H (2)

H|d, α,G0 ∼ PY(d, α,G0).

The PYP can be written using its stick-breaking representation,

H(·) =

∞∑
k=1

wkδθ∗
k
(·), (3)

where δθ∗(·) denotes the Dirac measure giving mass 1 at θ∗; the weights are con-
structed according to the so-called GEM distribution as follows: w1 = v1, wj =

vj
∏j−1
i=1 (1 − vi), for all j, vj

ind∼ Beta(1 − d, α + jd). The locations (θ∗j )j≥1 are i.i.d.
G0, and independent of the weights. By exploiting the discrete nature of H, PYM
provides a flexible model for clustering items of various kinds in a hierarchical setting
without explicitly specifying the number of components.

In a Bayesian context, we are interested in the posterior distribution of the ran-
dom density f . However, the latter has no closed form, and inference is necessarily
simulation-based. Markov Chain Monte Carlo (MCMC) methods are the gold stan-
dard in BNP models. There are many MCMC sampling algorithms, which can be
roughly divided into two categories: marginal and conditional methods. The difference
between the two lies in the way they deal with the infinite-dimensional mixing measure
H. In marginal methods, H is analytically marginalized out, whereas in conditional
methods, it is represented explicitly.

Marginal methods can be in turn subdivided into conjugate or non-conjugate mod-
els. By conjugacy, we mean that the mixture kernel p(·|θ) and the base distribution

2



G0 form a conjugate pair. In this case, calculations of conditional posterior distribu-
tions are simplified and can be performed analytically ([11], [12], [13], [14] and [15]). In
non-conjugate models, however, posteriors can not be easily calculated. The sampling
scheme is more difficult and requires elaborate techniques ([16], [17] and [18]). The
reader is referred to [19] for a more complete overview and discussions of these meth-
ods. Neal [19] also proposes two novel sampling schemes for non-conjugate models: the
first (referred to as ”Algorithm 7” in Neal’s paper) uses a combination of Metropolis-
Hastings steps with Gibbs updates. The second, called ”Algorithm 8”, is based on an
augmentation scheme and extends the model to include auxiliary components that
temporarily exist.

An alternative to marginal methods are conditional algorithms that explicitly rep-
resent the mixing measure using, for instance, its stick-breaking representation ([20],
[21]). The challenge in conditional approaches is to deal with the countably infinite
representation of H in equation (3). In [20], the authors resort to an approximation
and truncate the mixing measure to a deterministic value. An alternative that avoids
hard truncations was proposed by [22] who provided an approximation of the Dirich-
let process by means of a random truncation of its stick-breaking representation. The
same was proposed for the Pitman-Yor process by [23]. The idea of random truncation
but avoiding the introduction of truncation errors as in the previously cited papers
was developed in [24] with a Metropolis-Hastings sampling scheme, and in [21] using
the slice sampling strategy. The latter algorithm was improved by [25] and [26].

One of the advantages of marginal methods is their simplicity and the fact that
the number of components to be updated at each iteration is finite and deterministic.
However, by integrating mixture components outside the model, marginal algorithms
make the allocation step highly sequential, since they must condition on all previ-
ously allocated data. These incremental updates mean that marginal samplers are not
easily parallelizable. This is detrimental when working with large datasets, as the allo-
cation step is the most time-consuming part of the algorithm. Another drawback of
marginalizing over the mixing measure is that computing posterior conditionals require
additional sampling steps ([20], [27], [28]). However, marginal samplers have the advan-
tage of handling exchangeable prediction rules, and the most advanced algorithms in
these methods have better mixing properties than conditional methods. In addition,
random weights are collapsed by marginalization, leading to a crucial reduction in the
dimension of the parameters space.

The stick-breaking representation of the Pitman-Yor process allows weights to be
explicitly represented in terms of independent Beta random variables. This property
makes conditional algorithms using this representation capable of updating blocks of
parameters, and easy to parallelize to take advantage of recent parallel computing
hardware architectures, which is particularly suited to large data sets. However this
simplicity in the representation comes at a cost of slower mixing. Indeed, in this repre-
sentation, weights are explicitly defined by the prior and components are represented
with a size-biased ordering on their labels. This means that components with lower
labels have higher prior probabilities than components with higher labels. As a con-
sequence, components are not interchangeable and cluster prior labelling contributes
to the posterior sampling. In this situation, the sampler needs to mix clusters labels
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efficiently to avoid any clustering bias. Authors in [29] recommend the systematic use
of two additional Metropolis-Hastings moves (”label-swap” and ”label-permute”) to
improve mixing over clusters. When working with non-exchangeable clusters labels,
this additional step seems to be the only way to improve the mixing over clusters (see
also [25]). In contrast, in marginal methods using Pólya urn representation, the sam-
pling occurs in the space of equivalence classes over exchangeable clusters labels where
clusters identities are arbitrary and insignificant. This is the adequate space for the
sampler, since cluster labels are irrelevant.

It is worth mentioning that there are hybrid samplers that cannot be classified
as marginal or conditional ([30], [31]). We also point out that, instead of using the
stick-breaking representation for the underlying mixing measure, some conditional
samplers exploit other constructive representations. For instance, the use of the so-
called Ferguson and Klass representation [32] of independent increment processes has
been considered in the literature (see for example [10] and [33], and the references
therein for some contributions in this direction). These approaches are interesting in
that they allow to consider classes of priors that are, in general, broader than Pitman-
Yor and Dirichlet processes. However, they become non-trivial to implement, even
when applied to the DPM. Given the importance of DPM and PYM, the dominant
priors in Bayesian nonparametrics, it seems important to devote attention to the
development of alternative, simple and efficient algorithms. In particular, the mixing
properties of MCMC samplers are proving to be a key point for high-dimensional
applications with large data sets.

The purpose of this paper is to provide a simple and effective way to infer DPM
and PYM. We propose a conditional sampling scheme that is formulated in the space
of equivalence classes on clusters labels where clusters identities are irrelevant. To
sample the infinite part, we propose two variants. Extensive simulations show that the
proposed methods outperform all competing conditional sampling algorithms. Finally,
we point out that since the preliminary ideas of this work were presented in a technical
report, they have been successfully used and applied by other authors, for example in
[34], [35], or they have inspired other authors [36].

The rest of the paper is structured as follows. In Section 2, we present the two vari-
ants of the proposed MCMC algorithm. We evaluate the performance of the algorithms
through an extensive study on real and simulated data in Section 3. We conclude the
paper in Section 4 with discussions and extensions for further work. Additional results
are presented in the appendices.

2 Proposed sampling method

The proposed conditional algorithm is different from the other conditional algorithms
discussed so far. Our sampler attempts to combine the main advantages of the marginal
and conditional algorithms. The underlying idea is to integrate out the explicit order
of clusters labels as in marginal methods, thereby collapsing the model to a lower-
dimensional space while retaining component weights as in conditional approaches.
We replace the standard posterior updating of the mixing measure based on the
stick-breaking representation, with a posterior update of Pitman-Yor processes under
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the class of Poisson-Kingman models introduced by [37]. The following proposition
summarizes this posterior characterization.
Proposition 1. [38], Corollary 20
Let H ∼ PY(d, α,G0) where G0 is a diffuse probability measure s.t. E(H) = G0.
Consider a sample θ1, . . . ,θn|H ∼ H. Let {θ∗j }

kn
j=1 be the set of unique values of

{θi}ni=1 and nj the number of occurrences of θ∗j in the sample. Then the posterior of
H can be expressed as follows,

H|θ1, . . . ,θn
d
=

kn∑
j=1

wjδθ∗
j

+ rknHkn , (4)

where

(w1, . . . , wkn , rkn) ∼ Dir(n1 − d, . . . , nkn − d, α+ dkn)

Hkn ∼ PY(d, α+ dkn, G0),

and Hkn independent of (w1, . . . , wkn , rkn), with E(Hkn) = G0.
The posterior characterization (4) allows us to work on the space of clusters equiv-

alence classes and, due to exchangeability, to integrate out the order of cluster labels
as in marginal samplers. Indeed, Pitman showed in [39] the equivalence between
exchangeability of the random partition generated by sampling from a discrete dis-
tribution and the symmetry of the law characterizing the limiting frequencies of the
occupied components given the data. We can easily check that exchangeability is
ensured in equation (4), since it sums up a symmetrical Dirichlet distribution and an
unconditional Pitman-Yor process (independent of the observed data). So our sampler
lives in the space of equivalence classes on clusters labels. These labels are therefore
exchangeable and no mix over them is necessary. This property has important conse-
quences for algorithm mixing, as we shall see in the comparative study. As opposed,
in conditional algorithms using the stick-breaking representation, exchangeability is
lost when using the usual updating rule:

H(·)|θ1, . . .θn =
∑
k∈c∗

w∗kδθ∗
k
(·) +

∑
k/∈c∗

wkδZk
(·), (5)

where c∗ = (c∗1, . . . , c
∗
kn

) are the unique values of the classification variables c =
(c1, . . . , cn), where ci = k iff θi = θ∗k. The weights w∗k are constructed as follows:

w∗1 = v∗1 , w
∗
2 = v∗2(1 − v∗1), . . . , w∗n = v∗n

∏n−1
i=1 (1 − v∗i ) where v∗l ∼ Beta(1 − d +

nl, α + ld +
∑∞

m=l+1 nm), and for all k /∈ c∗, Zk
iid∼ G0. This clearly illustrates that

the posterior distribution of a random probability measure constructed via the stick-
breaking representation depends on the explicit labels of the atoms to which the
observations are assigned. This property is not necessary and has the effect of hindering
the Gibbs sampler.

Using the posterior characterization (4), we propose a Gibbs sampling scheme to
sample from the posterior of a Pitman-Yor mixture model and the Dirichlet process
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mixture as a special case. To simulate Hkn , the continuous part of the posterior given
in (4), we propose two variants of the sampler. The first makes use of a thresholded
version of the ”slice efficient dependent” of [26]. The second is based on a truncation
of the process, as originally suggested in [20].

2.1 Variant 1: Exchangeable Thresholded Slice Sampler

We introduce uniform slice variables u = (u1, u2, . . . , un) such that the joint density
for any (xi, ui), given a collection w of random masses and component parameters
Θ∗, is

f (xi, ui) =

∞∑
k=1

wk p (xi|θ∗k)U (ui|0, ξk) , (6)

where ξk is a variable such that for all k,

ξk = min (wk, ζ) , (7)

with ζ ∈ ]0, 1] and is independent of wk. Here, ζ is a threshold we propose to improve
the mixing properties of the sampler. The threshold ζ can be a random or determinis-
tic variable. Its role here is to ensure that, on average, at each iteration, all occupied
clusters and at least one unoccupied cluster are proposed by the algorithm. For exam-
ple, a typical deterministic value of ζ that gives rise to a good trade-off between
mixing properties and computational burden is the mean weight of the first atom (in
the size-biased order of Hkn) with no data allocated to. It can be expressed in the
two-parameter case as

ζ =
(α+ dEα,d(Kn))(1− d)

(α+ n)(α+ 1)
,

where Eα,d(Kn) is the expected value of Kn, the number of clusters,

Eα,d(Kn) =

n∑
i=1

(α+ d)i−1↑
(α+ 1)i−1↑

,

and (x)a↑ = Γ(x+ a)/Γ(x) is the Pochhammer symbol.
In the case of the Dirichlet process (d = 0),

Eα(Kn) =

n∑
i=1

α

α+ i− 1
= α log

(
1 +

n

α

)
.

For d 6= 0, it can be easily checked that,

Eα,d(Kn) =
α

d

(
(α+ d)n↑

(α)n↑
− 1

)
.
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For n sufficiently large, this expectation can be fairly approximated using Stirling’s
formula,

Eα,d(Kn) ≈ Γ(α+ 1)

dΓ(α+ d)
nd.

Coming back to the slice sampling formulation, using (7), we can rewrite (6) as
follows,

f (xi, ui) = 1 (ζ > ui) ζ
−1
∑
wk>ζ

wk p (xi|θ∗k) +
∑
wk≤ζ

1 (wk > ui) p (xi|θ∗k) ,

where both sums are finite since #{j : wj > ε} <∞, for all ε > 0.
Let us now denote w = (w1, w2, . . . , wkn ,wkn) where w1, w2, . . . , wkn are the kn

Dirichlet random weights in the posterior characterization (4), and wkn is a collection
of random variables distributed according to the two-parameter GEM(d, α + dkn)
distribution; these are the stick-breaking random weights of Hkn . The Gibbs sampler
allows to generate variables from the joint posterior of (Θ∗, c,w,u|x), by iteratively
sampling from each full conditional. As in [26], we jointly sample w,u|c. The full
conditional distributions involved in the sampler steps are then:

• p(c|θ∗, w, u),
• p(θ∗|c, w, u),
• p(w, u|c,θ∗) = p(u|w, c,θ∗) p(w|c,θ∗).

We now provide a way to simulate each conditional.

1. Conditional for (w,u).
We jointly sample w,u|c in three steps by first sampling w1, w2, . . . , wkn |c, then
u|w1, w2, . . . , wkn , c, and finally wkn |u. The mains steps are now given.

• Sample wk for k ≤ kn:

w1, . . . , wkn ,rkn |c ∼ Dir (n1 − d, . . . , nkn − d, α+ kn d) .

• Sample ui|w1, w2, . . . , wkn , c:

ui|w1, w2, . . . , wkn , c
ind.∼ U (ui|0,min (wci , ζ)) .

Set u∗ = min{u1, . . . , un}.
• Sample wk for k > kn. While rk−1 > u∗,

vk ∼ Beta (1− d, α+ k d) ,

wk = vk rk−1,

rk = rk−1 (1− vk) .

Set k∗ = min ({k : rk < u∗}).
It is clear that wk < u∗ for all k > k∗, so we only need to sample a finite set of

wk∗ .
Note that at each iteration, the non-empty clusters are relabelled according to

their order of appearance in the sampling. We operate in the space of equivalence
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classes on the labels of non-empty clusters which are therefore exchangeable. The
stick-breaking prior only applies to empty clusters for the given iteration of the
Gibbs sampler. As we have pointed out, this encourages good mixing over clusters.

2. Conditional for c.
The sampling of classification variables requires the computation of a normalizing
constant, which becomes feasible using auxiliary variables, since the choice of ci is
from a finite set,

ci|w,u,Θ∗,X
ind∼

k∗∑
k=1

wk,i δk (·) ,

where wk,i ∝ 1 (wk > ui) max (wk, ζ) p (xi|θ∗k) , and
∑k∗

j=1 wk,i = 1.
Note also that, to speed up computations, it is convenient to sort the weights

wk, k > kn in decreasing order. This avoids testing for all k > κ as soon as wκ < ui.

3. Conditional for Θ∗.

• Updating parameters for non-empty components from the density proportional
to,

G0(dθ∗k)
∏
i:ci=k

p(xi|θ∗k) for all k ≤ kn.

• Sampling parameters for unallocated components from their priors,

θ∗k
iid∼ G0, for kn < k ≤ k∗.

The structure of the block Gibbs sampler makes it easy to implement the algorithm
on a parallel computer.

2.2 Variant 2: Exchangeable Truncated Gibbs Sampler

The second variant of the proposed algorithm is an alternative to the first. It is still
based on the posterior (4). But instead of using the slice sampling strategy to sample
the continuous part Hkn , we resort to an approximation by taking a fixed level M .
This truncation eliminates the need for auxiliary variables. The right-hand side of (4)
is approximated by

kn∑
j=1

wjδθ∗
j

+ rknH
∗
kn ,

where H∗kn is an approximation of Hkn , i.e a truncation of Hkn at level M . The total
number of components represented is then k∗ = kn+M . The main steps are now given.

• Sample classification variables:

(ci|w,u,Θ∗,X)
ind∼

k?∑
k=1

wk,i δk (·) ,

8



where

wk,i ∝ wk p (xi|θ∗k) and

k∗∑
k=1

wk,i = 1.

• Sample wk for k ≤ kn:

(w1, w2, . . . , wkn , rkn |c) ∼ Dir (n1 − d, n2 − d, . . . , nkn − d, α+ kn d) .

• Sample wk for kn < k ≤ k∗:

vk ∼ Beta (1− d, α+ k d) ,

wk = vk rk−1,

rk = rk−1 (1− vk) .

Set wk∗ = rk∗−1 such that vk∗ = 1.
• Sample components parameters using

? the density proportional to

G0(dθ∗k)
∏
i:ci=k

p(xi|θk)

for non-empty components (i.e. k ≤ kn),
? the priors for unallocated components,

θ∗k
iid∼ G0, for kn < k ≤ k∗.

After presenting the two variants of the proposed algorithm, in the next section
we compare it with a marginal method and conditional samplers on various data sets.

3 Algorithms comparisons

In this section, we carry out a comparative study on various data sets, both real and
simulated. We compare the two variants of the proposed conditional sampler (named
respectively ”Slice exch. thres.” and ”Trunc. exch.”), with two other conditional sam-
plers: the efficient slice sampler proposed by [26] (”Slice efficient”), and the truncated
blocked Gibbs sampler of [20] (”Truncated”). Note that ”Slice efficient” is referred to
as ”Slice efficient dependent” in [26], unlike their independent version which uses a
deterministic slice function. We will also compare ourselves with Algorithm 8 by Neal
[19] (”Algo. 8”), known as the best algorithm for marginal methods. As the latter is
a marginal algorithm, it is not included in the comparison between conditional meth-
ods discussed here. Its results are therefore provided for information, to give an idea
of expected performance.
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3.1 Data specification:

We tested the algorithms with p(·|θ) being a univariate normal kernel with param-
eters θ∗ = (µ, σ2) and G0 a normal-inverse gamma base measure i.e, G0(µ, σ−2) =
N (µ|η, κ2) ×G(σ−2|γ, β) where G(·|γ, β) denotes the Gamma distribution with density
proportional to xγ−1e−x/β .

For comparison purposes, we considered the same real and synthetic datasets as
in [26].

1. Synthetic data were simulated from the following mixtures of Gaussians.

• A bimodal mixture (bimod):

0.5N (−1, 0.52) + 0.5N (1, 0.52).

• An unimodal lepto-kurtic mixture (lepto):

0.67N (0, 1) + 0.33N (0.3, 0.252).

The corresponding densities are shown in Figure 1.

Fig. 1: Bimodal (bimod) and unimodal lepto-kurtic (lepto) mixtures.

In order to gauge the performance of the algorithms on small and large datasets,
we generated n = 100, n = 1, 000 and n = 10, 000 draws from each of these two
mixtures.

2. The real data are

• Galaxy data: these are the velocities (in 103 km/s) of 82 distant galaxies diverging
from our own. This is a popular data set in density estimation problems.
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• S&P 500: this consists of 2023 daily index returns. This data set is unimodal,
asymmetric, and heavy-tailed.

3.2 Algorithms performance

We monitored the convergence of two quantities: the deviance of the estimated density
and the number of occupied clusters. The deviance is a global function of all model
parameters and is defined as

D = −2

n∑
i=1

log

(∑
j

nj
n
p(xi|θ∗j )

)
,

where nj is the size of cluster j.
The performance of competing samplers in their stationary regime was judged by

looking at the integrated autocorrelation time (IAT) for each monitored quantity. IAT
is defined in [40] as,

τ = 1 + 2

∞∑
j=1

ρj ,

where ρj is the sample autocorrelation at lag j. This quantity is an indicator of the
mixing behaviour of the algorithms and measures the efficiency of an MCMC sampler.
As such, it has also been used by many authors to compare MCMC methods (e.g., [19],
[18], [24], [26]). IAT controls the statistical error in Monte Carlo measurements. In
fact, correlated samples generated by a Markov chain at equilibrium cause a variance
that is 2τ greater than in independent sampling [40]. If we denote by τj the integrated
autocorrelation time produced by algorithm j for a given quantity, then τ1/τ2 = k >
1 means that algorithm 1 requires k more iterations than algorithm 2 to produce
the same Monte Carlo error [24]. So, when comparing two alternative Monte Carlo
algorithms for the same problem, the most efficient is the one that produces the
smallest IAT, since it provides better estimates.

However, calculating IAT is difficult in practice. Following [40], an estimator of τ
can be obtained by summing the estimated autocorrelations up to a fixed lag L,

τ̂ = 1 + 2

L∑
j=1

ρ̂j . (8)

One can also estimate the standard error of τ̂ using the following formula from
[40],

std(τ̂) ≈
√

2(2L+ 1)

N
τ2 (9)

where N is the Monte-Carlo size.

3.3 Algorithms parametrization

First, we set the discount parameter d of the PYM to zero in order to reduce it to a
DPM. The strength parameter of the PYM, which is now the precision parameter of
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the DPM, was respectively set to α = {1, 5}. The prior expected number of components
for each data set length and each parameterization are given in Tables 1-2.

Table 1: E(Kn) in DP(α = 1)

Data E(Kn)
Galaxy (n = 82) 4.4
Lepto/bimod (n = 100) 4.6
Lepto/bimod (n = 1, 000) 6.9
S&P 500 (n = 2023) 7.6
Lepto/bimod (n = 10, 000) 9.2

Table 2: E(Kn) in DP(α = 5)

Data E(Kn)
Galaxy (n = 82) 14.3
Lepto/bimod (n = 100) 15.2
Lepto/bimod (n = 1, 000) 26.5
S&P 500 (n = 2023) 30
Lepto/bimod (n = 10, 000) 38

Secondly, we investigated the behaviour of competing algorithms in a PYM
power-law case. In our experiments, we considered different parameter combinations.
However, due to space constraints, we only present the results for d = 0.3 and α = 1.
Table 3 reports the prior expected numbers of clusters. Note that there are much
higher than in the DPM case with α = 1 (Table 1).

Table 3: E(Kn) in PYP(α = 1, d =
0.3)

Data E(Kn)
Galaxy (n = 82) 10.63
Lepto/bimod (n = 100) 11.48
Lepto/bimod (n = 1, 000) 25.5
S&P 500 (n = 2023) 36.4
Lepto/bimod (n = 10, 000) 58.9

The hyperparameters have been fixed in a data-driven way according to [18] and
set as follows: if R is the data range, we take η = R/2 (mid-range), κ2 = 1/R2, γ = 2
and β = 0.02R2.

The blocked Gibbs sampler of [20] (”Truncated”) has been truncated to the level
K = 3αlog(n), where n is the data size. We have also truncated the second variant
of our sampler (”Trunc exch.”) to the level M = 2αlog(n). Algorithm 8 of [19] was
tested with m = 2 auxiliary components. We followed Sokal’s instructions [40], which
recommends running samplers for a sufficient number of iterations. For each data set,
we ran 2, 000, 000 iterations for each algorithm and discarded the first 200, 000 for the
burn-in period. We believe that these numbers are sufficient to obtain reliable results.

3.4 Results and comments

The following tables report the performance in terms of IAT achieved by

• the two variants of the proposed algorithm (”Slice exch. thres.” and ”Trunc. exch.” )
• the truncated blocked Gibbs sampler of [20] (”Truncated”).
• the efficient slice sampler of [26] (”Slice efficient”).
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IAT is calculated using formula (8), L will be respectively noted LD for the IAT on
deviance and LC for that on the number of clusters. The estimated standard deviation
(value in brackets in the tables) is calculated using (9). We recall that the smaller
the IAT, the better the algorithm. The best performance is shown in bold and the
second best in underlined (ranking is based on conditional algorithms). We also provide
the mean number of clusters and the deviance estimated by each algorithm. This
ensures that algorithms perform the estimation correctly, and that they can be assessed
through their mixing performance. As mentioned, ”Algorithm 8” is a marginal method
and is not included in the comparison. Its performance is provided for information.

DPM case

We first look at the results for the DPM case, with α = 1 (results with α = 5 are
provided in Appendix B), for real data (Galaxy and S&P 500) and simulated data
(lepto and bimod with n = 1, 000 and n = 10, 000). Results are given in Tables 4-
9. Simulation results for n = 100 are provided in Appendix A. This appendix also
contains autocorrelation curves on Galaxy data, as well as the data histogram and
estimated posterior density for each competing algorithm.

Table 4: Galaxy data n = 82, LD = 150, LM = 300. Bold: best score, Underline:
second score. In brackets: estimated standard deviation.

IAT on # of
clusters ↓

IAT on
deviance ↓

Estimated #
clusters

Estimated
deviance

Slice exch. thres 14.48(0.37) 2.88(0.05) 3.986(0.93) 1561.14(21.61)
Trunc. exch. 14.42(0.37) 2.94(0.05) 3.989(0.93) 1561.16(21.69)

Truncated 38.65(1.00) 3.63(0.07) 3.996(0.94) 1561.15(21.66)
Slice efficient 60.65(1.57) 5.28(0.10) 3.991(0.93) 1561.15(21.62)

Algo 8 (m = 2) 8.25(0.21) 2.57(0.05) 3.987(0.93) 1561.16(21.62)

Table 5: S&P 500 n = 2023, LD = 200, LM = 500. Bold: best score, Underline:
second score. In brackets: estimated standard deviation.

IAT on # of
clusters ↓

IAT on
deviance ↓

Estimated #
clusters

Estimated
deviance

Slice exch. thres 22.58(0.75) 145.07(3.06) 4.977(0.82) 14990.47(57.56)
Trunc. exch. 21.59(0.72) 148.66(3.14) 4.978(0.82) 14990.50(59.09)
Truncated 32.75(1.09) 148.69(3.14) 4.975(0.81) 14990.94(59.44)
Slice efficient 105.92(3.53) 204.63(4.32) 4.965(0.81) 14991.21(61.14)

Algo 8 (m = 2) 13.55(0.45) 106.28(2.24) 4.980(0.82) 14990.38(59.09)
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Table 6: Bimod data n = 1000, LD = 150, LM = 800. Bold: best score, Underline:
second score. In brackets: estimated standard deviation.

IAT on # of
clusters ↓

IAT on
deviance ↓

Estimated #
clusters

Estimated
deviance

Slice exch. thres 93.28(3.93) 3.65(0.07) 3.806(1.73) 2735.14(8.66)
Trunc. exch. 91.20(3.85) 3.69(0.07) 3.795(1.72) 2735.14(8.66)
Truncated 156.27(6.60) 3.71(0.07) 3.777(1.71) 2735.13(8.62)
Slice efficient 257.25(10.85) 5.13(0.09) 3.766(1.68) 2735.12(8.61)

Algo 8 (m = 2) 47.25(1.99) 3.06(0.06) 3.798(1.72) 2735.14(8.65)

Table 7: Lepto data n = 1000, LD = 150, LM = 800. Bold: best score, Underline:
second score. In brackets: estimated standard deviation.

IAT on # of
clusters ↓

IAT on
deviance ↓

Estimated #
clusters

Estimated
deviance

Slice exch. thres 235.49(9.93) 13.17(0.24) 4.006(2.05) 2400.51(18.68)

Trunc. exch. 237.70(10.02) 13.66(0.25) 4.022(2.08) 2400.48(18.72)
Truncated 294.24(12.41) 12.67(0.23) 3.958(2.01) 2400.47(18.49)
Slice efficient 472.95(19.95) 16.91(0.31) 3.864(1.92) 2400.45(18.26)

Algo 8 (m = 2) 148.81(6.28) 11.55(0.21) 4.018(2.07) 2400.48(18.69)

Table 8: Bimod data n = 10, 000, LD = 200, LM = 1000. Bold: best score, Underline:
second score. In brackets: estimated standard deviation.

IAT on # of
clusters ↓

IAT on
deviance ↓

Estimated #
clusters

Estimated
deviance

Slice exch. thres 244.64(11.53) 5.79(0.12) 3.77(1.74) 27235.46(9.09)
Trunc. exch. 247.02(11.65) 5.57(0.12) 3.77(1.73) 27235.45(9.04)
Truncated 286.67(13.52) 5.46(0.11) 3.73(1.74) 27235.44(8.98)
Slice efficient 456.95(21.55) 12.20(0.26) 3.76(1.76) 27235.44(9.00)

Algo 8 (m = 2) 180.58(8.51) 4.76(0.10) 3.78(1.76) 27235.46(9.05)

Table 9: Lepto data n = 10, 000, LD = 200, LM = 1000. Bold: best score, Underline:
second score. In brackets: estimated standard deviation.

IAT on # of
clusters ↓

IAT on
deviance ↓

Estimated #
clusters

Estimated
deviance

Slice exch. thres 212.65(10.03) 11.74(0.25) 3.74(1.77) 23517.95(12.52)
Trunc. exch. 179.46(8.46) 10.96(0.23) 3.74(1.74) 23517.94(12.43)
Truncated 186.83(8.81) 17.80(0.38) 4.73(1.75) 23518.57(13.92)
Slice efficient 444.243(20.95) 17.60(0.37) 3.68(1.70) 23517.90(12.35)

Algo 8 (m = 2) 142.67(6.73) 10.47(0.22) 3.74(1.77) 23517.95(12.47)

PYM case

We now provide the results obtained in the PYM case with d = 0.3 and α = 1, only
for Galaxy and lepto data with n = 1, 000. These results are given in Tables 10-11.
The rest of the results are detailed in Appendix C.
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Table 10: Galaxy data n = 82, LD = 150, LM = 300. Bold: best score, Underline:
second score. In brackets: estimated standard deviation.

IAT on # of
clusters ↓

IAT on
deviance ↓

Estimated #
clusters

Estimated
deviance

Slice exch. thres 10.56(0.27) 2.84(0.05) 4.867(2.13) 1561.67(21.84)
Trunc. exch. 9.81(0.25) 2.79(0.05) 4.716(1.77) 1561.61(21.93)
Truncated 29.20(0.75) 3.65(0.07) 4.932(1.97) 1561.73(21.94)
Slice efficient 44.65(1.15) 5.43(0.10) 4.872(2.13) 1561.66(21.82)

Algo 8 (m = 2) 5.79(0.15) 2.37(0.04) 4.869(2.13) 1561.66(21.89)

Table 11: Lepto data n = 1000, LD = 200, LM = 1000. Bold: best score, Underline:
second score. In brackets: estimated standard deviation

IAT on # of
clusters ↓

IAT on
deviance ↓

Estimated #
clusters

Estimated
deviance

Slice exch. thres 156.21(7.37) 13.56(0.29) 4.255(3.22) 2371.35(16.11)
Trunc. exch. 167.13(7.88) 13.08(0.28) 4.247(3.13) 2371.34(16.03)
Truncated 270.51(12.75) 17.04(0.36) 4.387(3.62) 2371.52(16.49)
Slice efficient 422.09(19.90) 20.47(0.43) 4.291(3.30) 2371.50(16.53)

Algo 8 (m = 2) 96.90(4.57) 10.90(0.23) 4.242(3.22) 2371.34(15.98)

The results presented here and in the appendices show that, in almost all situations,
the two variants of the proposed method outperform the other competitors in condi-
tional algorithms, thanks to the exchangeability in the model and the introduction of
the proposed threshold. The ”Slice efficient” gives the worst performance.

To better understand and explain these results, we now investigate the gain in mix-
ing performance of the algorithms due to the exchangeability property of the model,
on the one hand, and the proposed threshold, on the other. For this reason, we imple-
ment our slice sampler using the exchangeable model but without the threshold (”SE
without thres.”), and the ”Slice efficient” of [26] which uses a non-exchangeable model
with the introduction of our threshold (”Slice eff. thres.”). Tables 12-13 show the
results on the real data (Galaxy and S& P 500). This work has been carried out on all
the datasets considered, but for reasons of space we present only the results obtained
on these datasets.

Firstly, as far as the threshold is concerned, its inclusion in the ”Slice efficient” sig-
nificantly reduces the IAT, as can be seen by comparing the original ”Slice efficient”
and its thresholded version ”Slice eff. thres.”. The performance of the latter is close to
that of the ”Truncated”. We believe that the poor mixing due to non-exchangeability
in the stick-breaking posterior representation is accentuated by the absence of weights
in the ”Slice efficient”. This could often hinder the Gibbs sampler in the allocation
step, moving an observation from one component associated with a few observations
to another associated with many observations. The introduction of our threshold facil-
itates this change. We remind that the ”Truncated” algorithm takes into account the
weights of the mixture components when updating the classification variables. On the
flip side, removing the threshold in our sampler increases the IAT. This is noticeable
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Table 12: Galaxy data n = 82, LD = 150, LM = 300.

IAT on # of
clusters ↓

IAT on
deviance ↓

Estimated #
clusters

Estimated
deviance

Slice exch. thres 14.48(0.37) 2.88(0.05) 3.986(0.93) 1561.14(21.61)
Trunc. exch. 14.42(0.37) 2.94(0.05) 3.989(0.93) 1561.16(21.69)
SE without thres. 35.52(0.92) 4.77(0.09) 3.989(0.93) 1561.15(21.61)
Truncated 38.65(1.00) 3.63(0.07) 3.996(0.94) 1561.15(21.66)
Slice efficient 60.65(1.57) 5.28(0.10) 3.991(0.93) 1561.15(21.62)
Slice eff. thres. 37.82(0.98) 3.61(0.07) 3.986(0.93) 1561.08(22.17)

Algo 8 (m = 2) 8.25(0.21) 2.57(0.05) 3.987(0.93) 1561.16(21.62)

Table 13: S&P 500 n = 2023, LD = 200, LM = 500.

IAT on # of
clusters ↓

IAT on
deviance ↓

Estimated #
clusters

Estimated
deviance

Slice exch. thres 22.58(0.75) 145.07(3.06) 4.977(0.82) 14990.47(57.56)
Trunc. exch. 21.59(0.72) 148.69(3.14) 4.978(0.82) 14990.50(59.09)
SE without thres. 93.93(3.13) 194.26(4.10) 4.976(0.82) 14990.35(57.80)
Truncated 32.75(1.09) 148.66(3.14) 4.975(0.81) 14990.94(59.44)
Slice efficient 105.92(3.53) 204.63(4.32) 4.965(0.81) 14991.21(61.14)
Slice eff. thres. 34.87(1.16) 145.46(3.07) 4.969(0.82) 14990.56(60.53)

Algo 8 (m = 2) 13.55(0.45) 106.28(2.24) 4.980(0.82) 14990.38(59.09)

in the differences between ”Slice exch. thres” and ”SE. without thres.”. Overall, it
was observed for all datasets that the introduction of our threshold leads to a faster
decrease in autocorrelation curves in the early lags, and therefore a lower IAT.

We now look at the benefits we derive from the model’s exchangeability property.
This is reflected in the differences between ”Slice exch. thres.” and ”Slice eff. thres.”,
and between ”Trunc. exch.” and ”Truncated”. Here too, exchangeability reduces
IAT. We also noted that the autocorrelation curves obtained by ”Slice exch. with-
out thres.” decrease and tend towards zero more rapidly than in the algorithms using
non-exchangeable models (”Truncated”, ”Slice eff. thres.” and ”Slice efficient”). This
behaviour was observed for all datasets.

Finally, it is important to point out that the two proposed variants and Algorithm
8 of [19] were stable in all experiments: for various simulations, we always obtained
the same results for each data set and data size. In contrast, algorithms using non-
exchangeable models ([20] and [26]) did not always give the same results. We also
observed erratic convergence behaviour of the Gibbs sampler in these two algorithms,
particularly for large datasets (e.g. lepto with n = 10, 000).

4 Conclusion and discussion

When models become increasingly complex due to increasing dimensionality, the poor
mixing of an MCMC algorithm can be particularly inhibiting. It then seems important
to develop samplers that improve algorithm mixing while experimenting with strate-
gies to reduce computational cost. In this paper, we have proposed a simple, efficient
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and easy-to-use Gibbs sampler for posterior simulation under Pitman-Yor and Dirich-
let mixture models, which meets the constraint of efficient parallelization capability
while retaining good mixing properties. Our comparative study on real and simulated
data sets confirm our belief that the two variants of our conditional Gibbs sampler
have the potential to be a useful and interesting addition to the menu of samplers for
DPM and PYM. A difference between the two proposed variants is that for the trun-
cated version (”Trunc. exch.”), the fixed length of the approximation must be decided
before the sampling. Most of the time, this is not a crucial point for Dirichlet pro-
cess mixtures, but for the two-parameter case, the fixed approximation may give rise
to biased estimates for moderate truncation lengths. The exchangeable thresholded
slice version (”Slice exch. thres.”) achieves adaptive truncation at each iteration, and
maintains a nice trade-off between IAT and time cost.

Our samplers have been developed for Pitman-Yor and Dirichlet process mixture
models. Since the ”Slice efficient” of [26] has been developed for more general stick-
breaking priors, and the introduction of our proposed threshold has been shown to
improve its mixing property, this may be an interesting solution for more general stick-
breaking processes other than DP and PYP. In this case, an attractive perspective
might be to also introduce mixing moves over clusters labels as suggested by [29]
and [24]. As mentioned, the order of clusters labels matters in the stick-breaking
representation. A label permutation step could result in a better mixing chain.
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Appendix A

This appendix presents the rest of the results for the DPM case, with α = 1 These are
the tables for Lepto and Bimod simulated data with n = 100. We also present some
figures relating to the autocorrelation curves and densities estimated by competing
algorithms.

Table A1: Bimod data n = 100, LD = 150, LM = 300. Bold: best score, Underline:
second score. In brackets: estimated standard deviation

IAT on # of
clusters ↓

IAT on
deviance ↓

Estimated #
clusters

Estimated
deviance

Slice exch. thres 28.76(0.74) 5.85(0.11) 3.801(1.66) 287.59(8.46)
Trunc. exch. 28.51(0.74) 6.00(0.11) 3.808(1.67) 287.58(8.48)
Truncated 54.38(1.40) 5.89(0.11) 3.789(1.66) 287.58(8.42)
Slice efficient 99.92(2.58) 8.76(0.16) 3.784(1.65) 287.58(8.42)

Algo 8 (m = 2) 15.59(0.40) 5.20(0.09) 3.794(1.66) 287.59(8.52)

Table A2: Lepto data n = 100, LD = 200, LM = 500. Bold: best score, Underline:
second score. In brackets: estimated standard deviation

IAT on # of
clusters ↓

IAT on
deviance ↓

Estimated #
clusters

Estimated
deviance

Slice exch. thres 25.61(0.85) 13.53(0.29) 3.991(1.64) 239.74(11.38)
Trunc. exch. 24.78(0.83) 13.46(0.28) 3.983(1.63) 239.75(11.31)
Truncated 41.22(1.37) 17.03(0.36) 4.001(1.64) 239.72(11.31)
Slice efficient 120.71(4.03) 46.28(0.98) 3.979(1.64) 239.77(11.29)

Algo 8 (m = 2) 14.79(0.49) 9.83(0.28) 3.994(1.63) 239.72(11.36)

Figures A1 and A2 show, for Galaxy data, the autocorrelation curves that were
used to estimate IAT on the number of clusters and on deviance respectively. Figure
A3 displays the data histogram and estimated posterior density for each algorithm.
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Fig. A1: Autocorrelation curves used to estimate the IAT for the number of clusters (Galaxy
data).
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Slice eff. thres.: 3.986 (0.924) iat = 37.821 (0.977) T = 3.03e-03

Trunc.: 3.996 (0.936) iat = 38.650 (0.999) T = 4.33e-03
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Fig. A2: Autocorrelation curves used to estimate the IAT for the deviance (Galaxy data).
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Trunc. exch.: 1561.163 (21.692) iat = 2.941 (0.054) T = 1.57e-03
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Fig. A3: Histogram of data and estimated densities (Galaxy data).
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Appendix B

This appendix presents the results for the DPM case, with α = 5, with the exception
of the results for lepto and bimod data with n =10,000.

Table B3: Galaxy data n = 82, LD = 150, LM = 300. Bold: best score, Underline:
second score. In brackets: estimated standard deviation.

IAT on # of
clusters ↓

IAT on
deviance ↓

Estimated #
clusters

Estimated
deviance

Slice exch. thres 10.73(0.28) 2.80(0.05) 7.082(3.32) 1563.10(23.55)
Trunc. exch. 10.11(0.26) 2.81(0.05) 7.084(3.31) 1563.10(23.54)
Truncated 19.51(0.50) 3.45(0.06) 7.079(3.32) 1563.10(23.57)
Slice efficient 38.75(1.00) 4.96(0.09) 7.085(3.31) 1563.11(23.59)

Algo 8 (m = 2) 6.16(0.16) 2.35(0.04) 7.084(3.31) 1563.10(23.56)

Table B4: Bimod data n = 100, LD = 150, LM = 300. Bold: best score, Underline:
second score. In brackets: estimated standard deviation.

IAT on # of
clusters ↓

IAT on
deviance ↓

Estimated #
clusters

Estimated
deviance

Slice exch. thres 14.24(0.37) 2.35(0.04) 8.886(5.41) 283.18(8.98)
Trunc. exch. 13.74(0.35) 2.33(0.04) 8.880(5.38) 283.17(8.97)
Truncated 23.22(0.60) 2.67(0.05) 8.883(5.41) 283.18(9.00)
Slice efficient 45.67(1.18) 3.58(0.06) 8.891(5.38) 283.18(8.97)

Algo 8 (m = 2) 8.56(0.22) 2.01(0.04) 8.888(5.42) 283.18(8.98)

Table B5: Bimod data n = 1000, LD = 150, LM = 800. Bold: best score, Underline:
second score. In brackets: estimated standard deviation.

IAT on # of
clusters ↓

IAT on
deviance ↓

Estimated #
clusters

Estimated
deviance

Slice exch. thres 81.36(3.43) 6.90(0.13) 9.889(7.26) 2741.07(12.05)
Trunc. exch. 81.07(3.42) 6.81(0.12) 9.956(7.35) 2741.08(12.05)
Truncated 135.98(5.73) 7.35(0.13) 9.958(7.34) 2741.08(12.09)
Slice efficient 256.71(10.83) 12.85(0.23) 9.962(7.40) 2741.09(12.06)

Algo 8 (m = 2) 42.85(1.81) 5.35(0.10) 9.928(7.36) 2741.08(12.03)

Appendix C Appendix 3

This appendix presents the results for the PYM case, with d = 0.3 and α = 1,
excluding Galaxy and lepto 1000, already presented in the main paper.
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Table B6: Lepto data n = 100, LD = 200, LM = 500. Bold: best score, Underline:
second score. In brackets: estimated standard deviation

IAT on # of
clusters ↓

IAT on
deviance ↓

Estimated #
clusters

Estimated
deviance

Slice exch. thres 11.12(0.37) 14.26(0.30) 9.004(4.74) 257.17(21.70)
Trunc. exch. 11.84(0.39) 14.34(0.30) 8.988(4.75) 257.19(21.89)
Truncated 17.79(0.59) 15.96(0.34) 9.011(4.75) 257.16(21.69)
Slice efficient 37.12(1.24) 33.49(0.71) 9.009(4.74) 257.18(21.67)

Algo 8 (m = 2) 6.95(0.23) 11.43(0.24) 8.999(4.73) 257.18(21.66)

Table B7: Lepto data n = 1000, LD = 150, LM = 800. Bold: best score, Underline:
second score. In brackets: estimated standard deviation

IAT on # of
clusters ↓

IAT on
deviance ↓

Estimated #
clusters

Estimated
deviance

Slice exch. thres 90.94(3.84) 15.81(0.29) 11.121(7.69) 2354.96(19.51)
Trunc. exch. 90.68(3.82) 15.72(0.29) 11.127(7.64) 2354.95(19.59)
Truncated 145.95(6.16) 17.40(0.32) 11.080(7.70) 2354.98(19.60)
Slice efficient 254.45(10.73) 27.28(0.50) 11.196(7.65) 2354.90(19.60)

Algo 8 (m = 2) 50.75(2.14) 13.13(0.24) 11.098(7.69) 2354.94(19.48)

Table B8: S&P 500 data n = 2023, LD = 300, LM = 500. Bold: best score, Underline:
second score. In brackets: estimated standard deviation

IAT on # of
clusters ↓

IAT on
deviance ↓

Estimated #
clusters

Estimated
deviance

Slice exch. thres 17.09(0.57) 151.34(3.91) 7.476(2.65) 14989.81(53.22)
Trunc. exch. 18.02(0.60) 143.45(3.71) 7.484(2.65) 14989.68(51.86)
Truncated 21.73(0.72) 150.94(3.90) 7.454(2.64) 14990.39(54.49)
Slice efficient 66.67(2.22) 225.38(5.82) 7.481(2.65) 14990.43(54.78)

Algo 8 (m = 2) 11.33(0.38) 97.28(2.51) 7.478(2.65) 14989.76(52.48)

Table C9: Bimod data n = 100, LD = 150, LM = 300. Bold: best score, Underline:
second score. In brackets: estimated standard deviation

IAT on # of
clusters ↓

IAT on
deviance ↓

Estimated #
clusters

Estimated
deviance

Slice exch. thres 25.77(0.67) 7.75(0.14) 4.726(3.42) 267.96(9.97)
Trunc. exch. 26.47(0.68) 7.97(0.15) 4.650(3.06) 267.93(9.99)
Truncated 71.53(1.85) 9.88(0.18) 5.067(3.93) 267.87(10.00)
Slice efficient 97.86(2.53) 16.35(0.30) 4.743(3.42) 267.95(10.05)

Algo 8 (m = 2) 14.27(0.37) 5.79(0.11) 4.720(3.40) 267.95(9.99)
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Table C10: Bimod data n = 1000, LD = 150, LM = 800. Bold: best score, Underline:
second score. In brackets: estimated standard deviation

IAT on # of
clusters ↓

IAT on
deviance ↓

Estimated #
clusters

Estimated
deviance

Slice exch. thres 42.74(1.80) 2.60(0.05) 4.427(3.21) 2646.88(9.02)
Trunc. exch. 46.05(1.94) 2.54(0.05) 4.401(3.05) 2646.88(9.01)
Truncated 89.45(3.77) 2.82(0.05) 4.525(3.38) 2646.89(9.05)
Slice efficient 200.64(8.46) 6.23(0.11) 4.446(3.21) 2646.88(9.03)

Algo 8 (m = 2) 22.80(0.96) 2.15(0.04) 4.425(3.18) 2646.88(8.99)

Table C11: Lepto data n = 100, LD = 200, LM = 500. Bold: best score, Underline:
second score. In brackets: estimated standard deviation

IAT on # of
clusters ↓

IAT on
deviance ↓

Estimated #
clusters

Estimated
deviance

Slice exch. thres 47.85(1.60) 27.00(0.57) 3.719(3.70) 223.92(8.55)
Trunc. exch. 50.04(1.67) 26.91(0.57) 3.674(3.39) 223.86(8.61)
Truncated 93.37(3.11) 35.96(0.76) 3.955(4.18) 223.78(8.75)
Slice efficient 224.68(7.49) 74.51(1.57) 3.696(3.68) 223.94(8.49)

Algo 8 (m = 2) 27.28(0.91) 17.83(0.38) 3.720(3.71) 223.92(8.55)
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