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On uniform polynomial approximation

Anthony Poéls

Abstract

Let n be a positive integer and £ a transcendental real number. We are
interested in bounding from above the uniform exponent of polynomial approxi-
mation W, (£). Davenport and Schmidt’s original 1969 inequality @, (¢) < 2n—1
was improved recently, and the best upper bound known to date is 2n—2 for each
n > 10. In this paper, we develop new techniques leading us to the improved
upper bound 2n — %nl/‘?’ +O(1).

MSC 2020: 11J13(Primary), 11J82 (Secondary).
Keywords: Exponent of Diophantine approximation, heights, uniform polynomial approxima-

tion.

1 Introduction

Let & be a non-zero real number and let n be a positive integer. Dirichlet’s theorem
(1842) is one of the most basic results of Diophantine approximation. It shows that
for any real number H > 1, there exists a non-zero integer point (zo,...,r,) € Z"*!
such that

max {|z1],...,|za|} < H and |zo+ 216+ -+ 2,8" < H ™ (1.1)

It is natural to ask if we can improve the exponent n of H~", and this question gives
rise to two Diophantine exponents. The so-called uniform exponent of approximation
Wn(§) (resp. the ordinary exponent w,(£)), is the supremum of the real numbers
w > 0 such that the system

IPl<H and 0<|[P(§)<H™

admits a non-zero solution P € Z[X] of degree at most n for each sufficiently large H
(resp. for arbitrarily large H). Here, || P|| denotes the (naive) height of P, defined as
the largest absolute value of its coefficients. These quantities have been extensively
studied over the past half-century, see for example [5] for a nice overview of the
subject. By Dirichlet’s theorem, if £ is not an algebraic number of degree < n, then
we have

wn(§) > Wn(&) > n,

and it is well known that those inequalities are equalities for almost all real numbers
& (w.r.t. Lebesgue measure). Note that if £ is an algebraic number of degree d, then
Wn(€) and wy,(€) are both equal to min{n,d — 1} (it is a consequence of Schmidt’s
subspace theorem, see [5 Theorem 2.10]). We can therefore restrict our study to
the set of transcendental real numbers. The initial question “can we improve the
exponent n in Dirichlet’s Theorem?” may be rephrased as follows: “does there exist a



transcendental real number ¢ satisfying &, (§) > n?”. For n = 1 the answer is negative
and rather elementary to prove, so the first non-trivial case is n = 2. Before the early
2000s, it was conjectured that no such number existed. This belief was swept away
by Roy’s extremal numbers [20], [21], [I], whose exponent &5 is equal to the maximal
possible value (3 ++/5)/2 = 2.618---. Since then, several families of transcendental
real numbers whose uniform exponent @, is greater than 2 have been discovered (see
for example [22], [6], [15) [16]). However, for n > 3 the mystery remains, and it is still
an open question whether or not there exists ¢ € R\ Q with &, (¢) > n.

In this paper, we are interested in finding an upper bound for the uniform exponent
wWn (€), as this could provide clues to solving the initial problem. Brownawell’s version
of Gel’fond’s criterion [3] implies that @, (§) < 3n. In 1969, Davenport and Schmidt
[10, Theorem 2b] showed that for any transcendental real number & and any integer
n > 2, we have

Wn(€) <2n—1. (1.2)

Up to now, few improvements have been made. Bugeaud and Schleischitz [8, Theorem
2.1] first got the upper bound

1 3
Qn(é)§n—§+\/n2—2n+1/4:2n—§+5n, (1.3)

where &, > 0 tends to 0 as n tends to infinity. Recently, Marnat and Moshchevitin [I3]
proved an important conjecture of Schmidt and Summerer on the ratio @, (§)/wy,(€)
(see also [19, Chapter 2] for an alternative proof based on parametric geometry of
numbers). In [23], Schleischitz pointed out that we can use the aforementioned in-

equality in the proof of (1.3) to get
Wn(&) <2n—2,

for each n > 10. This is currently the best known upper bound. Let us also mention
that using parametric geometry of numbers, Schleischitz [24] Theorem 1.1] was able
to replace the estimate (1.3) by

3n—1)++vn?2—-2n+5

Wn(§) < 5

:2n—2+€;

where €/, > 0 tends to 0 as n tends to infinity. For n = 3,...,9, bounds that are
better than (1.2)), but nevertheless (strictly) greater than 2n — 2, are known. For
example, it was proved in [§] that for each transcendental real number &, we have

@3(6) <3+V2=441---,

see also the very recent work of Schleischitz [25]. In this paper, without relying on
Marnat-Moshchevitin’s inequality and with a different approach, we show in Section|7]
that the upper bound @, (§) < 2n — 2 holds for any n > 4. We also improve the upper
bound for &s.

Theorem 1.1. Let n > 3 be an integer and £ € R be a transcendental real number.
If n > 4, then

Wn(€) <2n—2.

For n = 3, we have the weaker estimate 03(§) < 2+ V5=423---.



We do not think that these upper bounds are optimal. It is interesting to note
that Schleischitz, with a different method and under a technical condition, also found
the estimates of Theorem see [25]. Our main result below is a significant im-
provement on the previous results as n tends to infinity and does not require Marnat
and Moshchevitin’s inequality [I3].

Theorem 1.2. Set a = 1/3. There exists a computable constant N > 1 such that,
for each n > N and any transcendental real number £ € R, we have

@n(€) < 2n —an'/3.

The constant a = 1/3 is not optimal. Numerical calculations based on the results
from Section [11fsuggest that we could take N rather “small” in Theorem (maybe
N < 10%?). However, to keep the arguments and calculations as clear and simple as
possible, we did not try to provide an explicit value of N.

Theorem can be compared to [I7, Theorem 1.1], where we study A (£), the
uniform exponent of rational simultaneous approximation to the successive powers
== (1,£&2%,...,€6") (which is known to be, in a sense, dual to @y, (£)), see Section
for the precise definition and more details. We were not able to deduce one result
from the other, even though there are similarities in the arguments. For example,
given a polynomial P € Z[X] of degree at most n, which is a good approximation, we
can associate the k 4+ 1 polynomials P, XP,..., X*P of degree at most n + k. They
provide information on &,y 4(£). On the other hand, if we consider y € Z"*! which
is a good approximation of = (for simultaneous approximation), we can associate
the k& + 1 blocks of successive n + 1 — k coordinates of y, which are rather good
approximations of (1,£,...,£€"7%). They in turn provide information on \,_j ().
Note that the difficulties in the proofs of both theorems are not in the same places.
In particular, in this paper we have to work with irreducible polynomials, a rather
heavy constraint. Also, one of the most delicate parts of our approach is to bound
from above the ordinary exponent w, (§), whereas this is rather “simple” to do for the
ordinary exponent A, (§) in [I7].

Before presenting our strategy, let us quickly explain Davenport and Schmidt’s
proof of the upper bound . Given a real number & < @, (§), they show, using ele-
mentary means and Gelfond’s Lemma, that there are infinitely many pairs of coprime
polynomials P, @Q € Z[X] of degree at most n, such that

IQI < IIP|l and  max{|Q(€)], [P} < ||,

(where the implicit constant only depends on n). It implies that the resultant
Res(P, @), which is a non-zero integer, satisfies

1< [Res(P, Q)] < [P |QII" " max {||P|Q)], |QIIP©]} < [ P2~

The first upper bound for |Res(P, Q)] is classical, see Lemma Since || P|| can be
arbitrarily large, they deduced that the exponent 2n—1—@ is non-negative. Estimate
follows by letting & tend to @,(£). Note that the term 2n in is directly
related to the size of the 2n x 2n determinant defining Res(P, Q) (if we suppose that
P and @ have degree exactly n).

The key idea in the proof of our main Theorem is to work with a large number
of “good” linearly independent polynomial approximations (o, ... +1 rather than



just two polynomials P and @ as above. By doing this, we can replace Res(P, Q) by a
non-zero (2n—j) x (2n—j) determinant depending on the coefficients of Qo, ..., Qj+1.
Under the ideal and unlikely assumption that

Qi < [Qoll and [Qk(©)] < Qo] (for k=0,...,5),  (1.4)

the aforementioned determinant would be bounded from above by [|Ql/?"~7=1~v.
So, together with an additional non-vanishing assumption, it would lead to &, (§) <
2n—j—1. Several new difficulties arise when trying to make the above arguments work.
We introduce the tools for the construction of the generalized resultant in Section [6]
To ensure that this determinant does not vanish, we need the extra assumption that
Qo, ..., Q41 are irreducible polynomials. The idea is to first fix a sequence of best
approximations, that we call minimal polynomials, and then to consider their highest-
degree irreducible factors (which also happen to be rather good approximations). We
deal with this question in Section o} Two obstacles remain. Firstly, note that it may
be possible that the best polynomial approximations span a subspace of dimension 3,
even when ¢ is transcendental and n is large, see [14, Theorem 1.3]. Therefore, as
soon as j > 1 (we will later choose j =< n1/3), we have to justify that we can find
j + 2 linearly independent polynomials as above. The second major problem is the
control of the sequence Q,...,Q;4+1. Estimates seem out of reach, instead we
get upper bounds of the form

Qi < Qo and |Qk(©)] < IQoll|7**  (for k=0,....5),  (1.5)

where § < 1 depends only on n and j, and is “close” to 1 if j is not too large com-
pared to n. The main ingredients for showing this are related to twisted heights,
see Sections B.2) and Appendix [A] and an important inequality on the height of sub-
spaces due to Schmidt. The parameter 6 in (1.5]) is a function of the exponent of best
approximation w,(£). We show in Section hat if the uniform exponent satisfies
©n(€) > 2n —d (with d < n'/?), then the ordinary exponent w, (&) is bounded from
above by 2n+ 2d?, and the ratio @, (£) /w, (€) is therefore close to 1. This part, which
is essentially independent from the others, is rather delicate, because we work with
the polynomials Q);. They are certainly irreducible, but not as good approximations
as the minimal polynomials. More precisely, there could be large gaps between the
height of two successive @;. If we could drop the irreducibility condition and directly
work with the sequence of minimal polynomials, we could possibly replace the upper
bound 2n — O(n'/?) with 2n — O(n'/?) in Theorem Section [11]is devoted to the
proof of Theorem [I.2]

2 Notation

Throughout this paper, £ denotes a transcendental real number.

The floor (resp. ceiling) function is denoted by |-] (resp. [-]). If f,g: I — [0, +00)
are two functions on a set I, we write f = O(g) or f < g or g > f to mean that
there is a positive constant ¢ such that f(z) < cg(z) for each z € I. We write f < g
when both f < g and g < f hold.

Let K be a field. If A is a subset of a K-vector space V', we denote by (A), CV
the K-vector space spanned by A, with the convention that (0), = {0}.



Given a ring A (typically A = R or Z) and an integer n > 0, we denote by A[X] the
ring of polynomials in X with coefficients in A, and by A[X]<,, C A[X] the subgroup of
polynomials of degree at most n. We say that P € Z[X] is primitive if it non-zero and
the greatest common divisor of its coefficients is 1. Given P = Y"}'_,aX* € R[X],
we set

P| = :
1Pl = jmax ax]

Gelfond’s Lemma is the following statement (see e.g. [4, Lemma A.3] as well as
[3]). For any non-zero polynomials P, ..., P, € R[X] with product P = P; - -- P, of
degree at most n, we have

e Pl NIPA < NPI < e[| Pl - - [ P (2.1)

In particular, for each non-zero polynomial P € Z[X]<,, and each factor Q € Z[X]
of P, we have e "||Q| < ||P||. We will often use as follows. If Q € Z[X]<,, is
irreducible and if P € Z[X]<,, is a non-zero polynomial which satisfies || P|| < e™"||Q],
then ) cannot divide P. They are thus coprime polynomials.

We recall the definition of the resultant, which, as explained in the introduction,
is useful for estimating the exponent &, (€) (see also Section[d). Let P,Q € Z[X] be
non-constant polynomials of degree p and g respectively, and let a;, b; € Z such that
P(X)=Y"_,arX* and Q(X) = Y7_, bk X". Their resultant Res(P, Q) is defined
as the (¢ 4+ p)-dimensional determinant

ap 0 by 0
ap—-1 Qp bg—1 bg
ag bo
Res(P,Q) = 0 ao 0 b . (2.2)
ao bp
q p

Besides the exponents of linear approximation w, and @,, we will also need the
following exponents of simultaneous rational approximation. For each positive integer
n, the exponent A, (&) (resp. A, (€)) is the supremum of the real numbers A > 0 such
that the system
lyo| <Y and L(y) <Y~* where L(y) := max |yof* — x|,
1<k<n

admits a non-zero integer solution y = (yo,...,yn) € Z"*! for each sufficiently large
Y > 1 (resp. for arbitrarily large Y). Dirichlet’s theorem [26, §II.1, Theorem 1A]
implies that Xn(g) > 1/n. The best upper bounds known to date for Xn(f) when
n > 4 are established in joint work with Roy in [I7]. In particular, there is an explicit
positive constant a such that

~ 1
(&) < )
&) = n/2+an'/?2 +1/3

and sharper results are also obtained when n is small.



3 Minimal polynomials

A sequence of minimal polynomials (associated to n and €) is a sequence (P;);>¢ of
non-zero polynomials in Z[X]<,, satisfying the following properties:

(i) the sequence (||Pi||)i>o is strictly increasing;
(i) the sequence (|P;(€)]) -, is strictly decreasing;

(iii) if |P(&)| < |P;(§)| for some index i > 0 and a non-zero P € Z[X]<y, then
1Pl = (| Pigall-

Note that if we require the dominant coefficient of P; to be positive (and since & is
transcendental), then the above sequence is unique up to its first terms. Let (P;);>0
be a sequence as above. We have the classical formulas:

W, (€) = lim inf M= RelACAL log | P3(¢)] and w,(§) = limsup =R lASVAL log [P3(€)|

3.1
i—00 log ||Pi+1 H i—00 IOg ||PZ|| ( )

In particular, given a positive real number @ with © < &, (§), then we have, for each
sufficiently large index i,

w
Wn(f),

(with the convention 7 = 0 if wy,(§) = 00). The second inequality in (3.2)) asks for
an upper bound on w,(£). Given a non-zero P € Z[X], we set w(P) =0 if ||P| = 1.
Otherwise, we denote by w(P) the real number satisfying

PO < [Pyl ™ and  [[Pia|[” < |Bifl,  where 7 := (3.2)

|PE)] = |[PI|7®.

With this notation, we have

wn(§) = limsup w(P)=limsupw(F;) and liminfw(P;) > w,(E). (3.3)
|| Pl o0 o0 i—00
PEZ[X]<n

The following results are well-known. We prove them for the sake of completion.
The first one follows from the arguments of the proof of [9 Lemma 2] (see also [21],
Lemma 4.1]).

Lemma 3.1. Let i > 0 and write V; = (P;, Piy1)g € R[X]<n. Then {P;, P11} forms
a Z-basis of the lattice V; N Z[X]<y,.

Proof. By contradiction, suppose that {P;, P11} is not a Z-basis of V; N Z[X]<,.
Then there exists a non-zero () € Z[X]<,, which may be written as Q = rP; + sP;11,
where 7, s € Q satisfy |r|, |s| < 1/2. In particular, we have

QU < (I[Pl + Isll| Pigall < | Pigall,
QI < IrlIBi ()] + [sl|Piyr ()] < [Pi(§)]-

This contradicts the minimality property of P;. O

The next result is analogous to the second part of [2I, Lemma 4.1]. The construc-
tion of S; is due to Davenport and Schmidt [9].



Lemma 3.2. For each i > 0, define
Si = Pi(§)Pit1 — Pit1(§) P € R[X]<n.

Then 1
SISill < [Pl E:(E)] < 2(153]]-

Moreover, if for integers 0 < i < j the space spanned by P;, Piy1,--- , P; has dimen-
sion 2, then Sj_1 = £85;. In particular

[ Piga I[P = 1 P51 P51 (E)]-

Remark 3.3. Note that the quantity ||S;|| satisfies ||.S;|| =< De(V;), where D is defined
in Section and V; = (P;, Piy1)g. We will study the function D¢ more deeply later.

Proof. We easily get ||S;]| < 2||Pit1]/|P:i(§)]. Define Ry, R_ € Z[X]<, by
Rj: = PiJrl + Pz

Suppose that there exists ¢ € {4, —} such that |R.(¢)| < |P;(§)|/2. Then by min-
imality of P;, we must have ||R.|| > ||Pit1]|. Since S; = P;(§)R. — R(§)P;, we
find

1
15611 2 B O Bell = 1RO Pl = 5 [ Bia [P (E)]-

Assume that |[R1(§)[, |[R-(&)| > |P:(€)|/2. This is equivalent to

Pa @)l < 516

Again, this yields [|Si]] > [PAOI Poiall — [Pt (OB > [ Prsall| P (E) /2.

Now, let us write V; = (P, ..., Pj)p, with j > 4, and suppose that V; has di-
mension 2. We need to prove that S;_; = £5;. If j = i + 1 it is automatic, we
may therefore assume that j > i + 2. By Lemma there exist a,b € Z such that
P, =aP; 1+ bP;5. Since {P;, P;11} is also a Z-basis of V;, we have b = +1, and we
deduce that

Si = (aPiy1(8) + bPiy2(§)) Piy1 — Piy1(€) (aPisy + bPigo) = —=bSit1 = £Si41.
By induction, we get S; = £S;41 = = £5;_1. O

The proof of [9, Lemma 3] (which deals with the case n = 2) yields the classical
following result.

Lemma 3.4. Suppose n > 2. Then, there are infinitely many indices ¢ > 1 for which
P;_1, P; and P;11 are linearly independent.

Proof. By contradiction, suppose that there exists i > 0 such that V = (P;, Piy1,...)p
has dimension 2. By Lemma [3.2] there exists ¢ > 0 such that for each j > i we have

0 <[Pl P:(E)] < el Pyl Py -]

This leads to a contradiction since || P;|||Pj—1| < ||Pj||1*a"(§)+°(1) tends to 0 as j
tends to infinity. O

Remark 3.5. As mentioned in the introduction, it is however possible that all polyno-
mials P; with ¢ large enough lie in a subspace of dimension 3 , see [I4, Theorem 1.3].



4 Resultant and first estimates

The following useful result can easily be derived from the proof of [10, §5] (see also of
[3, Lemma 1]). We recall the arguments since they illustrate (in a simpler situation)
how we will deal with generalized determinants.

Lemma 4.1. Let p,q be positive integers with p,q < n. There exists a constant
¢ > 0 depending on & and n only, with the following property. For any polynomials
P,Q € Z[X] of degree p and q respectively, we have

[Res(P, Q)] SCI\PH‘I‘lllQII”‘lmaX{IIPIHQ )L RUIPE)I}-

Proof. Let a;,b; € Z such that P(X) = >%_,ar X" and Q(X) = Y1_ bpX". For
1 =1,...,p+q— 1, we add to the last row of the determinant (2.2)) its i-th row
multiplied by ¢4, This last row now becomes

(€7 P(©), . EP(©). P(©).€7Q(9). - £Q(9). Q) ).

Using the upper bounds |a;| < ||P|| and |b;| < ||@|| for the other entries of (2.2)), we
obtain

[Res(P, Q)| < [ PII*HPEIIQIP + 1P| QIP~Q(&)],
where the implicit constant only depends on p, ¢ and &. O

The next result, which is also based on inequalities involving resultants, will be
used in Section It ensures that if R € Z[X] is a “good” approximation, in the sense
that R(€) is very small compared to ||R||, and if we write R as a product of coprime
polynomials Bj - - - B, then one of those factors is also a “good” approximation, while
the product of the others is not.

Lemma 4.2. Let m, k be positive integers. There exists a constant ¢ > 0 depending
onm and & only, with the following property. Let By, ..., By € Z[X] be non-constant,
pairwise coprime polynomials, and suppose that R := By - - - By has degree at most m.
Then, there exists j € {1,...,k} such that

|Bi(] < cllRI™ Y R(©)]  and H\B (©) = R~
1#]

Proof. If k = 1 this is trivial. We now suppose that k > 2 and write d; = deg(B;) for
i=1,...,k. By hypothesis, we have deg(R) = di + - - + di, < m. Note that

k
R§)|=H|B¢(€)\ and [|R|| < HIIB I (4.1)

the second inequality coming from Gelfond’s lemma (with an implicit constant de-
pending only on m). Choose j € {1,...,k} such that |B;(§)| is minimal and fix
ie{l,...,k} with ¢ # j. Since B; and B; are coprime, their resultant Res(B;, B;) is
a non-zero integer. Using Lemma [£.1] we find
1 < [Res(Bi, By)| < || Bill 1B (I1B; 1| Bi (€)] + 1B3 || B; (€)1)
< |1Bi[| % 11B; 11| Bi(€)!,



with an implicit constant depending only on & and m, hence
—log|Bi(§)| < djlog || Bil + dilog | B;|| + O(1).

On the other hand, by summing the above inequalities for 7 # j, and by using (4.1)),
we obtain

k k
> —log|Bi(€) < d; Y log||Bill + (m — d;) log || B; | + O(1)
=7 =

< (m —1)log||R|| + O(1).

We easily deduce that

k k

[11B:© > IRI=™ and [R()| = [ 1B > [B; ()R],
=l i=1

7]

5 A sequence of irreducible polynomials

As explained in the introduction, to get the upper bound @, (§) < 2n—1, the strategy
of Davenport and Schmidt [10] consists in considering the resultant Res(P, Q) of two
“good” polynomial approximations P,Q € Z[X]<,. To ensure that Res(P, Q) does
not vanish, they need a polynomial P which is irreducible (for it is then easy to find
@ so that P and @ are coprime). The same difficulty appears in [§]. Similarly, we will
not work directly with a sequence of minimal polynomials. Instead, we will considerer
the largest irreducible factors of the minimal polynomials. Now, let n,d be integers
with
2<d<1+ g

In this section, we assume that the transcendental real number ¢ satisfies @, (£) >
2n — d and we fix a real number & (arbitrarily close to @, (£)) such that

Gn(€) >0 > 2n—d. (5.1)

We denote by (P;);>o0 a sequence of minimal polynomials associated to n and &.
Our goal is to prove the existence of a sequence (Q;);>o as below.

Proposition 5.1. Suppose that holds. Then, there exist a sequence (Q;)i>o0 of
pairwise distinct polynomials in Z[X] <, and an index jo > 0 with the following prop-
erties. The sequence (||Q;]])i>0 is bounded below by 2, unbounded and non-decreasing,
and for any i >0

(i) Qi is irreducible (over Z) and has degree at least n —d + 2;

(ii) Q; divides P; for some index j > jo (not necessarily unique), and for each
J = jo there exists k > 0 such that Qy, divides P;;

(iii) 1Qi(&)| = ||Qq] (@) < \|Qi||’8, and we further have

wp(€) = limsupw(Qr) and likminfw(Qk) > W (§). (5.2)

k—o0



(iv) if Q; divides a minimal polynomial P; with j > jo, then

) ) —2n +d
< . 146, :L .
1P| < 1Qill**%,  where 6; o (5.3)
(v) we have
GG —n—d+3
1Quaall” < Qi where r = — 2@ —n=d+3) (5.4)

wn (&) (wn(§) —n —d+3)’
with the convention T = 0 if w,(§) = co.

The above proposition is essentially a consequence of Lemma [5.3] below. Asser-
tion ensures that the polynomials @QQ; are quite good approximations, and they
can be used to compute the exponent of best approximation wy,(§). Estimate is
the analog of the second inequality of but is way more difficult to prove. The
main reason behind this difficulty is that there may be many polynomials P € Z[X]<,,
with [[Qs < [P < [ Qi1 and |P(€)] < Qi(é).

In order to prove Proposition we need the two technical lemmas below. Es-
sentially, they will be used to prove that the factors of P; of small degree are bad
approximations. This will lead to the existence of a factor of large degree which is
necessarily a rather good approximation.

Lemma 5.2. Suppose that (5.1) holds. Then, there exists a constant ¢ € (0,1)
depending only on & and n such that for any non-zero polynomial R € Z[X]|<p—dq+1

we have
[R()| > c|| R~ (" +aeelD=1) > ¢|| R|| ==, (5.5)

In particular (5.5)) holds for any R € Z[X]<4—2.

Proof. If R is constant we have |R(§)| = || R|| and the result is trivial. Now, suppose
that R is irreducible and not constant. We adapt the arguments of Davenport and
Schmidt [10, §5-6]. Set H = e~ "||R||. By definition of &, (§) and @, if H is sufficiently
large, there exists a non-zero P € Z[X]<,, such that

IP| <H and |P()|<H ™.

By (2.1), the (irreducible) polynomial R is not a factor of P, they are thus coprime
polynomials. Their resultant is a non-zero integer, and using Lemma we obtain

L< | PI*s®=Y R PE)] + | P R|"HR(E)]
< Hn+deg(R)flfa + Hn+deg(R)fl‘R(€)|'
Since @ > 2n — d and deg(R) < n —d + 1, the first term tends to 0 as H tends to
infinity. Hence 1 < H"F4e8()=1| R(¢)|, which implies (5.5).

If R is not irreducible, we write R = []’_; R; with integer s > 1 and
Ry,...,Rs € Z[X] irreducible of degree < deg(R) (possibly constant). Combin-
ing ||R| = TI;_, || R:l| together with (5.5) applied to the irreducible factors R;, we
find

s s
|R(&)| = H |R;(€)] > H HRZ,”—(H—O—dcg(R)—l) > HR”—(n—chg(R)—l).
i=1

i=1

Finally, the last assertion comes from the fact that d — 1 < n+d — 1 (since d <
14+n/2). O
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Lemma 5.3. Suppose that (5.1)) holds. There exist ig > 0 and a constant ¢ > 0 such
that for each i > ig the polynomial P; has a unique irreducible factor P; € Z[X] of
degree > n — d + 2 and positive leading coefficient. It satisfies

PO = | BN P2, (5.6)

moreover (||ﬁz||)12m tends to infinity and as i tends to infinity. For each i large

enough, we have ||| > 1, and writing | P;(€)| = ||E||_“’(E), we furthermore have
wn(€) = limsupw(P;) and liminfw(P;) > B, (8). (5.7)
i—00 1—00

Proof. First, note that since d < 1+ n/2, if we decompose P; as a product of irre-
ducibles, there is at most one factor of degree > n — d + 2. Fix ¢ > 0 large enough so
that w(P;) > @, and write

P:=P =[] R
k=1
where Ry,...,Rs € Z[X] are irreducible polynomials (and s is a positive integer).

Suppose that deg(Rr) < n —d + 1 for each K = 1,...,s. Then, by Lemma
together with || P|| =< [], || Rk, we find

1P|~ > |PE)| = [T IR(&)] > [T IIRelI= = = || P~ Cr=.
k=1 k=1

This is impossible if 4 is sufficiently large since @ > 2n — d. Therefore, if ¢ is large
enough, one of the factors Ry has degree at least n —d+2. Without loss of generality,
we may suppose that it is R := Ry. Write S := [[;_, Ry, so that P = RS. We have

deg(S) < d—2, and (5.5) of Lemma yields
1S(E)] > || 8|~ +d=3).
Together with ||P|| < || R]|||S]], this leads to

IPE)] = [REIISEO] > [REIISI™ "2 =< [REOIIRI™2 | Pl =2,

and follows easily by setting P, := R. The rest of the proof is based only on
and the inequality ||P;|| < ||Bi||. Note that [B;(&)|[|B||" %3 < ||B;]|"+43 tends
to 0 as ¢ tends to infinity (using d < 1+4n/2 together with @ > 2n—d). We deduce that
|P,(&)]|| P;||" 3 also tends to 0 as i tends to infinity, which is possible only if || B
tends to infinity. In particular, if 4 is large enough we must have HEH > 1. Writing
|P,(¢)] = ||| =), we also have w(P;) > n+d — 3. Now, using ||P;|| < |||, and
taking the logarithms of the two sides of , we get

(W(By) — (n+d —3))log|| | < (w(By) — (n+d —3)) log]| B + O(1)
< (@(By) — (n+d - 3)) (log [ 2| + O(1)) + O(1).

By dividing by log ||P;|| and by simplifying, we deduce that w(P;) > w(P;)(1 — o(1))
and (|5.7) follows easily from ({3.3]). O
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Proof of Proposition[5.4} Let ig > 0 and (P;);>;, given by Lemma Let

(Q4)i>0 be the (infinite) sequence of factors (P;);>;, reordered by increasing height,
without repetition. By Lemma we may assume iy large enough so that ||Q;]| > 1

for each i, as well as |@Q;(&)] < ||Q:||7“. This sequence clearly satisfies the first

assertions |(i)| to the third one coming from (5.7) together with (3.3).

Now, let ¢ > 0 and let j > ip be an index such that Q; divides P;. Since we have
1Qill < || P;|| by Gelfond’s Lemma, the index j tends to infinity as ¢ tends to infinity.
Then, estimate ([5.6) can be rewritten as

PO THIB I < Q€)M Qa7 = | Quf| (@) T, (5.8)

Using |P; ()|~ > ||Pj||$ and @ > 2n — d, we get, for each large enough i,

125|208 < Q|+ (@,

which is equivalent to (5.3)). So, assertion holds assuming i( large enough.

It remains to prove assertion Note that this is trivial if w, () = co. Let us
assume that w,(§) < oo and fix a small € > 0 to be chosen later. For each pair (i, j)
as above with j > i¢ large enough as a function of ¢, we have w(P;) > @,(§) — &/2

and w(Q;) < wp(§) +¢/2, and thus (5.8) yields

HPjHL\n(E)—E—n—d+3 < ||Qi||w"(§)+€_n_d+37

for each ¢ > 0 and each j > ig such that @Q; divides P;. We define k as the largest
index such that

wp()+e—n—d+3

Pl < 1Q;°© here 6(¢) = .
[Pell < [|Qi[*,  where 6(¢) on(€)—c—n—d+3

Since || P;]| < 1|Q;/|%®), by maximality of k we have ig < j < k. Let ¢ be such that Q,
divides Pj4+1. We find

1Pl < 1Qill"® < [Pl < 1Qell*®,

and therefore £ > i + 1. On the other hand, since by Gelfond’s Lemma we have
Q|| < || Pes1ll, we deduce from (3.2]) that

Quall < 1Qull < [Pl < 1P O < QO
We now choose ¢ > 0 small enough so that

wnp(§) —n—d+3
w-n—d+3

f(e) <

This is possible since @ < @, (£), and it yields (5.4) for each ¢ > 0, assuming that ig
is large enough. O

6 On the dimension of some polynomial subspaces

We start by introducing some families of vector spaces spanned by polynomials, and
we study their dimensions.
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Definition 6.1. Let k£ > n be an integer and let A be a subset of R[X]<,,. We define

Bi(A) = {Q,XQ,..., X 4eQQ; Q e A\ {0}} CR[X]<y,
Vie(A) = (Bi(A))pg ,
g_A(kJ) = dlka(A).

The spaces Vi (.A) play the role of the spaces U*(A) in [I7, Section 3] (for simulta-
neous approximation). We obtain analog properties. Note that if .4 contains at least
one non-zero polynomial, then

Vn(-A) & Vn+1(-’4) G (6'1)

The goal of this section is to prove the following result. We could not find a
reference for the proposition below.

Proposition 6.2. Let k be an integer with 0 < k < n, and let A be a set of k + 1
linearly polynomials of R[X|<,. Suppose that the ged of the elements of A is 1 (in
other words, the ideal spanned by A is R[X]). Then

‘/Zn—k(A) = R[X]SQ’I'L—k' (62)

The case k =1 is a classical result (it is implied by the fact that the resultant of
two coprime polynomials is non-zero). The proof of Proposition is given at the
end of the section. Recall that a function f: {n,n+1,...} — R is concave if for any
1 > n, it satisfies

f@) = f(i=1) = fi+1) = (i)
The next result is a dual version of [I7, Proposition 3.1] (where we deal with simul-
taneous approximation to the successive powers of §).

Lemma 6.3. Let A # {0} be a non-empty subset of R[X]<,. The function g4 is
concave and (strictly) increasing on {n,n+1,...}.

Proof The series of inclusions shows that the function g 4 is increasing on {n, n+
.. }. For simplicity, we write V Vi(A) and B; = B;(A) for each i > n. Given an
mteger 1 > n we have XV; C V;;;, and we set

h(i) := dim (Vig1/XV;) = ga(i+1) — ga(i).

We have to prove that h is decreasing on {n,n+1,---}. Fix i > n+1 and consider the
linear map 7 : V; — V;11/XV; defined by n(P) = P+ XV,. Since B; U XB; = B;1,
we have V; + XV, = V;;1. So 7 is surjective, and consequently Im 7 = V;;1/XV; is
isomorphic to V;/ker . On the other hand, XV;_; CV; N XV; C kerm, so XV;_; is
subspace of ker . Hence

h(i — 1) = dim (V;/XV;_1) > dim (V;/ ker7) = dim (V;11/XV;) = h(3).

Lemma 6.4. Let P,Q € R[X|<,, be two coprime polynomials. Then, we have

for each j € {0,...,n —1}. In particular Va,_1(P, Q) = R[X]<2n—1.

13



Proof. Let p (resp. ¢) denote the degree of P (resp. of Q). There exist «, 3 € R such
that the polynomial P := P(X)(X — a)" P and Q := Q(X)(X — 8)" 7 are coprime
(and of degree exactly n). Fix j € {0,...,n — 1}. Since P and Q are coprime and
jJ < n, the linear map

RX]<j xR[X]<; — R[X]<n4y
(R,S) — RP+5Q
is injective, so its image Vi ; (P,Q) C Vot (P, Q) has dimension 2(j + 1). O

Proof of Proposition[6.2 For simplicity, we write ¢ = ga. Recall that A has
cardinality k + 1, so that g(n) > card(A) = k + 1. If k = n, then is automatic
(since in that case A contains a basis of R[X]<,). So, we may assume that k < n.
We first prove that for each sufficiently large m, we have

Vi (A) = R[X] <. (6.3)

Indeed, since the ideal spanned by A is R[X], there exists an integer ¢ > n such
that 1 € V4(A). Let P be a non-zero element in A of degree d, and set m = ¢ + d.
Then V,,,(A) contains R[X]<4, as well as the polynomials P, X P, ..., X*P. We easily

deduce (6.3)).
By contradiction, suppose that (6.2)) does not hold, i.e.

g(2n — k) <2n—k. (6.4)

We distinguish two cases. Suppose first that g(2n — k) — g(2n — k — 1) > 2. By
concavity, then g(j) — g(j — 1) > 2 for each j with n < j < 2n — k, and we deduce
that

g2n—k)>gn)+2n—k)>k+1+2n—k)=2n—k+1,

since g(n) > card(A) = k + 1. This contradicts (6.4)), so g(2n — k) — g(2n — k —
1) < 1. Since the function g is increasing and concave, it is linear with slope 1 on
{2n —k,2n — k +1,...}. Choosing m > 2n — k such that (6.3) holds, we obtain by

(6.4)
m+1=g(m)=g2n—k)+m—(2n—k) <m,

a contradiction. Hence (6.2]) holds. O
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Figure 1: Graph of the piecewise linear function interpolating the values g(i) =
dim V;(A) at integers i € {n,...,2n — 1}.

7 Proof of Theorem (case d = 2)

In this section, we deal with the case d = 2 to prove Theorem [I.I} namely that
03(8) < 2+ V5 = 423 and @,(¢) < 2n — 2 for each n > 4. The estimate
Wn(€) < 2n — 2 was already known for n > 10, however for n = 4,...,9 it is a new
result. For n = 3, our bound improves on the bound ws3(¢) < 3 + V2 = 441---
due to Bugeaud and Schleischitz [8]. Moreover, our proof does not require Marnat-
Moshchevitin’s inequality [I3].

Proof of Theorem [1.1] Suppose that @, (§) > 2n—2, and fix a real number & such
that
Wn(§) >0 >2n—2.

Let (P;);>0 be a sequence of minimal polynomials associated to n and £ as in Section
According to Lemma (with d = 2) there exists an index i > 0 such that P; has
degree n and is irreducible for each i > i3. Consequently, up to a finite number of
terms, the sequence (P;);>o coincides with the sequence (Q;);>o of Proposition
Let I denotes the set of indices @ > ig + 1 such that P;_;, P; and P;;; are linearly
independent. By Lemmas [3.2] and [3.4] the set I is infinite, and for any consecutive
t < jin I, we have

[ Pisr [ 23 ()] = [ P51 P -1(E)]-
Furthermore, the irreducible polynomials P; and P, are also coprime since || P;|| <
|1 and |P;(€)] > [Piy1(€)]. Lemma [4.1] yields

1 < [Res(Py, Pi1)| < 1P I P [ 1P ()] < (|2 P 1™ | Pj—1 (€)]
< | B Py
We deduce that
n—1

1Pl < 1P:])° where 6 = ~—. (7.1)
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Let h < i < j be consecutive indices in I. We have the following configuration

<PhaPh+1>]R = <Pi717Pi>R 7& <Pi7Pi+1>]R,

S0 Pp, Ppy1, Piq1 are linearly independent. Proposition [6.2] combined with Lemma [6.4]
implies that

(R[X}gn—ﬂgh ® R[X]gn—QPhH) + R[X]<n—2Pit1 = R[X]<on-2.

Choose k € {0,...,n—2} such that (Ph, o, X" 2P, Py, X T2P XkH+1)
is a basis of R[X]<2,—2. We denote by M the matrix of this basis expressed in the
canonical basis (1, X, ..., X?"~2). Estimating det(M) as in the proof of Lemma
(in other words, for £ = 2,...,2n — 2, we add to the first row of M the ¢-th row
multiplied by £€/71), we get the estimates

1< [det (M)| < [Pa@OIPal™ 2 Paga | Piga -

Now, since || Puy1[|"HPu(€)] X [[Poyr I 2N PNP-1(6)] < [|[Pi]|"~1%, we deduce
that

[P < P21 Byl (7.2)
For consecutive ¢ < j in I, define 7; € (0,1) by

Ti

1P| = (1P

and set 7 = limsup,c;,; o 7 € [0,1]. Let h < i < j be consecutive indices in I as
previously. By (|7.2), we obtain

1 1
W—n+1<(n—-2)7+ —+o(l) <(n—2)7+ — +o(l).

Ti Ti
We infer that
p(T) >0, where p(t) = (n —2)t* — (& —n + 1)t + 1. (7.3)
Note that
1 2n—2 -
=1 = H=2n-2-0 .
p(0) , p(n_2) — <0 and p(l)=2n w<0

We deduce that p has one root « € (0,1/(n — 2)) and one root larger than 1. Since
7 € [0,1] and p(7) > 0, we obtain 7 < «. Combined with the estimate ||| =

| P;]|7 < || ]| valid for any i € I (this is a consequence of (7.1])), this leads to
n—1
1<0r<9 —. 7.4
<6r < o<<(n_2)2 (7.4)

We easily check that this is impossible when n > 4 (the right-hand side is strictly less
than 1), thus ©,(§) < 2n — 2 for each n > 4.

We now deal with the case n = 3. Suppose by contradiction that @3(¢) > 2 + /5
and choose @ such that
D3(8) > > 24+ V5.
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The polynomial p from (7.3)) becomes p(t) = 2 — (G —2)t+1. Denote by « its smallest
root, and by 8 = (v/5 — 1)/2 the smallest root of the polynomial #2 — /5t + 1. We
find

0=p3-V68+1>p*—(@-2)83+1=p),

hence o < 8. Combined with 6§ = 2/(&w — 3) < 1/8, this implies that 0« < 1, which
contradicts (7.4)). It follows that @3(£) < 2+ /5. O

8 Multilinear algebra and height of polynomial sub-
spaces

This section is divided into two parts. We introduce and study a quantity D¢(V)
associated to a subspace V' C R™ defined over QQ in Section Intuitively, De (V) is
small if V' is spanned by good polynomials approximations of Z[X] (i.e. small when
evaluated at £). This will be a key-point for estimating the height of the polynomials
Q; of Section 5] In order to define D¢, we need some tools of multilinear algebra that
we recall in Section In Appendix [A] we give another interpretation of D¢ in term
of twisted heights.

8.1 Multilinear algebra and Hodge duality

For each integer m, we view R™*! as an Euclidean space for the usual scalar product

(-] -), and we denote by |-, the associated Euclidean norm. For each k =1,--- ,m+
1, we identify /\k R™*! with RV, where N = (m;rl), via an ordering of the Pliicker

coordinates, and we denote by |y||, the norm of a point y € AFR™HL o RN This
is independent of the ordering. Let V be a k-dimensional subspace of R™*! defined
over Q, i.e. such that (V N Q™) = V. Its (standard) height H(V') is the covolume
of the lattice V N Z™*! inside V (with the convention that H(V) = 1 if V = {0}).
Explicitly, we have
HV) =[x A Axily
for any Z-basis (x1,...,xx) of the lattice V N Z™T!. Schmidt established the very
nice inequality
HUNVIHU+V) <HU)H(V),

valid for any subspaces U,V of R™*! defined over Q (see [27, 26, Chapter I, Lemma
8A]). In this paper, we need to work with a “twisted” height and the corresponding
version of Schmidt’s inequality (obtained by following Schmidt’s original arguments).

Let (e1,...,ey,+1) denotes the canonical basis of R™*! and let k be an integer
with 0 < k < m + 1. The Hodge star operator

k ~ m+1—k
w1 [\ RSN R™H!
is defined by
*(eil ARERNA eik) = &i1,...,i, €51 ARERA €tk

for any indices i; < .-+ < i and j; < -+ < Jmy1—k forming a partition of
{1,...,m+1}, wheree;, .. ;. denotes the signature of the substitution (1,...,m+1) —
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(J1y -y Jmt1—ks 1, -, ik). Given X € /\’c R™*1, the point *X is called the Hodge
dual of X.

We now collect some useful properties of the Hodge star operator, see for example
[11], [2] and [7, Section 3] for more details. First,

[X|ly = X[}, and x (+X) = (=DM HTOX

for any X € /\k R™H, If X = x; A--- A Xy, is a system of Pliicker coordinates of a
k-dimensional subspace V' C R™*! then %X is a system of Pliicker coordinates of its
orthogonal V+. This implies the classical identity

H(V)=H(V).
If k > 0, then given y € R™*! and a multivector X € /\/!C R™+! the point
yJX—* v A ( *X /\ Rm+1

is called the contraction of X by y (see [7} Lemma 2]). Explicitly, if X =x3 A---Axy
is a decomposable multivector, then

yaX = Z Xi |y) X1 A AKX A A Xy (8.1)

where the hat on x; means that this term is omitted from the wedge product (see [7,
Eq (3.3)]). In particular, if k =1 and X = x € R™"! we simply have

yox=(y|x). (8.2)

8.2 Schmidt’s inequality

Let m be a non-negative integer and set Z,,, = (1,£,£2,...,£™). We keep the notation
of Section

Definition 8.1. Let V be a k-dimensional subspace of R™*! defined over Q, with
k> 1, and let (x1,...,%;) be a Z-basis of the lattice V NZ™+1. We set

De(V) = Zm s X[y = [Em A (X2,

where X = x; A--- Axi. By convention, we set D¢({0}) = 0. Following the notation
of [I7, Section 11], we also set

Le(V) = [[Em A Xy,
with the convention that L¢ ({0}) = [|Zm][,-

Remark. If (x},...,x}) is another Z-basis of V. N Z™*! then x| A --- A x}, = £X.
Consequently, D¢ (V') and L¢ (V') do not depend on the choice of the basis. In [I7], we
considered L¢(V') for spaces V' spanned by good simultaneous approximations. The
function Dy is connected to the quantity introduced in [I8, Definition 7.1] (where we
work in a number field K instead of Q). Note that D¢(V) = 0 if and only if Z,, € V.
Since ¢ is transcendental, this is only possible when V = {0}. We have

De(R™) = [|Eml, < 1,
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where the implicit constants depend on ¢ and m only. Moreover, ({8.2]) implies that

De((x)r) =|(Em %) | (8.3)
for any primitive integer point x € Z™*1. Eq. (8.1)) yields the explicit formula

k
S =D [Em) X1 A AR A AR

i=1

De(V) = (8.4)

2

On the other hand, if (y1,...,¥Ymy1_x) is a Z-basis of V- N Z™m+ then xX =
+y1 A+ AYmt1—k. Consequently, we can also write

De(V) = [[Em Ay1 Avee AYmer-illy = Le(V). (8.5)
Both formulas for D¢ (V') will be useful.

Proposition 8.2 (Schmidt’s inequality). For any subspaces U,V of R™*1 defined
over Q, we have
De(UNV)De(U+V) <De(U)De(V) (8.6)

and
L:(UNV)Le(U+V) < Le(U)Le (V). (8.7)

Proof. In view of (8.5)), we only need to prove that holds for any pair (U, V)
as in the statement of the proposition (for then, it suffices to apply to the pair
(U+,V1)). We follow Schmidt’s arguments [27, Chapter I, Lemma 8A]. For any pure
products X,Y,Z € AR™! we have

IX[lp [XAY AZ|ly < [XAY, [XAZ], . (8.8)

Let U,V be subspaces of R™! defined over Q. If U = {0} or V = {0}, then
is trivial, so we may assume that U and V have dimension > 1. Let x1,...,x, be
a Z-basis of U NV N Z™*!, which we complete to a Z-basis x1,...,X,,y1,...,¥s of
UNZm™ (resp. X1,...,Xp,21,...,2; of VNZ™T). Set

X=E,AX1AN...%, Y=y1A---ANys and Z =2z A - Nz.

We get (8.7) by applying (8.8 to the above pure products. O

We identify R[X]<,, to R™T and R™*! to the space of (m + 1) x 1 column
matrices with real coefficients via the isomorphism

m @o
Zaka — (ag, ... am) and (ag,...,am) — ) (8.9)
k=0

am

Then, for any P € R[X]<,, we have P(§) = (z | Z,,), where z € R™*! corresponds
to P. In particular, if P € Z[X]<,, is primitive, then (8.3) may be rewritten as

De((P)g) = IP(&)]- (8.10)

We will repeatedly use the following “twisted” dual version of [I7, Lemma 2.1].
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Lemma 8.3. There is a positive constant c, which only depends onn and &, with the
following property. For any linearly independent polynomials P, ..., P, € Z[X]<m
(with k > 1), we have

k
De((Pr,..., Pg) < |P” H I125]- (8.11)

Note that for any P € Z[X]<,, Eq. (8.10)) implies that D¢ ((P)y) < |P(§)].

”M”

Proof. Let Q1,...,Qx be a Z-basis of VNZ[X]|<p,, where V = (P, ..., Py)g. There
exists a non-zero o € Z such that

PiN- NPy =aQi A AQy,

and so
De(V) = Em 1@ A AQi)lly S IEm o (PLA - AP,
On the other hand, by (8.1) combined with Hadamard’s inequality, we obtain

k
IZm 2 (PLA - APyl = Z DFIP(€) - PN AP A AP
i=1 2
k —_—
Z ONPu -2l 1Pl
(recall that the norm || - || is defined in Section [2)). O

9 Subfamilies of polynomials: dimension and height
Let d,n,& and @ be as in Section [5l In particular we have
2<d<1+ 2,
2
and we suppose that (5.1)) holds, namely
Wn(§) >0 >2n—d.

Let us fix a sequence of minimal polynomials (P;);>o associated to n and £ as in
Section |3 We denote by (Q;):>0 the sequence of irreducible factors given by Propo-
sition In particular, for each ¢« > 0 we have

1Qi(6)] < 1Qill ™, (9.1)

as well as

1QiralI” < [|Qill,  where 7 = €[0,1). (9-2)

@(@fnfd+3)
wn(€)(Wn(€) —n—d +3)

Assuming that d is not too large, we will prove in the next section that w,(£) < oo,
and thus 7 > 0. Here, we investigate the following question: can we find “large” sub-
families of (Q;);>o which are linearly independent, and whose elements have “com-
parable” height? More precisely, given two indices k < i, can we find an exponent
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0; € (0,1) which depends only on d,n and the dimension j + 1 of the subspace
(Qr, Qk+1s---,Qi)p (and not on the indices i and k), such that [|Q;]|% < ||Qkl|?
For i = k + 1, we already have (9.2]). With this goal in mind, let us introduce some
notation.

Definition 9.1. Let m,, = my(§) € [2,n + 1] be the integer
my ‘= lli)r{.lo lel(<C2Z7 Qi+1; P >]R)

Remark. Note that we might have m,, < n+1, since, unlike for simultaneous approx-
imation (see [I7, Eq. (5.3)]), it is possible that the sequence (P;);>; is contained in
a proper subspace of R[X]<,, see e.g. [14]. However, we will show later that under
the hypothesis d < n'/3, we have m,, > n'/3. The next definition is somewhat dual
to [I7, Definition 5.2]. However, note that in [I7, Definition 5.2], the sets A;[i] are
constructed from the points x;,x;41,... coming after the good approximation x;,
whereas in the present setting we need to consider the points @;,Q;_1,... coming
before @Q);. It does not seem to work well the other way round.

Definition 9.2. Let j; > jo > 0 be such that
dim (Qj,, Qjo+1,- -+, Qjy )g = dim(Qjy, Qjo 11, -+ )g = M.
For each i > j; and j =0,...,m, — 2, we define
0j(i) =k,  Aj[i] = {Qk, Qrt1,.-..Qi} and Y;(i) = [|Qr-1]],
where k € {jo +1,...,4} is the smallest index such that dim (Q,...,Qi)g =7 + 1.
Proposition [6.2] implies that
Van—j (Ajli]) = R[X]<on—j (G =1,...,mn —2). (9-3)

Definition 9.3. Let 7 € (0,1). We associate to 7 a sequence (7;)o<;<n/2 by setting
To=T,and for j=1,...,|n/2]

25 — 1 L (2n — d)7?
Ti=a| o — where a; = .
J CANCARD Y & T n=2)r+n—j+1

The first main result of this section is the following.

Proposition 9.4. Let 7 € (0,1) and let (1j)o<;j<n/2 be as in Definition . Suppose
that
1Qi+1ll” < 11Q:] for each sufficiently large 1. (9.4)

Then for each large enough i, we also have
Q™ < Yy)  for=0,....min{|n/2]. m, 2}, (95)

with implicit constants which do not depend on i and j.

Remark. We will use the exponent 7 given by . We will prove that under suitable
conditions, the exponent of best approximation w,(£) is not “too large”. This will
ensure that 7 is “close” to 1. This issue, which is one of the delicate parts of this
paper, will be dealt with in Section
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In order to get , we will try to adopt a strategy similar to the one of [I7, §5] in the
setting of simultaneous approximation to the successive powers of £. New difficulties
arise however, for example we need to work with D, instead of the standard height
of subspaces (see Section . Schmidt’s inequality will play a key-role in our
proofs. We use the notation of Definition for the sets By (A) and the subspaces
Vi(A) C R[X]<k.

Proof. Without loss of generality, we may suppose that the index jj is large enough
so that (9.4) holds for each i > jo — 1. Fix i > j1, and for simplicity write m = m,,
and Yy =Y, (4) for k=0,...,m — 2.

We prove by induction on j. If j = 0, we have Yy = ||@Q;_1] since oo () = i.
By applied with i—1 instead of 4, we get ||Q;||™ < Yp. Now, let j € {1,...,m—2}
with j < n/2 such that holds for j — 1. If 7; < 0, then holds trivially for
J. We assume that 7; > 0. Consequently, we also have 7;_1 > 0. Write P := Qo)

and @ = Q,,(i)+1- By (9.4), we have
2
QI <|IPI" <Yj. (9.6)

Since P and @) are coprime, Lemma implies that dim Va,,—;(P, Q) > 2(n —j + 1).
Therefore, there exists a family of 2n — 35 + 1 linearly independent polynomials

Uj = {Uo, ..., Uzn—3;} C Bon—j(P, Q)
such that (A;[i]),N(U;) = {0}. Note that since j < n/2, we may choose U; such that
it contains at least n — 25 polynomials whose height is equal to || P||. The remaining

n — j + 1 ones have height < [|Q||. By (9.3), we have Va,,—;(A;[i]) = R[X]<2,—;.
Therefore, there exists

Vi i={V1,...,Vi_1} C Bon—j(Ali]) = Ban—j(Qo,(iys - - - » Qi)
(with the convention V; = () if j = 1) such that we have the direct sum
<Aj [ZDR & <Uj>]R & <Vj>]R = R[X}SQTL—]‘

All the polynomials of V; have height at most ||Q;||. Let & € {o;(i),...,i} which
maximizes |Q(§)|/||Qx| and define

A= (Ajlil)y and B := U UV; U{Qk})g,

so that A+ B = R[X]<2,—; and AN B = (Qx)g. We will now make a crucial use of
the function Dg introduced in Definition (here, the ambient space is R[X]<2n—j,
identified to R?*~7*1 via (8.9)). Recall that

De(A+ B) = De(RX]<n—y) = (L& ... )]|, =1,
and that according to (8.10) the primitive polynomial @} satisfies
De(ANB) =De((Qulgr) = Qi (&)]-
Schmidt’s inequality applied with the subspaces A and B yields

[Qi(§)] = De(A+ B)De(AN B) < De(A)De(B), (9.7)
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the implicit constants depending only on n and £ (and not on the indices 4,7). It
remains to estimate D¢(A) and D¢(B). The subspace B C R[X]<a,—; is generated
by the 2n — 25 + 1 linearly independent polynomials V = U; UV; U {Qx}. Moreover
(see the remarks after the constructions of U; and V;), we have

LT IRI < 1P 1QI™ 7+ HIQa 17~ | Qxll-

ReV

By choice of k, for each R € V we also have |R(§)|/||R| < |Qk(&)|/|Qkll, and
Lemma [8:3] combined with the above yields the upper bound

De(B) < |QuOIIPI"> Q"7 Qall .
The space A = (4;[i])p € R[X]<2,—; is spanned by a set U of j + 1 linearly polyno-
mials that may be chosen among Qg, (i)—1,--,&i—1, Qi For each R € U, we have
IR|| < ||Q:|l and |R(&)| < ||R||*a <Y, . Combined with Lemma we obtain

De(A) < S IRE)| T ISI < Y23 1Qi1.

ReU Seu
SZR

Then, combining the above upper bounds for D¢ (B) and D¢(A) with and (9.6),
we get

5 n—2i - - —25)/7+(n—j+1)/72 i—
Y, < |IPPH Q)| Qul P < Y R TN gy 2

where the implicit constants depend on n and £ only. Using the induction hypothesis,
we also have [|Q;|“ 77—t < Y*,, hence

||Qi||37j—172j+1 < Yj(n—21')/7-4-("—J'+1)/T2 _ Y}(%—d)/aj.

Rising each term to the power «;/(2n — d) and using & > 2n — d, we easily deduce
(19.5)) for j. This concludes our induction step. O

Remark 9.5. We could get a slightly greater exponent 7; in the above proposition by
using a more precise estimate for D¢(A). However, this improvement would at best
lead to a larger constant a in Theorem m : the term n'/? would remain the same,
whereas we are expecting n'/2. We preferred to keep the arguments simple.

The following result is inspired by Laurent’s approach in [I12] Lemma 5].

Proposition 9.6. Let the hypotheses be as in Proposition and write m = my,.
For any A < M\, (§), there are infinitely many indices i such that

Yin—a(i) < Qi /A7),

In particular, there are infinitely many indices © such that

n

Ym_Q(i) S ||Ql||ﬂ’ where o= m (98)
Proof. By definition of m, the subspace
V =(Qo, 2())-1, Qo _a(i)s -+ Qi) (9.9)
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of R[X]<,, is independent of ¢ for ¢ > j;, where j; comes from Definition It has
dimension m since dim A,, s[i] = m —1 and Q,,, ,(i)—1 ¢ Am—2[i]. Fix two positive
real numbers o, A with A < o < A\, (§), and suppose by contradiction that there exists
an index ig > j; such that for each i > iy

1
AT
By hypothesis, we can also assume that [|Q;+1||” < ||Q:]| for each i > ip. Identi-
fying R[X]<, with R"*! via the isomorphism , we claim that the point 2 =

(1,£,€2,...,&m) is orthogonal to V, with respect to the standard scalar product (- | -)
of R*H1,

Yi_2(i) > |Q;]|?, where 6 = (9.10)

By definition of A, (&), there exist infinitely many non-zero y = (vo,...,yn) € Z"+!
satisfying

k —a
= — < Y Y o o .
L(y) 115111?%(71 1Y0§ yk| < ,  where [yl 121}?%(“ Y|

Let (y;)i>0 be an unbounded sequence of such points ordered by increasing norm. This
sequence converges projectively to = = (1,&,£2,...,£™). Without loss of generality,
we may assume that |yo||* > 2(n + 1)||Q;, |- Fix an index j arbitrarily large. For
simplicity, set y :=y; and Y = ||y;||. There exists an index ¢ > i¢ such that
Yy« 1/
N < ———— < 1Qisa ]l < lQ:)1M" 9.11
HQ%” 2(n+ 1) = ||Qz+1|| = HQz” ( )

Note that ¢ tends to infinity with j. Let & € {opm—2(i) — 1,...,i}. The polynomial
Q = Qi is identified with an integer point z € Z"™! such that Q(¢) = (z | Z). Since
(z|y)=(z|y—1E)+yo(z|E) we get

[(z]y)] < (n+DQIL(y) + YIQ(E)
(cf. [I2, Lemma 5]). Our hypothesis (9.10) yields
1Qill” < Yin—2(i) < |1QI < [1Qi]l-
Using (9.11)) together with L(y) <Y ~%, we get

(n+ DIQILEY) < 5.

Moreover, (9.11) also yields Y/* < [|Q:|/@e) = ||Q;||°/*, where the implicit
constant only depends on n. Since A < «, we may choose j so large that (2Y)1/“ <
1Q:]|?. Combining this with the estimate |Q(&)] < ||Q||~ from (9.T)), we also get

1

YIQOI < YIQI™ < YQuI~"~ < 5.

We conclude that the integer | (z | y) | is (strictly) less that 1. It is thus equal to 0, and
so y and z are orthogonal. By letting %k vary, this implies that y = y; is orthogonal
to the subspace V. Since this is true for all sufficiently large j, it follows that the
(projective) limit = is also orthogonal to V. This proves our claim and provides the
required contradiction since no @); vanishes at the transcendental number &. Thus,
does not hold for arbitrarily large indices 7. Estimate follows by noticing
that A,(¢) > 1/n by Dirichlet’s theorem, and recalling that @ > 2n — d. We may
therefore choose A < A, (§) so that A& > (2n — d)/n. O
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Corollary 9.7. Under the same hypotheses, suppose moreover that m = m,, satisfies
m —2 < n/2, and let (j)o<j<n/2 be as in Definition . Then, we have

< n
Tm—o < pt = ———.
2=H (2n — d)T

Proof. By Propositions [9.4] and [9.0] there are infinitely many indices i for which
1Q:i]™ 2 < Yi—2(?) < ||Q:||*. Since ||Q;]| tends to infinity with 4, we deduce that
Tm—2 < 122 O

10 Upper bound on the exponent of best approxi-
mation

This section is devoted to the proof of the following upper bound for w;, (&).

Proposition 10.1. Suppose that &,(§) > 2n — d, with an integer d € N satisfying
2 <d < {/n/4. Then, we have the upper bound

n(4d®> —d —5) +8d* —2d — 15

wn(f) S 27’L+ P(nad)7 wher@ P(?’L, d) = 2n _ 8d2 + 2d+ 15

If moreover we have d < {\3/ n/16-‘ and n > 16, then

wn (&) < 2n + 242

Let d,n,£ and @ be as in Sections[f|and [0} We suppose thus that 2 < d < 14n/2
and that (5.1) holds, namely

Wn(§) >0 >2n—d.

We denote by (Q;);>0 the sequence of irreducible factors given by Proposition
Unless otherwise stated, all the constants implicit in the symbols <, >, = and O(-)
depend only on n, d, £ and @.

According to Proposition we have w,(§) = limsup,_, . w(Q;). By (5.3), we also

have

w(@;) —2n+d
n—2d+3 ’
for each 7 > 0 and each j such that @; divides P;. Proposition implies that if d3

is small compared to n, then 6; = O(d?/n) is small, and @Q; has “almost” the same
norm as Pj.

Fix a sequence of minimal polynomials (P;);>0 associated to n and £ as in Sectio

1Pl < 1Qill"*%  with 6; = (10.1)

In order to bound from above w, (&), it suffices to do so for w(Q;). We could try
to use , which implies that any minimal polynomial of height greater than
|Q:]|*+% is not divisible by @Q;. They are thus coprime and we may consider their
(non-zero) resultant. However we cannot conclude, as 6; is too large. To resolve this
problem, we need several lemmas. We first start by a few simple observations. A
quick computation yields

(1+60,)(2n — d) = w(Q;) + (n+d — 3)6;. (10.2)
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More generally, for each > 0, we have
(1+6;(1=n)2n—d) =w(Q;) + (n+d—3—n(2n—d))6;. (10.3)

Under the condition n < (n + d — 3)/(2n — d), which holds as soon as n < 1/2, this
implies that for each ¢ > 0, we have

1Qi(6)] = Qs (@) > |||~ (1+o:1=m) 2n=a), (10.4)

Lemma 10.2. Let i > 0 and n € [0,1/2), and suppose that R € Z[X]<4—2 is a
non-zero polynomial such that P := Q;R has degree at most n and satisfies

1P|l < H := QT and |P(§)] < H>. (10.5)
Define
, (2n—d)n s, (2n—2d+3)n+d—3
= —--— d = .
K n+d—3 and 1 n+d—3

Then, we have the following properties.

(i) The polynomial R is non-constant. We have d > 3 and
IR~ < [R(§)] < @~ =, (10.6)

(ii) There exist a non-constant irreducible polynomial A € Z[X]<,, and an integer
e € [1,d — 2] such that A® divides R,

1A > QU and |JA°| =" < A(€)). (10.7)

(iii) Let A and e be as in[(ii)} If S € Z[X]<q— is a non-zero polynomial such that
A and S are coprime and ||S|| < ||A°]|, then

[S(&)] > || A =B, (10.8)

Proof. Fix ¢ > 0. For simplicity, write @ := @; and 8 = 6;. By Gelfond’s Lemma, we
have

IQUIR| =< |QR| = ||P| < ||Q||1+9(1_"),

so that
IR|| < [|Q|IP*—™. (10.9)

The first inequality of (10.6)) and the second of (10.7]) are consequences of Lemma
(using deg(A°) < deg(R) < d—2). Using (10.3) together with (10.5)) and ||Q[|~«(®) =
|Q(€)|, we find

QEORE) = P©) < [ (ea=m)En-d — 1g(g) |~ (r+a-3-nzn-d)e
Simplifying by |Q(€)| yields the second inequality of ((10.6). In particular we have

|R(&)| < 1 since |Q| > 1 (and 8 > 0 as well as n’ < 2n < 1). Consequently
R € Z[X]<4—2 cannot be constant, and thus d > 3.
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Without loss of generality, we may suppose that P (and thus R) is primitive. Let
us consider the factorization of R over Z. There exist an integer k£ > 1, irreducible
(non-constant) pairwise distinct polynomials Aq,. .., A; € Z[X] and positive integers
ai,...,qr such that

k k
R:HA?j:HBj witth::A?j for each j =1,... k.
j=1 j=1

According to Lemma there exists j € {1,...,k} such that B = B, satisfies
IBE)| < [|IRI|I*7*|R(E)].

Set A = A; and e = a;. We use (10.9) to bound | R|| from above, and the second
inequality of (10.6) to bound |R(¢)| from above. Then, Lemma applied to the
polynomial B € Z[X]<4_2 together with the above yields

1B~ < | BE)] < | R IR()] < ||Q| P Ammom (=m0,

Since by definition of 1’ and n” we have

d—3
1-n————— (1—-n)=1-19n"
e ) n”,
we deduce that
B~ 479 < |B(&)] < [|Q) (==, (10.10)

and follows easily upon recalling that A° = B. Now, suppose that S €
Z]|X]<a—2 is a non-zero polynomial coprime to A with ||S|| < ||B||. If S is con-
stant, then is trivial. We may therefore assume that S has degree at least 1.
Then, the estimate of Lemma yields

1 < [Res(B, S)| < [IBII*=*|IS|21BE)] + B2 SI1**S (&)
< | BIPT (1B + 1S(©)1) (10.11)

(where the implicit constants depend on &, n and ¢). As B divides R, we have
|B|| < ||R||. Together with (10.9), this gives ||B|| < [|Q|?®~"). Combining the
above with ((10.10f), we obtain

|BIZ91B(©)] < [|Q¢4-D90-m—nsd=9001"),
On the other hand, using n < 1/2 we get
2d-5(1-n)—-Mn+d-3)1-71")=02n—4d+8)n— (n—2d+5) < —1.
Since for each large enough i, the number 6 = 6; is bounded from below by

_Ww—2n+d

p= >0

n—2d+3 ’
it follows that || B||2?=°|B(¢)| < ||Q||~” tends to 0 as i tends to infinity. Consequently,

(10.11]) becomes
1< || BIP=?IS (€)1,

hence ((10.8]). O
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Lemma 10.3. Letn € [0,1/2). As in Lemma we set

, (2n—2d+43)+d—3
= n+d-—3 ’

Suppose either that we have d = 2, or that we have d > 3, " € [0,1/2) and

1_2//
U
1—n" d—2 n

(10.12)

Then for each large enough i > 0, there exist Z € R with ||Q;]| < Z < ||Q,||* T¢:(1—)
and a non-zero P € Z[X]<y, coprime to Q;, which satisfies |P(§)| < |Qi(§)| and

IPl<Z and |P() <z @, (10.13)

Proof. Since &, (§) > 2n — d, there exists Xy > 0 such that for each X > Xy the
system
1P| <X and [P(§) <X~

has a non-zero solution P in Z[X]<,. Fix ¢ > 0 such that ||Q;|| > Xo, and choose
a non-zero solution P € Z[X]<, of the above system with X := ||Q;||**%(1~"). For
simplicity, write Q@ = @Q; and § = ;. We have |P(¢)| < X~@"=4 < |Q(¢)| thanks
to (10.4). If P and @Q are coprime, then the conclusion holds with Z = X. We may
therefore assume that P and () are not coprime. Then @ divides P, and assertion
of Lemma implies that d > 3. Let A € Z[X]<4—2 and e € [1,d — 2] be the
non-constant irreducible polynomial and the integer given by Lemma In
particular we have deg(A°) < d — 2 and holds. Set Z := e~2"||QA°||, and
define v by the relation
7 — ||QH1+0(171/).

By Gelfond’s Lemma and by definition of Z and v, we have
Q= = A% > QI —""),

the last inequality coming from (10.7). We deduce that v < 7" +O(1/log||Q]|). Since
n” < 1/2 we may assume i large enough so that v < 1/2. On the other hand, since
QA*® divides P, by (2.1), we have

Z <e QA% < |IP|| < X = [|QIIHHC,
hence v > 1. We now consider a non-zero solution Pec Z[X]<y, of the system
IP| <Z and |P(E)| <z, (10.14)

We claim that_ P and @ are coprime. Suppose by contradiction that @ divides P.
There exists R € Z[X] such that P = QR. Write R = AfS, with f € N and

S e Z[X]<dq—2 coprime to A. By (2.1) and by definition of Z, and since @ and S
divide P, we obtain

IQUIS| < e*|P]| < e"Z = e ™[ QA°l| < [|QIIIIA°].
We deduce that ||S]| < ||A¢|. Similarly,

IQAT|| < | P|| < e"Z = e[| QA°.
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Consequently, the polynomial QA® cannot be a factor of QAf (by (2.1)) once again).
Thus f <e— 1. Since ||S|| < ||A°||, the last assertion of Lemma yields

|S(&)] > || Ac| =34, (10.15)
By hypothesis v < 1/2, and Lemma applied to the solution P = QE of the
system ([10.14)) gives the estimate

(2n — d)v

[RO] < [|Q|~ =070, where ' = = ——.

(10.16)

We now use (10.15) and |A¢(&)| > ||A¢||~(*+4=3) (coming from (10.7)) together with
f<e—1<d-3. We get the lower bound

log [R(6)] = £ tog | 4%(©) + log |5(6)
> [(1- é)(n+d—3) +2d 5| log | 4°]| + O(1)

1

> —[(1 - m)(n+d—3) +2d — 5}9(1 — ) log Q| + O(1),

the last inequality following from ||A¢|| = ||Q||°~*). Comparing this with (T0.16])

and noting that v/ < 2v, we obtain
1—21/<1—1/<1 1 n 2d — 5

- d—2 n+d-3

+0(1/log Q).

l1—-v — 1—v

The function v — (1 — 2v)/(1 — v) is decreasing on [0,1/2]. Using the estimate
v <n"+0(1/log||Q|), we obtain

1— 2" 1 2d -5
<1- +
1—n" = d—2 n+d-3
Since (2d — 5)/(n + d — 3) < 2d/n, this contradicts our hypothesis (10.12)) when i is
sufficiently large. So, if ¢ is large enough, then P and @) are coprime. Finally, the

lower bound |[P(£)| < 229 < |Q(¢)] follows from (10.4) with 7 replaced by v
(since v < 1/2), by a similar argument as in the beginning of the proof. O

+0(1/1og Q).

Proof of Proposition[10.1] The condition d < {¢/n/4 implies that d < 1 + n/2.
Define
1 sy (2n—2d+3)n+d-3 1

- - d v=—".
2d+5/2" " ntd—3 e

Ui

We claim that the hypotheses of Lemma are satisfied for this choice of parameters.
For d = 2, this is automatic since n < 1/2. If d > 3, a direct computation yields

, n+4d® —11d —13d + 6
n —v= <0,
(4d+5)(n+d—3)(d+1)
so that n”" < v < 1/3. Since z — (1 —2z)/(1 — z) is decreasing on [0, 1/2], we deduce
that (1 —27")/(1—n") > (1 —2v)/(1 — v). On the other hand, we have

>0,

1—21/_(1 1 zd)_2(n—d3+2d2)
 nd(d-2) ~

1—v s R

29



hence our claim. Consequently, for each large enough 4 there exists a non-zero poly-
nomial P € Z[X]<,, coprime with Q;, satisfying

[P <1Qi(©)I <1 and [P < [|QifI"*".
Such a polynomial is non-constant, and Lemma [£.1] yields

1 < [Res(Qi, P)| < QilI"HIPIMQi(€)] + Qs 1 PI" P ()]
< ||Qi||n71+n(1+0(17n))7w(62i)_

As ||Q;|| tends to infinity, it follows that
n—1+n(l+6(1-n) - w(@) > 0(1/1og |Qill).
Using the definition of §;, this can be rewritten as
(1) — 2d + 3)w(Q) < 2qn? — (3d +nd — 5)n + 2d — 3 + O(l/log ||Qi||>.
The hypothesis d < W implies nn — 2d + 3 > 0. Thus, after simplification

nnm? — (3d +nd — 5)n +2d — 3

w(@) +0(1/10g Qi) < 2

nn—2d+3
n(d—1-—nd)+2d—3
n+ S n+ P(n,d),

where P(n,d) is as in the statement of Proposition (and n =1/(2d +5/2)). We
conclude that
wa(€) = limsupe(Qs) < 2 + P(n, d).

1—00
Set Q(n,d) = (2n — 8d? + 2d + 15)(P(n,d) — 2d?). A direct computation yields
Q(n,d) = —n(d + 5) + 16d* — 4d*> — 22d? — 2d — 15.

Ifd < W we have 16d* < nd, and therefore Q(n,d) < 0. We obtain P(n,d) <
2d?%, and consequently @, (&) < 2n + 2d2. It remains to show that in the case n > 17

and d = [p] with

p=+v/n/16,
we still have Q(n,d) < 0. If 17 < n < 128, or equivalently if 1 < p < 2, then we
have d = 2 and Q(n,2) = —7Tn + 117 < 0. The same reasoning leads to Q(n,d) < 0
for 2 < p <3 and 3 < p < 4. We now suppose that p > 4. Writing d = p + ¢, with
t € [0, 1], and using the fact that 16p> = n, we find

Q(n,d) < —n(d+5) +16d* = —16p(p +t + 5) + 16(p* + 4tp® + 6t p* + 4t%p + t*)
= 16p° (3t — 5) + 16(6t°p” + 4t°p + t*) < 16R(p),

where R(x) = —2x3 4622 +4x+ 1. As the coefficients of R(x +4) are all negative, we

have R(z) < 0 for each x > 4. In particular, R(p) < 0, and we once again we obtain
Q(n,d) <0. O

Note that the upper bound 2n + P(n,d) is not optimal in Proposition (and
could be slightly improved by choosing the parameter n closer to 1/(2d)).
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11 Proof of the main theorem

In this last section we prove our main Theorem [I.2]in the following stronger form.

Theorem 11.1. Let ¢ = 0.3748--- be the unique (positive) solution of the equation

(1+2)e” =2 and set a = (22(2 — ¢°)/9) Y3~ 0.3567---. There evists an explicit
constant C' > 0 such that, for each n > 1 and any transcendental real number & € R,
we have

Gn(€) <2n—an'/? 4+ C.

Since 1/3 < a, it implies Theorem [1.2l We first establish a preliminary result
which uses the following notation. Let n,d be integers with 2 < d < 4/n/4. In
particular d < 1+ n/2. We define

n(4d® —d —5) +8d* —2d — 15

w(d,n) :=2n + P(n,d), where P(n,d) = 2n — 8d% +2d + 15 ’

as well as

B (2n —d)(n—2d+3) o n
~ w(d,n)(w(d,n) —n —d+3) and - p(d,n):= (2n —d)T’

7(d;n)

Let (7;(d,n))
tion

0<i<n/2 be the sequence associated to 7 = 7(d,n) € (0,1) by Defini-

Theorem 11.2. Let n,d,j be non-negative integers with 2 < d < y/n/4 and 1 < j <
n/2. Suppose that

Tr(d,n) > pu(d,n) fork=0,...,]. (11.1)
Then for any transcendental real number & we have

7j—1
Tj(da )

©n(€) <2n—min{d,d;}, whered; =2j—1— (11.2)

Proof. Fix a transcendental real number £. If @, () < 2n — d, then (11.2)) holds. We
now assume that @, (§) > 2n — d, and we choose a real number & such that

Wn(&) > W >2n—d.

Let (P;);>o denote a sequence of minimal polynomials associated to n and £ as in
Section |3 We denote by (Q;):>0 the sequence of irreducible factors given by Propo-
sition [5.1} and denote by

m = my(§)

the dimension of the spaces (Q;, Qit1,...)g for each large enough ¢ (as in Defini-

tion. Proposition yields wy, (&) < w(d,n), and by Proposition we get,

for each large enough 4,
Qi IT™ < 1@l

For simplicity, we write 7 = 7(d,n) and 7, = 73(d,n) for each k € N with k < n/2.
If m — 2 < j < n/2, then Corollary [0.7] yields 7,,,—2 < pi(d, n), which contradicts the
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hypothesis (11.1). Hence, we must have j <m — 2. Let i > 0. Set Q = Q,,(;). If i is
large enough, there exists a non-zero P € Z[X]<,, such that

[Pl <e™[Ql = X and [P(§)] < X%

By (2.1) the (irreducible) polynomial @ does not divide P, they are thus coprime.
Lemma [6.4] implies that dim Va,,—; (P, Q) > 2n—2j+2. Choose a linearly independent
subset
Uj = {Ul, ey UQn_2j+2} g Bgn_j(P, Q)
of cardinality 2n — 2j + 2. According to (9.3)), we have Va,,—;(4;[i]) = R[X]<2,—;. So
there exists
Vi i={V1,...,Vj1} © Ban—(4;li]) = Ban—(Qo, s - - - Qi)

such that
Us)g © (Vi)g = R[X]<on—;-
Then, identifying R[X]<s,_; with R*"~J+! via (8.9), we form the determinant
1 S |det(Uh...7U2n,2j+2,V17...,ij,1)|. (113)
For k=1,...,2n — 25 + 2, we have
Ukl < IQf and  [Ur(§)] < [|Qf 7.
On the other hand, for k = 1,...,j — 1, we have by Eq. (9.5) from Proposition

QI < IVall < llQill < IQII™  and  [Vi()] < [[Vill = < |QII 7.

Fori=2,...,2n — j+ 1, we add to the first row of the determinant (11.3)) the i-th
row multiplied by £°~!. This first row now becomes

(UL(E), -+, Uzn—2542(£), Vi(§), ..., V;1(8)).

By the above, the absolute value of each of its elements is < ||Q]|~*. By expanding
the determinant, we obtain

1< QIP = QuIP QY™ < [|Q2 2t U,
By letting ¢ tend to infinity, we deduce that
B<m -2+ 1+ (-7, =2n—d;
Since @ may be chosen arbitrarily close to @, (&), we finally get . O

In view of (11.2), the idea is now to choose d and j so that d is maximal and
d = d;. The next two results aim at simplifying condition ([11.1)) of Theorem m
The second one also provides a simple lower bound for the exponent 7;.

Lemma 11.1. Let n,d,j be non-negative integers with 2 < d < \/n/4 and 1 < j <
n/2. Suppose that j satisfies

(n— ;jﬁ&di;tl’:)_wr 7 S1 and 7i(d,n)20. (11.4)

Then, the sequence (Tk(d, n))0<k<j is (strictly) decreasing. In particular, condi-

tion (L1.1) is fulfilled if moreover
7i(d,n) > p(d,n).
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Proof. Let oy < --- < o be as in Definition Condition (11.4]) is equivalent to
a; <1 and 7j(d,n) > 0. By definition, we have

2k -1

Te—1(d,n) = a;lTk(d, n) + 5 —d

(for k=1,...,75).

Since a,;l > aj_l > 1, this yields 74_1(d,n) > 7(d,n). This proves the first assertion
of our lemma. The second one follows easily. O

Lemma 11.2. Let n,d,j be non-negative integers with 2 < d < \/n/4 and 1 < j <
n/2. Define

(2n — d)7(d,n)?

(n—=2)7(d,n) +n

a=ald,n):=
and suppose that

i J2j—-Dr(d,n)  j(2j—1Da
CZ m—rdn)+n Cn—dr(dn) (11.5)

Then, o € (0,1) and for k=0,...,7, we have

325 — V)r(d,n)*
(n—=2)r(d,n)+n

Te(d,n) > o’ 7(d,n) — > 0.

Proof. We have a € (0,1) since 7(d,n) < 1 and d > 2. For simplicity, we write
7 =17(d,n). Let (0k)k>0 be the sequence defined by oo = 7, and

O’kOZ<0'k_12k1> for k > 1.

2n —d
Using (11.5]), we find

0j 0j—1 2j—1 2]{5—1 j(2j—1)
ol dz

= = ——— > 0.
a1 =7 (2n—d)ai1 ~

o a1 2n—dait 07

(11.6)

In particular o; > 0. Since op_; > a~ Loy, by induction, we get 0; <o0j_1<---<o0g.
Moreover, @ = a1 < ag, for each k € N with 1 < k < n/2 where «j is as in
Definition [9.3] Another quick induction yields o} < 7 for K =0,..., 5. We conclude
by comblnlng 0; <o <73, with (L1.6 - O

Proof of Theorem . Define a function f : [0,00) — R by f(z) = x(2 — €%).
Let € = 0.3748--- be the unique solution of the equation (1 + x)e® = 2. It is the
abscissa of the maximum of f. Set

J[2e(2— e
azs;(g <) _ 03567

Let n > 1 and define d = d(n) and j(n) by

o) = fan ] and = j0n) = | o |
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We suppose n > 30 so that 2 < d < 1+n/2 and 1 < j < n/2. Since d*/n? < d/n =
O(n=%/3), we find w(d,n) = 2n + 2d?> + O(d), and then

2 1 2 1
T(d7n):1—3z+(’)<> and a(d,n)zl—gd—&—(’)< ),

n2/3 n n2/3

(where a(d,n) is defined in Lemma [11.2)). In particular, by choice of j, we have

a(d,n)’ = exp (jlog(a(d,n))) = exp (_ 9522 + O(nll/?’>)

1

Since

2 =Vrdn) _ (1
(n—2)r(d,n) +n ni/3 )’

there exists Ny > 30 such that condition ([11.5) of Lemma is fulfilled for each

n > Ny. Thus, for £k =0,...,j, we have

7 _ ,7(2.7 — 1)T(d7 n)2 __ _—¢€ 1
TK(d,n) > a(d,n)’ v(d,n) 50 o =e 40 7 )

In particular d; = 2j — 1 — (j — 1)/7;(d, n) satisfies

:W+0(1):@+0(1):d+0(1>-

dj >j(2—¢)+0(1) Z

On the other hand, we have

n 1 1
dn) = o == 3 +O(m/s)'

Since e=¢ > 1/2, by (11.7) there exists No > N; such that condition ([11.1)) of The-
orem is fulfilled for each n > N;. We conclude that for any n > N, and any
transcendental real number £, we have

Wn(€) < 2n —min{d,d;} = 2n — d+ O(1).

A Appendix: Twisted heights

The purpose of this appendix is to give another interpretation of the quantity D¢ (V)
defined in Section Our first approach was actually to work with the heights Hr
defined below. We are thankful to Damien Roy for pointed out the link with Hodge’s
duality.

Fix A € GL(R™*!) and let V be a k-dimensional subspace of R™ T defined over Q.
Its (twisted) height H 4 (V) is defined as the covolume of the lattice A(VNZ™T1) inside
the subspace A(V') (with the convention that H4(V) =1 if V = {0}). Explicitly, we

have
Ha(V) := ||Axi A - A Axgl|y, (A1)
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where (x1,...,X}) is any Z-basis of the lattice V N Z™*L. Then Schmidt’s inequality
generalizes as follows

Ha(U + VYHAUNV) < HaU)HAV) (A.2)

for any subspaces U,V of R™*! defined over Q. The proof is the same as for rational
subspaces (see [27, 26, Chapter I, Lemma 8A] and [I3] §5]). Similarly to Marnat and
Moshchevitin [13, §5], we consider twisted heights of the following form. Let 7" > 1
be a parameter. We define the matrix A,, r € GL(R™T!) as

™ 0 ... 0 (1) § P 50
0 7!
Am,T: . . ’
: -
0 T 0o --- 0 1

so that for each polynomial P = ag + - - + a;n X™ € Z[X] <, (identified to a point of
R™ ! via (8.9)), we have

. 7™ P(e)
0 T*1a1

Am,T = . . (A3)
Gm T‘iam

We denote by H,,, r (or simply Hyp if there is no ambiguity about the integer m) the
twisted height H 4 associated to the matrix A = A,, r. Note that

Hr (R[X]<m) = Hr(R™) = det(A4) = 1.
Definition A.1. Let V be a subspace of R[X]<,, defined over Q. We set

’ — 1 —codim(V)
DY) = T, (1),
where codim(V) = m + 1 — dim(V') denotes the codimension of the space V inside
R[X]<m. In particular, D¢(R[X]<,) = 1, and for any primitive polynomial P €
Z]X)<m, we have
De((P)g) = [P(§)| = De((P)g).

Our goal is now to prove that for any non-zero subspace V C R[X]<,, ~ R™!
defined over QQ, we have
De(V) < De(V),

where D is as in Deﬁnition (and the implicit constant depends on m and £ only).
First, note that since dim(U + V) + dim(U N V) = dim U + dim V' for any subspaces
U,V of R[X]<,, we deduce from (with A = A, 1) the following version of
Schmidt’s inequality, which is the analog of Proposition [8.2]

DL(U + V)DL(U NV) < DL(U)DL(V), (A.4)

valid for any U,V of R[X|<,, defined over Q.
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Proposition A.2. Let V be a k—dimensional subspace of R™T1 defined over Q, with
1<k<m+1, and set E,, = (1,§,...,§™). We have

De(V) < Di(V) < De(V), (A.5)

where the implicit constant depends on & and m only. Moreover, for any Z-basis
(X1,...,Xx) of VNZ™H we have

k

S D Em %) xT A AR A AXE
=1

(A.6)

)

2

DL(V) =

where x;L € Z™ denotes the point x; deprived of its first coordinate.

Before to prove this result, we introduce some notation that we will need in the
proof. Given two positive integers p and ¢, we define Z(p, q) as the set of p—tuples
(41,...,1p) of integers with 1 < i3 < --- < 4, < gq. Let e = (eq,...,€,) be the
canonical basis of R?. For any I € Z(p, q) as above, set e; = e;, A---Ae;, € AP R9. For
any X € A\"RY, we call I-coordinate of X its e;—coordinate in the basis (€7) jez(p,q)-
For any x1,...,x, € R?, we denote by M (x1,...,X,) the ¢ x p matrix whose columns
are xi, ..., X, written in the basis e, and by D;(x1,...,X,) the minor formed by the
rows of M(xy,...,%,) of index ¢ in I. Then, writing X = x3 A - -+ A Xy, we have the
classical formulas

X = Z @1(x17...7xp)e1 and D(H2 Z @[ X1y...y X )2. (A?)

I€Z(p,q) I€Z(p,q)
Therefore, for each I € Z(p, q), the I-coordinate of X is D;(x1,...,Xp).

Proof of Proposition[A-3 Fix T >1 and for i =1,...,k set

Z:z:pixl/\---/\)’(}/\-~-/\x;€7 where p; = (— 1)Z+1(_m|xl),

Y= Tl—i}}-loo T~y (TY A Ayr(T),  where y; = yi(T) = A r(x;) € R

By (8.4) we have
De(V)=|Z]|, and D(V)=[Y],.

We prove the following properties. For i = 1,...,k we set z; = (S, | x4),%;) €
R™+2,

(i) For each J = (1,72,...,jk) € Z(k,m + 2), the J—coordinate of z; A -+ A z is
equal to the K—coordinate of Z, where K = (jo—1,...,jr—1) € Z(k—1,m+1).

Fix I = (i1,...,i) € Z(k,m + 1).
(if) If 43 > 2, then the I-coordinate of Y is equal to 0.

(iii) If 43 = 1, then the I—coordinate of Y is equal to the J—coordinate of z; A+ - - Azy,
where J = (1,i3+1, ..., +1). It is also equal to the K—coordinate of Z, where
K = (ig,...,i).
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To prove the first assertion, it suffices to expand the determinant D ;(zq,. .., zx) along
its first row. Let I = (i1,...,4%) € Z(k,m + 1). Suppose first that ¢; # 1. Then, by
Hadamard’s inequality, the I-coordinate of y1(T) A --- A yx(T) satisfies

k
IDi(y1, - yo)l < [T 77 Ixgll = 0(17),

Jj=1

and we deduce that the I-coordinate of Y is equal to 0, which proves assertion
Suppose now that i, = 1 and set J = (1,72 + 1,...,ix + 1). Then

D[(Ylv s 7Yk) = Tm+17k®](zl7 s 7Zk)7

hence the first part of The second part is obtained by combining the above with
assertion

We deduce from the last two assertions that all the non-zero coordinates of Y are
coordinates of Z, thus ||Y||, < [|Z],, which proves the second inequality in (A.F).
For the first estimate, we need to estimate the K—coordinates of Z with K € Z(k —
1,m+1) of the form (1,4s,...,ix—1). According to assertion they are exactly the
determinants © j(z1,...,2;) with J = (1,2, 43, ..., jk) in Z(k, m + 2).

Fix a J € Z(k,m + 2) as above. The second row of the matrix M(z1,...,2z;) is a
linear combination of the remaining rows (with coefficients in absolute value between
1 and |£]™). We deduce that © j(z1,...,2zx) can be written as a linear combination
of Dy (z1,...,2;), where J' belong to the subset of Z(k,m + 2) consisting in the
k—tuples whose second element is > 3. By assertion they are all coordinates of
Y, hence |9 (z1,...,2x)| < ||Y|,. We conclude that ||Z]|, < [[Y]],.

Finally, fix (i9,...,ix) € Z(k—1,m) and set K = (ia+1,...,ix+1). By definition
of Z, the K—coordinate of Z is equal to

k k

E > _§ + + +
pir‘o[(xlf"axh"';xk)_ pigJ(X17"'7Xi>"'axk)'

i=1 i=1

By assertion this is also the (1, K)—coordinate of Y. So, the set of non-zero
coordinates of Y is exactly equal to the set of non-zero coordinates of the point

7

k
Zpixf/\---/\xﬂ'/\-n/\x;
i=1

Eq. (A.6) follows from the second identity of (A.7). O
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