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On uniform polynomial approximation
Anthony Poëls

Abstract
Let n be a positive integer and ξ a transcendental real number. We are

interested in bounding from above the uniform exponent of polynomial approxi-
mation ω̂n(ξ). Davenport and Schmidt’s original 1969 inequality ω̂n(ξ) ≤ 2n−1
was improved recently, and the best upper bound known to date is 2n−2 for each
n ≥ 10. In this paper, we develop new techniques leading us to the improved
upper bound 2n − 1

3 n1/3 + O(1).

MSC 2020: 11J13(Primary), 11J82 (Secondary).
Keywords: Exponent of Diophantine approximation, heights, uniform polynomial approxima-

tion.

1 Introduction
Let ξ be a non-zero real number and let n be a positive integer. Dirichlet’s theorem
(1842) is one of the most basic results of Diophantine approximation. It shows that
for any real number H > 1, there exists a non-zero integer point (x0, . . . , xn) ∈ Zn+1

such that

max
{

|x1|, . . . , |xn|
}

≤ H and |x0 + x1ξ + · · · + xnξn| ≤ H−n. (1.1)

It is natural to ask if we can improve the exponent n of H−n, and this question gives
rise to two Diophantine exponents. The so-called uniform exponent of approximation
ω̂n(ξ) (resp. the ordinary exponent ωn(ξ)), is the supremum of the real numbers
ω > 0 such that the system

∥P∥ ≤ H and 0 < |P (ξ)| ≤ H−ω

admits a non-zero solution P ∈ Z[X] of degree at most n for each sufficiently large H
(resp. for arbitrarily large H). Here, ∥P∥ denotes the (naive) height of P , defined as
the largest absolute value of its coefficients. These quantities have been extensively
studied over the past half-century, see for example [5] for a nice overview of the
subject. By Dirichlet’s theorem, if ξ is not an algebraic number of degree ≤ n, then
we have

ωn(ξ) ≥ ω̂n(ξ) ≥ n,

and it is well known that those inequalities are equalities for almost all real numbers
ξ (w.r.t. Lebesgue measure). Note that if ξ is an algebraic number of degree d, then
ω̂n(ξ) and ωn(ξ) are both equal to min{n, d − 1} (it is a consequence of Schmidt’s
subspace theorem, see [5, Theorem 2.10]). We can therefore restrict our study to
the set of transcendental real numbers. The initial question “can we improve the
exponent n in Dirichlet’s Theorem?” may be rephrased as follows: “does there exist a
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transcendental real number ξ satisfying ω̂n(ξ) > n?”. For n = 1 the answer is negative
and rather elementary to prove, so the first non-trivial case is n = 2. Before the early
2000s, it was conjectured that no such number existed. This belief was swept away
by Roy’s extremal numbers [20], [21], [1], whose exponent ω̂2 is equal to the maximal
possible value (3 +

√
5)/2 = 2.618 · · · . Since then, several families of transcendental

real numbers whose uniform exponent ω̂2 is greater than 2 have been discovered (see
for example [22], [6], [15, 16]). However, for n ≥ 3 the mystery remains, and it is still
an open question whether or not there exists ξ ∈ R \Q with ω̂n(ξ) > n.

In this paper, we are interested in finding an upper bound for the uniform exponent
ω̂n(ξ), as this could provide clues to solving the initial problem. Brownawell’s version
of Gel’fond’s criterion [3] implies that ω̂n(ξ) ≤ 3n. In 1969, Davenport and Schmidt
[10, Theorem 2b] showed that for any transcendental real number ξ and any integer
n ≥ 2, we have

ω̂n(ξ) ≤ 2n − 1. (1.2)

Up to now, few improvements have been made. Bugeaud and Schleischitz [8, Theorem
2.1] first got the upper bound

ω̂n(ξ) ≤ n − 1
2 +

√
n2 − 2n + 1/4 = 2n − 3

2 + εn, (1.3)

where εn > 0 tends to 0 as n tends to infinity. Recently, Marnat and Moshchevitin [13]
proved an important conjecture of Schmidt and Summerer on the ratio ω̂n(ξ)/ωn(ξ)
(see also [19, Chapter 2] for an alternative proof based on parametric geometry of
numbers). In [23], Schleischitz pointed out that we can use the aforementioned in-
equality in the proof of (1.3) to get

ω̂n(ξ) ≤ 2n − 2,

for each n ≥ 10. This is currently the best known upper bound. Let us also mention
that using parametric geometry of numbers, Schleischitz [24, Theorem 1.1] was able
to replace the estimate (1.3) by

ω̂n(ξ) ≤ 3(n − 1) +
√

n2 − 2n + 5
2 = 2n − 2 + ε′

n

where ε′
n > 0 tends to 0 as n tends to infinity. For n = 3, . . . , 9, bounds that are

better than (1.2), but nevertheless (strictly) greater than 2n − 2, are known. For
example, it was proved in [8] that for each transcendental real number ξ, we have

ω̂3(ξ) ≤ 3 +
√

2 = 4.41 · · · ,

see also the very recent work of Schleischitz [25]. In this paper, without relying on
Marnat-Moshchevitin’s inequality and with a different approach, we show in Section 7
that the upper bound ω̂n(ξ) ≤ 2n−2 holds for any n ≥ 4. We also improve the upper
bound for ω̂3.

Theorem 1.1. Let n ≥ 3 be an integer and ξ ∈ R be a transcendental real number.
If n ≥ 4, then

ω̂n(ξ) ≤ 2n − 2.

For n = 3, we have the weaker estimate ω̂3(ξ) ≤ 2 +
√

5 = 4.23 · · · .
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We do not think that these upper bounds are optimal. It is interesting to note
that Schleischitz, with a different method and under a technical condition, also found
the estimates of Theorem 1.1, see [25]. Our main result below is a significant im-
provement on the previous results as n tends to infinity and does not require Marnat
and Moshchevitin’s inequality [13].

Theorem 1.2. Set a = 1/3. There exists a computable constant N ≥ 1 such that,
for each n ≥ N and any transcendental real number ξ ∈ R, we have

ω̂n(ξ) ≤ 2n − an1/3.

The constant a = 1/3 is not optimal. Numerical calculations based on the results
from Section 11 suggest that we could take N rather “small” in Theorem 1.2 (maybe
N ≤ 104?). However, to keep the arguments and calculations as clear and simple as
possible, we did not try to provide an explicit value of N .

Theorem 1.2 can be compared to [17, Theorem 1.1], where we study λ̂n(ξ), the
uniform exponent of rational simultaneous approximation to the successive powers
Ξ = (1, ξ, ξ2, . . . , ξn) (which is known to be, in a sense, dual to ω̂n(ξ)), see Section 2
for the precise definition and more details. We were not able to deduce one result
from the other, even though there are similarities in the arguments. For example,
given a polynomial P ∈ Z[X] of degree at most n, which is a good approximation, we
can associate the k + 1 polynomials P, XP, . . . , XkP of degree at most n + k. They
provide information on ω̂n+k(ξ). On the other hand, if we consider y ∈ Zn+1 which
is a good approximation of Ξ (for simultaneous approximation), we can associate
the k + 1 blocks of successive n + 1 − k coordinates of y, which are rather good
approximations of (1, ξ, . . . , ξn−k). They in turn provide information on λ̂n−k(ξ).
Note that the difficulties in the proofs of both theorems are not in the same places.
In particular, in this paper we have to work with irreducible polynomials, a rather
heavy constraint. Also, one of the most delicate parts of our approach is to bound
from above the ordinary exponent ωn(ξ), whereas this is rather “simple” to do for the
ordinary exponent λn(ξ) in [17].

Before presenting our strategy, let us quickly explain Davenport and Schmidt’s
proof of the upper bound (1.2). Given a real number ω̂ < ω̂n(ξ), they show, using ele-
mentary means and Gelfond’s Lemma, that there are infinitely many pairs of coprime
polynomials P, Q ∈ Z[X] of degree at most n, such that

∥Q∥ ≤ ∥P∥ and max{|Q(ξ)|, |P (ξ)|} ≪ ∥P∥−ω̂,

(where the implicit constant only depends on n). It implies that the resultant
Res(P, Q), which is a non-zero integer, satisfies

1 ≤ |Res(P, Q)| ≪ ∥P∥n−1∥Q∥n−1 max
{

∥P∥|Q(ξ)|, ∥Q∥|P (ξ)|
}

≪ ∥P∥2n−1−ω̂.

The first upper bound for |Res(P, Q)| is classical, see Lemma 4.1. Since ∥P∥ can be
arbitrarily large, they deduced that the exponent 2n−1−ω̂ is non-negative. Estimate
(1.2) follows by letting ω̂ tend to ω̂n(ξ). Note that the term 2n in (1.2) is directly
related to the size of the 2n × 2n determinant defining Res(P, Q) (if we suppose that
P and Q have degree exactly n).

The key idea in the proof of our main Theorem 1.2 is to work with a large number
of “good” linearly independent polynomial approximations Q0, . . . Qj+1 rather than
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just two polynomials P and Q as above. By doing this, we can replace Res(P, Q) by a
non-zero (2n−j)×(2n−j) determinant depending on the coefficients of Q0, . . . , Qj+1.
Under the ideal and unlikely assumption that

∥Qk∥ ≤ ∥Q0∥ and |Qk(ξ)| ≪ ∥Q0∥−ω̂ (for k = 0, . . . , j), (1.4)

the aforementioned determinant would be bounded from above by ∥Q0∥2n−j−1−ω̂.
So, together with an additional non-vanishing assumption, it would lead to ω̂n(ξ) ≤
2n−j−1. Several new difficulties arise when trying to make the above arguments work.
We introduce the tools for the construction of the generalized resultant in Section 6.
To ensure that this determinant does not vanish, we need the extra assumption that
Q0, . . . , Qj+1 are irreducible polynomials. The idea is to first fix a sequence of best
approximations, that we call minimal polynomials, and then to consider their highest-
degree irreducible factors (which also happen to be rather good approximations). We
deal with this question in Section 5. Two obstacles remain. Firstly, note that it may
be possible that the best polynomial approximations span a subspace of dimension 3,
even when ξ is transcendental and n is large, see [14, Theorem 1.3]. Therefore, as
soon as j > 1 (we will later choose j ≍ n1/3), we have to justify that we can find
j + 2 linearly independent polynomials as above. The second major problem is the
control of the sequence Q0, . . . , Qj+1. Estimates (1.4) seem out of reach, instead we
get upper bounds of the form

∥Qk∥ ≤ ∥Q0∥ and |Qk(ξ)| ≪ ∥Q0∥|−ω̂θ (for k = 0, . . . , j), (1.5)

where θ < 1 depends only on n and j, and is “close” to 1 if j is not too large com-
pared to n. The main ingredients for showing this are related to twisted heights,
see Sections 8.2 and Appendix A, and an important inequality on the height of sub-
spaces due to Schmidt. The parameter θ in (1.5) is a function of the exponent of best
approximation ωn(ξ). We show in Section 10 that if the uniform exponent satisfies
ω̂n(ξ) ≥ 2n − d (with d ≪ n1/3), then the ordinary exponent ωn(ξ) is bounded from
above by 2n + 2d2, and the ratio ω̂n(ξ)/ωn(ξ) is therefore close to 1. This part, which
is essentially independent from the others, is rather delicate, because we work with
the polynomials Qi. They are certainly irreducible, but not as good approximations
as the minimal polynomials. More precisely, there could be large gaps between the
height of two successive Qi. If we could drop the irreducibility condition and directly
work with the sequence of minimal polynomials, we could possibly replace the upper
bound 2n − O(n1/3) with 2n − O(n1/2) in Theorem 1.2. Section 11 is devoted to the
proof of Theorem 1.2.

2 Notation
Throughout this paper, ξ denotes a transcendental real number.

The floor (resp. ceiling) function is denoted by ⌊·⌋ (resp. ⌈·⌉). If f, g : I → [0, +∞)
are two functions on a set I, we write f = O(g) or f ≪ g or g ≫ f to mean that
there is a positive constant c such that f(x) ≤ cg(x) for each x ∈ I. We write f ≍ g
when both f ≪ g and g ≪ f hold.

Let K be a field. If A is a subset of a K-vector space V , we denote by ⟨A⟩K ⊆ V
the K-vector space spanned by A, with the convention that ⟨∅⟩K = {0}.
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Given a ring A (typically A = R or Z) and an integer n ≥ 0, we denote by A[X] the
ring of polynomials in X with coefficients in A, and by A[X]≤n ⊆ A[X] the subgroup of
polynomials of degree at most n. We say that P ∈ Z[X] is primitive if it non-zero and
the greatest common divisor of its coefficients is 1. Given P =

∑n
k=0 akXk ∈ R[X],

we set

∥P∥ = max
0≤k≤n

|ak|.

Gelfond’s Lemma is the following statement (see e.g. [4, Lemma A.3] as well as
[3]). For any non-zero polynomials P1, . . . , Pr ∈ R[X] with product P = P1 · · · Pr of
degree at most n, we have

e−n∥P1∥ · · · ∥Pr∥ < ∥P∥ < en∥P1∥ · · · ∥Pr∥. (2.1)

In particular, for each non-zero polynomial P ∈ Z[X]≤n and each factor Q ∈ Z[X]
of P , we have e−n∥Q∥ < ∥P∥. We will often use (2.1) as follows. If Q ∈ Z[X]≤n is
irreducible and if P ∈ Z[X]≤n is a non-zero polynomial which satisfies ∥P∥ ≤ e−n∥Q∥,
then Q cannot divide P . They are thus coprime polynomials.

We recall the definition of the resultant, which, as explained in the introduction,
is useful for estimating the exponent ω̂n(ξ) (see also Section 4). Let P, Q ∈ Z[X] be
non-constant polynomials of degree p and q respectively, and let ai, bj ∈ Z such that
P (X) =

∑p
k=0 akXk and Q(X) =

∑q
k=0 bkXk. Their resultant Res(P, Q) is defined

as the (q + p)-dimensional determinant

Res(P, Q) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ap 0 . . .
ap−1 ap

...
...

. . .
a0
0 a0
...

...
. . .

a0

bq 0 . . .
bq−1 bq

...
...

. . .
b0
0 b0
...

...
. . .

bp

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
︸ ︷︷ ︸

q

︸ ︷︷ ︸
p

. (2.2)

Besides the exponents of linear approximation ωn and ω̂n, we will also need the
following exponents of simultaneous rational approximation. For each positive integer
n, the exponent λ̂n(ξ) (resp. λn(ξ)) is the supremum of the real numbers λ ≥ 0 such
that the system

|y0| ≤ Y and L(y) ≤ Y −λ where L(y) := max
1≤k≤n

|y0ξk − yk|,

admits a non-zero integer solution y = (y0, . . . , yn) ∈ Zn+1 for each sufficiently large
Y ≥ 1 (resp. for arbitrarily large Y ). Dirichlet’s theorem [26, §II.1, Theorem 1A]
implies that λ̂n(ξ) ≥ 1/n. The best upper bounds known to date for λ̂n(ξ) when
n ≥ 4 are established in joint work with Roy in [17]. In particular, there is an explicit
positive constant a such that

λ̂n(ξ) ≤ 1
n/2 + an1/2 + 1/3

,

and sharper results are also obtained when n is small.
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3 Minimal polynomials
A sequence of minimal polynomials (associated to n and ξ) is a sequence (Pi)i≥0 of
non-zero polynomials in Z[X]≤n satisfying the following properties:

(i) the sequence
(
∥Pi∥

)
i≥0 is strictly increasing;

(ii) the sequence
(
|Pi(ξ)|

)
i≥0 is strictly decreasing;

(iii) if |P (ξ)| < |Pi(ξ)| for some index i ≥ 0 and a non-zero P ∈ Z[X]≤n, then
∥P∥ ≥ ∥Pi+1∥.

Note that if we require the dominant coefficient of Pi to be positive (and since ξ is
transcendental), then the above sequence is unique up to its first terms. Let (Pi)i≥0
be a sequence as above. We have the classical formulas:

ω̂n(ξ) = lim inf
i→∞

− log |Pi(ξ)|
log ∥Pi+1∥

and ωn(ξ) = lim sup
i→∞

− log |Pi(ξ)|
log ∥Pi∥

. (3.1)

In particular, given a positive real number ω̂ with ω̂ < ω̂n(ξ), then we have, for each
sufficiently large index i,

|Pi(ξ)| ≤ ∥Pi+1∥−ω̂ and ∥Pi+1∥τ ≤ ∥Pi∥, where τ := ω̂

ωn(ξ) , (3.2)

(with the convention τ = 0 if ωn(ξ) = ∞). The second inequality in (3.2) asks for
an upper bound on ωn(ξ). Given a non-zero P ∈ Z[X], we set ω(P ) = 0 if ∥P∥ = 1.
Otherwise, we denote by ω(P ) the real number satisfying

|P (ξ)| = ∥P∥−ω(P ).

With this notation, we have

ωn(ξ) = lim sup
∥P ∥→∞

P ∈Z[X]≤n

ω(P ) = lim sup
i→∞

ω(Pi) and lim inf
i→∞

ω(Pi) ≥ ω̂n(ξ). (3.3)

The following results are well-known. We prove them for the sake of completion.
The first one follows from the arguments of the proof of [9, Lemma 2] (see also [21,
Lemma 4.1]).

Lemma 3.1. Let i ≥ 0 and write Vi = ⟨Pi, Pi+1⟩R ⊆ R[X]≤n. Then {Pi, Pi+1} forms
a Z–basis of the lattice Vi ∩ Z[X]≤n.

Proof. By contradiction, suppose that {Pi, Pi+1} is not a Z–basis of Vi ∩ Z[X]≤n.
Then there exists a non-zero Q ∈ Z[X]≤n which may be written as Q = rPi + sPi+1,
where r, s ∈ Q satisfy |r|, |s| ≤ 1/2. In particular, we have

∥Q∥ ≤ |r|∥Pi∥ + |s|∥Pi+1∥ < ∥Pi+1∥,

|Q(ξ)| ≤ |r||Pi(ξ)| + |s||Pi+1(ξ)| < |Pi(ξ)|.

This contradicts the minimality property of Pi.

The next result is analogous to the second part of [21, Lemma 4.1]. The construc-
tion of Si is due to Davenport and Schmidt [9].
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Lemma 3.2. For each i ≥ 0, define

Si = Pi(ξ)Pi+1 − Pi+1(ξ)Pi ∈ R[X]≤n.

Then
1
2∥Si∥ ≤ ∥Pi+1∥|Pi(ξ)| ≤ 2∥Si∥.

Moreover, if for integers 0 ≤ i < j the space spanned by Pi, Pi+1, · · · , Pj has dimen-
sion 2, then Sj−1 = ±Si. In particular

∥Pi+1∥|Pi(ξ)| ≍ ∥Pj∥|Pj−1(ξ)|.

Remark 3.3. Note that the quantity ∥Si∥ satisfies ∥Si∥ ≍ Dξ(Vi), where Dξ is defined
in Section 8.2 and Vi = ⟨Pi, Pi+1⟩R. We will study the function Dξ more deeply later.

Proof. We easily get ∥Si∥ ≤ 2∥Pi+1∥|Pi(ξ)|. Define R+, R− ∈ Z[X]≤n by

R± = Pi+1 ± Pi.

Suppose that there exists ε ∈ {+, −} such that |Rε(ξ)| ≤ |Pi(ξ)|/2. Then by min-
imality of Pi, we must have ∥Rε∥ ≥ ∥Pi+1∥. Since Si = Pi(ξ)Rε − Rε(ξ)Pi, we
find

∥Si∥ ≥ |Pi(ξ)|∥Rε∥ − |Rε(ξ)|∥Pi∥ ≥ 1
2∥Pi+1∥|Pi(ξ)|.

Assume that |R+(ξ)|, |R−(ξ)| ≥ |Pi(ξ)|/2. This is equivalent to

|Pi+1(ξ)| ≤ 1
2 |Pi(ξ)|.

Again, this yields ∥Si∥ ≥ |Pi(ξ)|∥Pi+1∥ − |Pi+1(ξ)|∥Pi∥ ≥ ∥Pi+1∥|Pi(ξ)|/2.
Now, let us write Vi = ⟨Pi, . . . , Pj⟩R, with j > i, and suppose that Vi has di-

mension 2. We need to prove that Sj−1 = ±Si. If j = i + 1 it is automatic, we
may therefore assume that j ≥ i + 2. By Lemma 3.1, there exist a, b ∈ Z such that
Pi = aPi+1 + bPi+2. Since {Pi, Pi+1} is also a Z–basis of Vi, we have b = ±1, and we
deduce that

Si =
(
aPi+1(ξ) + bPi+2(ξ)

)
Pi+1 − Pi+1(ξ)

(
aPi+1 + bPi+2

)
= −bSi+1 = ±Si+1.

By induction, we get Si = ±Si+1 = · · · = ±Sj−1.

The proof of [9, Lemma 3] (which deals with the case n = 2) yields the classical
following result.

Lemma 3.4. Suppose n ≥ 2. Then, there are infinitely many indices i ≥ 1 for which
Pi−1, Pi and Pi+1 are linearly independent.

Proof. By contradiction, suppose that there exists i ≥ 0 such that V = ⟨Pi, Pi+1, . . . ⟩R
has dimension 2. By Lemma 3.2 there exists c > 0 such that for each j > i we have

0 < ∥Pi+1∥|Pi(ξ)| ≤ c∥Pj∥|Pj−1|.

This leads to a contradiction since ∥Pj∥|Pj−1| ≤ ∥Pj∥1−ω̂n(ξ)+o(1) tends to 0 as j
tends to infinity.

Remark 3.5. As mentioned in the introduction, it is however possible that all polyno-
mials Pi with i large enough lie in a subspace of dimension 3 , see [14, Theorem 1.3].
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4 Resultant and first estimates
The following useful result can easily be derived from the proof of [10, §5] (see also of
[3, Lemma 1]). We recall the arguments since they illustrate (in a simpler situation)
how we will deal with generalized determinants.

Lemma 4.1. Let p, q be positive integers with p, q ≤ n. There exists a constant
c > 0 depending on ξ and n only, with the following property. For any polynomials
P, Q ∈ Z[X] of degree p and q respectively, we have

|Res(P, Q)| ≤ c∥P∥q−1∥Q∥p−1 max
{

∥P∥|Q(ξ)|, ∥Q∥|P (ξ)|
}

.

Proof. Let ai, bj ∈ Z such that P (X) =
∑p

k=0 akXk and Q(X) =
∑q

k=0 bkXk. For
i = 1, . . . , p + q − 1, we add to the last row of the determinant (2.2) its i-th row
multiplied by ξp+q−i. This last row now becomes(

ξq−1P (ξ), . . . , ξP (ξ), P (ξ), ξp−1Q(ξ), . . . , ξQ(ξ), Q(ξ)
)

.

Using the upper bounds |ai| ≤ ∥P∥ and |bj | ≤ ∥Q∥ for the other entries of (2.2), we
obtain

|Res(P, Q)| ≪ ∥P∥q−1|P (ξ)|∥Q∥p + ∥P∥q∥Q∥p−1|Q(ξ)|,

where the implicit constant only depends on p, q and ξ.

The next result, which is also based on inequalities involving resultants, will be
used in Section 10. It ensures that if R ∈ Z[X] is a “good” approximation, in the sense
that R(ξ) is very small compared to ∥R∥, and if we write R as a product of coprime
polynomials B1 · · · Bk, then one of those factors is also a “good” approximation, while
the product of the others is not.

Lemma 4.2. Let m, k be positive integers. There exists a constant c > 0 depending
on m and ξ only, with the following property. Let B1, . . . , Bk ∈ Z[X] be non-constant,
pairwise coprime polynomials, and suppose that R := B1 · · · Bk has degree at most m.
Then, there exists j ∈ {1, . . . , k} such that

|Bj(ξ)| ≤ c∥R∥m−1|R(ξ)| and
k∏

i=1
i̸=j

|Bi(ξ)| ≥ c−1∥R∥−(m−1).

Proof. If k = 1 this is trivial. We now suppose that k ≥ 2 and write di = deg(Bi) for
i = 1, . . . , k. By hypothesis, we have deg(R) = d1 + · · · + dk ≤ m. Note that

|R(ξ)| =
k∏

i=1
|Bi(ξ)| and ∥R∥ ≍

k∏
i=1

∥Bi∥, (4.1)

the second inequality coming from Gelfond’s lemma (with an implicit constant de-
pending only on m). Choose j ∈ {1, . . . , k} such that |Bj(ξ)| is minimal and fix
i ∈ {1, . . . , k} with i ̸= j. Since Bi and Bj are coprime, their resultant Res(Bi, Bj) is
a non-zero integer. Using Lemma 4.1, we find

1 ≤ |Res(Bi, Bj)| ≪ ∥Bi∥dj−1∥Bj∥di−1(
∥Bj∥|Bi(ξ)| + ∥Bi∥|Bj(ξ)|

)
≪ ∥Bi∥dj ∥Bj∥di |Bi(ξ)|,
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with an implicit constant depending only on ξ and m, hence

− log |Bi(ξ)| ≤ dj log ∥Bi∥ + di log ∥Bj∥ + O(1).

On the other hand, by summing the above inequalities for i ̸= j, and by using (4.1),
we obtain

k∑
i=1
i̸=j

− log |Bi(ξ)| ≤ dj

k∑
i=1
i ̸=j

log ∥Bi∥ + (m − dj) log ∥Bj∥ + O(1)

≤ (m − 1) log ∥R∥ + O(1).

We easily deduce that
k∏

i=1
i ̸=j

|Bi(ξ)| ≫ ∥R∥−(m−1) and |R(ξ)| =
k∏

i=1
|Bi(ξ)| ≫ |Bj(ξ)|∥R∥−(m−1).

5 A sequence of irreducible polynomials
As explained in the introduction, to get the upper bound ω̂n(ξ) ≤ 2n−1, the strategy
of Davenport and Schmidt [10] consists in considering the resultant Res(P, Q) of two
“good” polynomial approximations P, Q ∈ Z[X]≤n. To ensure that Res(P, Q) does
not vanish, they need a polynomial P which is irreducible (for it is then easy to find
Q so that P and Q are coprime). The same difficulty appears in [8]. Similarly, we will
not work directly with a sequence of minimal polynomials. Instead, we will considerer
the largest irreducible factors of the minimal polynomials. Now, let n, d be integers
with

2 ≤ d < 1 + n

2 .

In this section, we assume that the transcendental real number ξ satisfies ω̂n(ξ) >
2n − d and we fix a real number ω̂ (arbitrarily close to ω̂n(ξ)) such that

ω̂n(ξ) > ω̂ > 2n − d. (5.1)

We denote by (Pi)i≥0 a sequence of minimal polynomials associated to n and ξ.
Our goal is to prove the existence of a sequence (Qi)i≥0 as below.

Proposition 5.1. Suppose that (5.1) holds. Then, there exist a sequence (Qi)i≥0 of
pairwise distinct polynomials in Z[X]≤n and an index j0 ≥ 0 with the following prop-
erties. The sequence (∥Qi∥)i≥0 is bounded below by 2, unbounded and non-decreasing,
and for any i ≥ 0

(i) Qi is irreducible (over Z) and has degree at least n − d + 2;

(ii) Qi divides Pj for some index j ≥ j0 (not necessarily unique), and for each
j ≥ j0 there exists k ≥ 0 such that Qk divides Pj;

(iii) |Qi(ξ)| = ∥Qi∥−ω(Qi) ≤ ∥Qi∥−ω̂, and we further have

ωn(ξ) = lim sup
k→∞

ω(Qk) and lim inf
k→∞

ω(Qk) ≥ ω̂n(ξ). (5.2)

9



(iv) if Qi divides a minimal polynomial Pj with j ≥ j0, then

∥Pj∥ ≤ ∥Qi∥1+θi , where θi = ω(Qi) − 2n + d

n − 2d + 3 ; (5.3)

(v) we have

∥Qi+1∥τ ≤ ∥Qi∥ where τ =
ω̂

(
ω̂ − n − d + 3

)
ωn(ξ)

(
ωn(ξ) − n − d + 3

) , (5.4)

with the convention τ = 0 if ωn(ξ) = ∞.
The above proposition is essentially a consequence of Lemma 5.3 below. Asser-

tion (iii) ensures that the polynomials Qi are quite good approximations, and they
can be used to compute the exponent of best approximation ωn(ξ). Estimate (5.4) is
the analog of the second inequality of (3.2) but is way more difficult to prove. The
main reason behind this difficulty is that there may be many polynomials P ∈ Z[X]≤n

with ∥Qi∥ < ∥P∥ < ∥Qi+1∥ and |P (ξ)| < Qi(ξ).
In order to prove Proposition 5.1, we need the two technical lemmas below. Es-

sentially, they will be used to prove that the factors of Pi of small degree are bad
approximations. This will lead to the existence of a factor of large degree which is
necessarily a rather good approximation.
Lemma 5.2. Suppose that (5.1) holds. Then, there exists a constant c ∈ (0, 1)
depending only on ξ and n such that for any non-zero polynomial R ∈ Z[X]≤n−d+1
we have

|R(ξ)| ≥ c∥R∥−(n+deg(R)−1) ≥ c∥R∥−(2n−d). (5.5)
In particular (5.5) holds for any R ∈ Z[X]≤d−2.
Proof. If R is constant we have |R(ξ)| = ∥R∥ and the result is trivial. Now, suppose
that R is irreducible and not constant. We adapt the arguments of Davenport and
Schmidt [10, §5–6]. Set H = e−n∥R∥. By definition of ω̂n(ξ) and ω̂, if H is sufficiently
large, there exists a non-zero P ∈ Z[X]≤n such that

∥P∥ ≤ H and |P (ξ)| ≤ H−ω̂.

By (2.1), the (irreducible) polynomial R is not a factor of P , they are thus coprime
polynomials. Their resultant is a non-zero integer, and using Lemma 4.1, we obtain

1 ≪ ∥P∥deg(R)−1∥R∥n|P (ξ)| + ∥P∥deg(R)∥R∥n−1|R(ξ)|

≪ Hn+deg(R)−1−ω̂ + Hn+deg(R)−1|R(ξ)|.

Since ω̂ > 2n − d and deg(R) ≤ n − d + 1, the first term tends to 0 as H tends to
infinity. Hence 1 ≪ Hn+deg(R)−1|R(ξ)|, which implies (5.5).

If R is not irreducible, we write R =
∏s

i=1 Ri with integer s ≥ 1 and
R1, . . . , Rs ∈ Z[X] irreducible of degree ≤ deg(R) (possibly constant). Combin-
ing ∥R∥ ≍

∏s
i=1 ∥Ri∥ together with (5.5) applied to the irreducible factors Ri, we

find

|R(ξ)| =
s∏

i=1
|Ri(ξ)| ≫

s∏
i=1

∥Ri∥−(n+deg(R)−1) ≫ ∥R∥−(n+deg(R)−1).

Finally, the last assertion comes from the fact that d − 1 ≤ n + d − 1 (since d ≤
1 + n/2).
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Lemma 5.3. Suppose that (5.1) holds. There exist i0 ≥ 0 and a constant c > 0 such
that for each i ≥ i0 the polynomial Pi has a unique irreducible factor P̃i ∈ Z[X] of
degree ≥ n − d + 2 and positive leading coefficient. It satisfies

|Pi(ξ)|∥Pi∥n+d−3 ≥ c|P̃i(ξ)|∥P̃i∥n+d−3, (5.6)

moreover
(
∥P̃i∥

)
i≥i0

tends to infinity and as i tends to infinity. For each i large

enough, we have ∥P̃i∥ > 1, and writing |P̃i(ξ)| = ∥P̃i∥−ω(P̃i), we furthermore have

ωn(ξ) = lim sup
i→∞

ω(P̃i) and lim inf
i→∞

ω(P̃i) ≥ ω̂n(ξ). (5.7)

Proof. First, note that since d < 1 + n/2, if we decompose Pi as a product of irre-
ducibles, there is at most one factor of degree ≥ n − d + 2. Fix i ≥ 0 large enough so
that ω(Pi) ≥ ω̂, and write

P := Pi =
s∏

k=1
Rk

where R1, . . . , Rs ∈ Z[X] are irreducible polynomials (and s is a positive integer).
Suppose that deg(Rk) ≤ n − d + 1 for each k = 1, . . . , s. Then, by Lemma 5.2
together with ∥P∥ ≍

∏
k ∥Rk∥, we find

∥P∥−ω̂ ≥ |P (ξ)| =
s∏

k=1
|Rk(ξ)| ≫

s∏
k=1

∥Rk∥−(2n−d) ≍ ∥P∥−(2n−d).

This is impossible if i is sufficiently large since ω̂ > 2n − d. Therefore, if i is large
enough, one of the factors Rk has degree at least n−d+2. Without loss of generality,
we may suppose that it is R := R1. Write S :=

∏s
k=2 Rk, so that P = RS. We have

deg(S) ≤ d − 2, and (5.5) of Lemma 5.2 yields

|S(ξ)| ≫ ∥S∥−(n+d−3).

Together with ∥P∥ ≍ ∥R∥∥S∥, this leads to

|P (ξ)| = |R(ξ)||S(ξ)| ≫ |R(ξ)|∥S∥−(n+d−3) ≍ |R(ξ)|∥R∥n+d−3∥P∥−(n+d−3),

and (5.6) follows easily by setting P̃i := R. The rest of the proof is based only on (5.6)
and the inequality ∥P̃i∥ ≪ ∥Pi∥. Note that |Pi(ξ)|∥Pi∥n+d−3 ≪ ∥Pi∥n+d−3−ω̂ tends
to 0 as i tends to infinity (using d < 1+n/2 together with ω̂ > 2n−d). We deduce that
|P̃i(ξ)|∥P̃i∥n+d−3 also tends to 0 as i tends to infinity, which is possible only if ∥P̃i∥
tends to infinity. In particular, if i is large enough we must have ∥P̃i∥ > 1. Writing
|P̃i(ξ)| = ∥P̃i∥−ω(P̃i), we also have ω(P̃i) > n + d − 3. Now, using ∥P̃i∥ ≪ ∥Pi∥, and
taking the logarithms of the two sides of (5.6), we get(

ω(Pi) − (n + d − 3)
)

log ∥Pi∥ ≤
(
ω(P̃i) − (n + d − 3)

)
log ∥P̃i∥ + O(1)

≤
(
ω(P̃i) − (n + d − 3)

)(
log ∥Pi∥ + O(1)

)
+ O(1).

By dividing by log ∥Pi∥ and by simplifying, we deduce that ω(P̃i) ≥ ω(Pi)
(
1 − o(1)

)
and (5.7) follows easily from (3.3).
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Proof of Proposition 5.1. Let i0 ≥ 0 and (P̃i)i≥i0 given by Lemma 5.3. Let
(Qi)i≥0 be the (infinite) sequence of factors (P̃j)j≥i0 reordered by increasing height,
without repetition. By Lemma 5.3, we may assume i0 large enough so that ∥Qi∥ > 1
for each i, as well as |Qi(ξ)| ≤ ∥Qi∥−ω̂. This sequence clearly satisfies the first
assertions (i) to (iii), the third one coming from (5.7) together with (3.3).

Now, let i ≥ 0 and let j ≥ i0 be an index such that Qi divides Pj . Since we have
∥Qi∥ ≪ ∥Pj∥ by Gelfond’s Lemma, the index j tends to infinity as i tends to infinity.
Then, estimate (5.6) can be rewritten as

|Pj(ξ)|−1∥Pj∥−n−d+3 ≪ |Qi(ξ)|−1∥Qi∥−n−d+3 = ∥Qi∥ω(Qi)−n−d+3. (5.8)

Using |Pj(ξ)|−1 ≫ ∥Pj∥ω̂ and ω̂ > 2n − d, we get, for each large enough i,

∥Pj∥n−2d+3 ≤ ∥Qi∥ω(Qi)−n−d+3,

which is equivalent to (5.3). So, assertion (iv) holds assuming i0 large enough.

It remains to prove assertion (v). Note that this is trivial if ωn(ξ) = ∞. Let us
assume that ωn(ξ) < ∞ and fix a small ε > 0 to be chosen later. For each pair (i, j)
as above with j ≥ i0 large enough as a function of ε, we have ω(Pj) > ω̂n(ξ) − ε/2
and ω(Qi) < ωn(ξ) + ε/2, and thus (5.8) yields

∥Pj∥ω̂n(ξ)−ε−n−d+3 ≤ ∥Qi∥ωn(ξ)+ε−n−d+3,

for each i ≥ 0 and each j ≥ i0 such that Qi divides Pj . We define k as the largest
index such that

∥Pk∥ ≤ ∥Qi∥θ(ε), where θ(ε) = ωn(ξ) + ε − n − d + 3
ω̂n(ξ) − ε − n − d + 3 .

Since ∥Pj∥ ≤ ∥Qi∥θ(ε), by maximality of k we have i0 ≤ j ≤ k. Let ℓ be such that Qℓ

divides Pk+1. We find

∥Pk∥ ≤ ∥Qi∥θ(ε) < ∥Pk+1∥ ≤ ∥Qℓ∥θ(ε),

and therefore ℓ ≥ i + 1. On the other hand, since by Gelfond’s Lemma we have
∥Qℓ∥ ≪ ∥Pk+1∥, we deduce from (3.2) that

∥Qi+1∥ ≤ ∥Qℓ∥ ≪ ∥Pk+1∥ ≪ ∥Pk∥ωn(ξ)/ω̂ ≤ ∥Qi∥ωn(ξ)θ(ε)/ω̂.

We now choose ε > 0 small enough so that

θ(ε) <
ωn(ξ) − n − d + 3

ω̂ − n − d + 3 .

This is possible since ω̂ < ω̂n(ξ), and it yields (5.4) for each i ≥ 0, assuming that i0
is large enough.

6 On the dimension of some polynomial subspaces
We start by introducing some families of vector spaces spanned by polynomials, and
we study their dimensions.
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Definition 6.1. Let k ≥ n be an integer and let A be a subset of R[X]≤n. We define

Bk(A) =
{

Q, XQ, . . . , Xk−deg(Q)Q ; Q ∈ A \ {0}
}

⊆ R[X]≤k,

Vk(A) = ⟨Bk(A)⟩R ,

gA(k) = dim Vk(A).

The spaces Vk(A) play the role of the spaces Uk(A) in [17, Section 3] (for simulta-
neous approximation). We obtain analog properties. Note that if A contains at least
one non-zero polynomial, then

Vn(A) ⊊ Vn+1(A) ⊊ · · · . (6.1)

The goal of this section is to prove the following result. We could not find a
reference for the proposition below.

Proposition 6.2. Let k be an integer with 0 ≤ k ≤ n, and let A be a set of k + 1
linearly polynomials of R[X]≤n. Suppose that the gcd of the elements of A is 1 (in
other words, the ideal spanned by A is R[X]). Then

V2n−k(A) = R[X]≤2n−k. (6.2)

The case k = 1 is a classical result (it is implied by the fact that the resultant of
two coprime polynomials is non-zero). The proof of Proposition 6.2 is given at the
end of the section. Recall that a function f : {n, n + 1, . . .} → R is concave if for any
i > n, it satisfies

f(i) − f(i − 1) ≥ f(i + 1) − f(i).

The next result is a dual version of [17, Proposition 3.1] (where we deal with simul-
taneous approximation to the successive powers of ξ).

Lemma 6.3. Let A ̸= {0} be a non-empty subset of R[X]≤n. The function gA is
concave and (strictly) increasing on {n, n + 1, . . .}.

Proof. The series of inclusions (6.1) shows that the function gA is increasing on {n, n+
1, . . . }. For simplicity, we write Vi = Vi(A) and Bi = Bi(A) for each i ≥ n. Given an
integer i ≥ n we have XVi ⊆ Vi+1, and we set

h(i) := dim
(
Vi+1/XVi

)
= gA(i + 1) − gA(i).

We have to prove that h is decreasing on {n, n+1, · · · }. Fix i ≥ n+1 and consider the
linear map π : Vi → Vi+1/XVi defined by π(P ) = P + XVi. Since Bi ∪ XBi = Bi+1,
we have Vi + XVi = Vi+1. So π is surjective, and consequently Im π = Vi+1/XVi is
isomorphic to Vi/ ker π. On the other hand, XVi−1 ⊆ Vi ∩ XVi ⊆ ker π, so XVi−1 is
subspace of ker π. Hence

h(i − 1) = dim
(
Vi/XVi−1

)
≥ dim

(
Vi/ ker π

)
= dim

(
Vi+1/XVi

)
= h(i).

Lemma 6.4. Let P, Q ∈ R[X]≤n be two coprime polynomials. Then, we have

dim Vn+j(P, Q) ≥ 2(j + 1),

for each j ∈ {0, . . . , n − 1}. In particular V2n−1(P, Q) = R[X]≤2n−1.

13



Proof. Let p (resp. q) denote the degree of P (resp. of Q). There exist α, β ∈ R such
that the polynomial P̃ := P (X)(X − α)n−p and Q̃ := Q(X)(X − β)n−q are coprime
(and of degree exactly n). Fix j ∈ {0, . . . , n − 1}. Since P̃ and Q̃ are coprime and
j < n, the linear map

R[X]≤j × R[X]≤j −→ R[X]≤n+j

(R, S) 7−→ RP̃ + SQ̃

is injective, so its image Vn+j(P̃ , Q̃) ⊆ Vn+j(P, Q) has dimension 2(j + 1).

Proof of Proposition 6.2. For simplicity, we write g = gA. Recall that A has
cardinality k + 1, so that g(n) ≥ card(A) = k + 1. If k = n, then (6.2) is automatic
(since in that case A contains a basis of R[X]≤n). So, we may assume that k < n.
We first prove that for each sufficiently large m, we have

Vm(A) = R[X]≤m. (6.3)

Indeed, since the ideal spanned by A is R[X], there exists an integer ℓ ≥ n such
that 1 ∈ Vℓ(A). Let P be a non-zero element in A of degree d, and set m = ℓ + d.
Then Vm(A) contains R[X]≤d, as well as the polynomials P, XP, . . . , XℓP . We easily
deduce (6.3).

By contradiction, suppose that (6.2) does not hold, i.e.

g(2n − k) ≤ 2n − k. (6.4)

We distinguish two cases. Suppose first that g(2n − k) − g(2n − k − 1) ≥ 2. By
concavity, then g(j) − g(j − 1) ≥ 2 for each j with n < j ≤ 2n − k, and we deduce
that

g(2n − k) ≥ g(n) + 2(n − k) ≥ k + 1 + 2(n − k) = 2n − k + 1,

since g(n) ≥ card(A) = k + 1. This contradicts (6.4), so g(2n − k) − g(2n − k −
1) ≤ 1. Since the function g is increasing and concave, it is linear with slope 1 on
{2n − k, 2n − k + 1, . . . }. Choosing m > 2n − k such that (6.3) holds, we obtain by
(6.4)

m + 1 = g(m) = g(2n − k) + m − (2n − k) ≤ m,

a contradiction. Hence (6.2) holds.
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i

g(i)

≥ card(A)

slope ≥ 2 slope = 1

2n − ℓ 2n − 1

2n

i = n

Figure 1: Graph of the piecewise linear function interpolating the values g(i) =
dim Vi(A) at integers i ∈ {n, . . . , 2n − 1}.

7 Proof of Theorem 1.1 (case d = 2)
In this section, we deal with the case d = 2 to prove Theorem 1.1, namely that
ω̂3(ξ) ≤ 2 +

√
5 = 4.23 · · · and ω̂n(ξ) ≤ 2n − 2 for each n ≥ 4. The estimate

ω̂n(ξ) ≤ 2n − 2 was already known for n ≥ 10, however for n = 4, . . . , 9 it is a new
result. For n = 3, our bound improves on the bound ω̂3(ξ) ≤ 3 +

√
2 = 4.41 · · ·

due to Bugeaud and Schleischitz [8]. Moreover, our proof does not require Marnat-
Moshchevitin’s inequality [13].

Proof of Theorem 1.1. Suppose that ω̂n(ξ) > 2n−2, and fix a real number ω̂ such
that

ω̂n(ξ) > ω̂ > 2n − 2.

Let (Pi)i≥0 be a sequence of minimal polynomials associated to n and ξ as in Section 3.
According to Lemma 5.3 (with d = 2) there exists an index i0 ≥ 0 such that Pi has
degree n and is irreducible for each i ≥ i0. Consequently, up to a finite number of
terms, the sequence (Pi)i≥0 coincides with the sequence (Qi)i≥0 of Proposition 5.1.
Let I denotes the set of indices i ≥ i0 + 1 such that Pi−1, Pi and Pi+1 are linearly
independent. By Lemmas 3.2 and 3.4, the set I is infinite, and for any consecutive
i < j in I, we have

∥Pi+1∥|Pi(ξ)| ≍ ∥Pj∥|Pj−1(ξ)|.
Furthermore, the irreducible polynomials Pi and Pi+1 are also coprime since ∥Pi∥ <
∥Pi+1∥ and |Pi(ξ)| > |Pi+1(ξ)|. Lemma 4.1 yields

1 ≤ |Res(Pi, Pi+1)| ≪ ∥Pi∥n−1∥Pi+1∥n|Pi(ξ)| ≪ ∥Pi∥n−1∥Pj∥n|Pj−1(ξ)|

≪ ∥Pi∥n−1∥Pj∥n−ω̂.

We deduce that

∥Pj∥ ≤ ∥Pi∥θ where θ = n − 1
ω̂ − n

. (7.1)
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Let h < i < j be consecutive indices in I. We have the following configuration

⟨Ph, Ph+1⟩R = ⟨Pi−1, Pi⟩R ̸= ⟨Pi, Pi+1⟩R ,

so Ph, Ph+1, Pi+1 are linearly independent. Proposition 6.2 combined with Lemma 6.4
implies that(

R[X]≤n−2Ph ⊕ R[X]≤n−2Ph+1

)
+ R[X]≤n−2Pi+1 = R[X]≤2n−2.

Choose k ∈ {0, . . . , n − 2} such that
(
Ph, . . . , Xn−2Ph, Ph+1, . . . , Xn−2Ph+1, XkPi+1

)
is a basis of R[X]≤2n−2. We denote by M the matrix of this basis expressed in the
canonical basis (1, X, . . . , X2n−2). Estimating det(M) as in the proof of Lemma 4.1
(in other words, for ℓ = 2, . . . , 2n − 2, we add to the first row of M the ℓ-th row
multiplied by ξℓ−1), we get the estimates

1 ≤
∣∣ det

(
M)

∣∣ ≪ |Ph(ξ)|∥Ph∥n−2∥Ph+1∥n−1∥Pi+1∥.

Now, since ∥Ph+1∥n−1|Ph(ξ)| ≍ ∥Ph+1∥n−2∥Pi∥|Pi−1(ξ)| ≪ ∥Pi∥n−1−ω̂, we deduce
that

∥Pi∥ω̂−n+1 ≪ ∥Ph∥n−2∥Pj∥. (7.2)

For consecutive i < j in I, define τi ∈ (0, 1) by

∥Pi∥ = ∥Pj∥τi

and set τ = lim supi∈I,i→∞ τi ∈ [0, 1]. Let h < i < j be consecutive indices in I as
previously. By (7.2), we obtain

ω̂ − n + 1 ≤ (n − 2)τh + 1
τi

+ o(1) ≤ (n − 2)τ + 1
τi

+ o(1).

We infer that

p(τ) ≥ 0, where p(t) = (n − 2)t2 − (ω̂ − n + 1)t + 1. (7.3)

Note that

p(0) = 1, p

(
1

n − 2

)
= 2n − 2 − ω̂

n − 2 < 0 and p(1) = 2n − 2 − ω̂ < 0.

We deduce that p has one root α ∈ (0, 1/(n − 2)) and one root larger than 1. Since
τ ∈ [0, 1] and p(τ) ≥ 0, we obtain τ ≤ α. Combined with the estimate ∥Pi∥ =
∥Pj∥τi ≪ ∥Pi∥θτi valid for any i ∈ I (this is a consequence of (7.1)), this leads to

1 ≤ θτ ≤ θα <
n − 1

(n − 2)2 . (7.4)

We easily check that this is impossible when n ≥ 4 (the right-hand side is strictly less
than 1), thus ω̂n(ξ) ≤ 2n − 2 for each n ≥ 4.

We now deal with the case n = 3. Suppose by contradiction that ω̂3(ξ) > 2 +
√

5
and choose ω̂ such that

ω̂3(ξ) > ω̂ > 2 +
√

5.
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The polynomial p from (7.3) becomes p(t) = t2 −(ω̂−2)t+1. Denote by α its smallest
root, and by β = (

√
5 − 1)/2 the smallest root of the polynomial t2 −

√
5t + 1. We

find

0 = β2 −
√

5β + 1 > β2 − (ω̂ − 2)β + 1 = p(β),

hence α < β. Combined with θ = 2/(ω̂ − 3) < 1/β, this implies that θα < 1, which
contradicts (7.4). It follows that ω̂3(ξ) ≤ 2 +

√
5.

8 Multilinear algebra and height of polynomial sub-
spaces

This section is divided into two parts. We introduce and study a quantity Dξ(V )
associated to a subspace V ⊆ Rm defined over Q in Section 8.2. Intuitively, Dξ(V ) is
small if V is spanned by good polynomials approximations of Z[X] (i.e. small when
evaluated at ξ). This will be a key-point for estimating the height of the polynomials
Qi of Section 5. In order to define Dξ, we need some tools of multilinear algebra that
we recall in Section 8.1. In Appendix A we give another interpretation of Dξ in term
of twisted heights.

8.1 Multilinear algebra and Hodge duality
For each integer m, we view Rm+1 as an Euclidean space for the usual scalar product
(· | ·), and we denote by ∥·∥2 the associated Euclidean norm. For each k = 1, · · · , m+
1, we identify

∧k Rm+1 with RN , where N =
(

m+1
k

)
, via an ordering of the Plücker

coordinates, and we denote by ∥y∥2 the norm of a point y ∈
∧k Rm+1 ∼= RN . This

is independent of the ordering. Let V be a k-dimensional subspace of Rm+1 defined
over Q, i.e. such that

〈
V ∩Qm+1〉

R = V . Its (standard) height H(V ) is the covolume
of the lattice V ∩ Zm+1 inside V (with the convention that H(V ) = 1 if V = {0}).
Explicitly, we have

H(V ) := ∥x1 ∧ · · · ∧ xk∥2 ,

for any Z–basis (x1, . . . , xk) of the lattice V ∩ Zm+1. Schmidt established the very
nice inequality

H(U ∩ V )H(U + V ) ≤ H(U)H(V ),

valid for any subspaces U, V of Rm+1 defined over Q (see [27, 26, Chapter I, Lemma
8A]). In this paper, we need to work with a “twisted” height and the corresponding
version of Schmidt’s inequality (obtained by following Schmidt’s original arguments).

Let (e1, . . . , em+1) denotes the canonical basis of Rm+1, and let k be an integer
with 0 ≤ k ≤ m + 1. The Hodge star operator

∗ :
∧k

Rm+1 ∼−→
∧m+1−k

Rm+1

is defined by

∗(ei1 ∧ · · · ∧ eik
) = εi1,...,ik

ej1 ∧ · · · ∧ ejm+1−k

for any indices i1 < · · · < ik and j1 < · · · < jm+1−k forming a partition of
{1, . . . , m+1}, where εi1,...,ik

denotes the signature of the substitution (1, . . . , m+1) 7→
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(j1, . . . , jm+1−k, i1, . . . , ik). Given X ∈
∧k Rm+1, the point ∗X is called the Hodge

dual of X.

We now collect some useful properties of the Hodge star operator, see for example
[11], [2] and [7, Section 3] for more details. First,

∥∗X∥2 = ∥X∥2 and ∗ (∗X) = (−1)k(m+1−k)X

for any X ∈
∧k Rm+1. If X = x1 ∧ · · · ∧ xk is a system of Plücker coordinates of a

k-dimensional subspace V ⊆ Rm+1, then ∗X is a system of Plücker coordinates of its
orthogonal V ⊥. This implies the classical identity

H(V ) = H(V ⊥).

If k > 0, then given y ∈ Rm+1 and a multivector X ∈
∧k Rm+1, the point

y⌟X = ∗
(
y ∧ (∗X)

)
∈

∧k−1
Rm+1

is called the contraction of X by y (see [7, Lemma 2]). Explicitly, if X = x1 ∧ · · · ∧ xk

is a decomposable multivector, then

y⌟X =
k∑

i=1
(−1)k−i (xi | y) x1 ∧ · · · ∧ x̂i ∧ · · · ∧ xk, (8.1)

where the hat on xi means that this term is omitted from the wedge product (see [7,
Eq (3.3)]). In particular, if k = 1 and X = x ∈ Rm+1, we simply have

y⌟x = (y | x) . (8.2)

8.2 Schmidt’s inequality
Let m be a non-negative integer and set Ξm = (1, ξ, ξ2, . . . , ξm). We keep the notation
of Section 8.1.

Definition 8.1. Let V be a k-dimensional subspace of Rm+1 defined over Q, with
k ≥ 1, and let (x1, . . . , xk) be a Z–basis of the lattice V ∩ Zm+1. We set

Dξ(V ) = ∥Ξm ⌟X∥2 = ∥Ξm ∧ (∗X)∥2 ,

where X = x1 ∧ · · · ∧ xk. By convention, we set Dξ({0}) = 0. Following the notation
of [17, Section 11], we also set

Lξ(V ) = ∥Ξm ∧ X∥2 ,

with the convention that Lξ({0}) = ∥Ξm∥2.

Remark. If (x′
1, . . . , x′

k) is another Z–basis of V ∩ Zm+1, then x′
1 ∧ · · · ∧ x′

k = ±X.
Consequently, Dξ(V ) and Lξ(V ) do not depend on the choice of the basis. In [17], we
considered Lξ(V ) for spaces V spanned by good simultaneous approximations. The
function Dξ is connected to the quantity introduced in [18, Definition 7.1] (where we
work in a number field K instead of Q). Note that Dξ(V ) = 0 if and only if Ξm ∈ V ⊥.
Since ξ is transcendental, this is only possible when V = {0}. We have

Dξ(Rm+1) = ∥Ξm∥2 ≍ 1,
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where the implicit constants depend on ξ and m only. Moreover, (8.2) implies that

Dξ

(
⟨x⟩R

)
= | (Ξm | x) | (8.3)

for any primitive integer point x ∈ Zm+1. Eq. (8.1) yields the explicit formula

Dξ(V ) =

∥∥∥∥∥
k∑

i=1
(−1)k−i (xi | Ξm) x1 ∧ · · · ∧ x̂i ∧ · · · ∧ xk

∥∥∥∥∥
2

. (8.4)

On the other hand, if (y1, . . . , ym+1−k) is a Z–basis of V ⊥ ∩ Zm+1, then ∗X =
±y1 ∧ · · · ∧ ym+1−k. Consequently, we can also write

Dξ(V ) = ∥Ξm ∧ y1 ∧ · · · ∧ ym+1−k∥2 = Lξ(V ⊥). (8.5)

Both formulas for Dξ(V ) will be useful.

Proposition 8.2 (Schmidt’s inequality). For any subspaces U, V of Rm+1 defined
over Q, we have

Dξ(U ∩ V )Dξ(U + V ) ≤ Dξ(U)Dξ(V ) (8.6)

and

Lξ(U ∩ V )Lξ(U + V ) ≤ Lξ(U)Lξ(V ). (8.7)

Proof. In view of (8.5), we only need to prove that (8.7) holds for any pair (U, V )
as in the statement of the proposition (for then, it suffices to apply (8.7) to the pair
(U⊥, V ⊥)). We follow Schmidt’s arguments [27, Chapter I, Lemma 8A]. For any pure
products X, Y, Z ∈

∧
Rm+1, we have

∥X∥2 ∥X ∧ Y ∧ Z∥2 ≤ ∥X ∧ Y∥2 ∥X ∧ Z∥2 . (8.8)

Let U, V be subspaces of Rm+1 defined over Q. If U = {0} or V = {0}, then (8.7)
is trivial, so we may assume that U and V have dimension ≥ 1. Let x1, . . . , xr be
a Z–basis of U ∩ V ∩ Zm+1, which we complete to a Z–basis x1, . . . , xr, y1, . . . , ys of
U ∩ Zm+1 (resp. x1, . . . , xr, z1, . . . , zt of V ∩ Zm+1). Set

X = Ξm ∧ x1 ∧ . . . xr, Y = y1 ∧ · · · ∧ ys and Z = z1 ∧ · · · ∧ zt.

We get (8.7) by applying (8.8) to the above pure products.

We identify R[X]≤m to Rm+1 and Rm+1 to the space of (m + 1) × 1 column
matrices with real coefficients via the isomorphism

m∑
k=0

akXk 7−→ (a0, . . . , am) and (a0, . . . , am) 7→

 a0
...

am

 . (8.9)

Then, for any P ∈ R[X]≤m, we have P (ξ) = (z | Ξm), where z ∈ Rm+1 corresponds
to P . In particular, if P ∈ Z[X]≤m is primitive, then (8.3) may be rewritten as

Dξ

(
⟨P ⟩R

)
= |P (ξ)|. (8.10)

We will repeatedly use the following “twisted” dual version of [17, Lemma 2.1].
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Lemma 8.3. There is a positive constant c, which only depends on n and ξ, with the
following property. For any linearly independent polynomials P1, . . . , Pk ∈ Z[X]≤m

(with k ≥ 1), we have

Dξ

(
⟨P1, . . . , Pk⟩R

)
≤ c

k∑
i=1

|Pi(ξ)|
∥Pi∥

k∏
j=1

∥Pj∥. (8.11)

Note that for any P ∈ Z[X]≤m, Eq. (8.10) implies that Dξ(⟨P ⟩R) ≤ |P (ξ)|.

Proof. Let Q1, . . . , Qk be a Z–basis of V ∩ Z[X]≤m, where V = ⟨P1, . . . , Pk⟩R. There
exists a non-zero α ∈ Z such that

P1 ∧ · · · ∧ Pk = αQ1 ∧ · · · ∧ Qk,

and so
Dξ(V ) = ∥Ξm ⌟ (Q1 ∧ · · · ∧ Qk)∥2 ≤ ∥Ξm ⌟ (P1 ∧ · · · ∧ Pk)∥2 .

On the other hand, by (8.1) combined with Hadamard’s inequality, we obtain

∥Ξm ⌟ (P1 ∧ · · · ∧ Pk)∥2 =

∥∥∥∥∥
k∑

i=1
(−1)k−iPi(ξ) · P1 ∧ · · · ∧ P̂i ∧ · · · ∧ Pk

∥∥∥∥∥
2

≪
k∑

i=1
|Pi(ξ)|∥P1∥ · · · ∥̂Pi∥ · · · ∥Pk∥

(recall that the norm ∥ · ∥ is defined in Section 2).

9 Subfamilies of polynomials: dimension and height
Let d, n, ξ and ω̂ be as in Section 5. In particular we have

2 ≤ d < 1 + n

2 ,

and we suppose that (5.1) holds, namely

ω̂n(ξ) > ω̂ > 2n − d.

Let us fix a sequence of minimal polynomials (Pi)i≥0 associated to n and ξ as in
Section 3. We denote by (Qi)i≥0 the sequence of irreducible factors given by Propo-
sition 5.1. In particular, for each i ≥ 0 we have

|Qi(ξ)| ≤ ∥Qi∥−ω̂, (9.1)

as well as

∥Qi+1∥τ ≤ ∥Qi∥, where τ =
ω̂

(
ω̂ − n − d + 3

)
ωn(ξ)

(
ωn(ξ) − n − d + 3

) ∈ [0, 1). (9.2)

Assuming that d is not too large, we will prove in the next section that ωn(ξ) < ∞,
and thus τ > 0. Here, we investigate the following question: can we find “large” sub-
families of (Qi)i≥0 which are linearly independent, and whose elements have “com-
parable” height? More precisely, given two indices k < i, can we find an exponent
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θj ∈ (0, 1) which depends only on d, n and the dimension j + 1 of the subspace
⟨Qk, Qk+1, . . . , Qi⟩R (and not on the indices i and k), such that ∥Qi∥θj ≪ ∥Qk∥?
For i = k + 1, we already have (9.2). With this goal in mind, let us introduce some
notation.

Definition 9.1. Let mn = mn(ξ) ∈ [2, n + 1] be the integer

mn := lim
i→∞

dim(⟨Qi, Qi+1, . . . ⟩R).

Remark. Note that we might have mn < n+1, since, unlike for simultaneous approx-
imation (see [17, Eq. (5.3)]), it is possible that the sequence (Pi)i≥j is contained in
a proper subspace of R[X]≤n, see e.g. [14]. However, we will show later that under
the hypothesis d ≍ n1/3, we have mn ≫ n1/3. The next definition is somewhat dual
to [17, Definition 5.2]. However, note that in [17, Definition 5.2], the sets Aj [i] are
constructed from the points xi, xi+1, . . . coming after the good approximation xi,
whereas in the present setting we need to consider the points Qi, Qi−1, . . . coming
before Qi. It does not seem to work well the other way round.

Definition 9.2. Let j1 > j0 ≥ 0 be such that

dim ⟨Qj0 , Qj0+1, . . . , Qj1⟩R = dim ⟨Qj0 , Qj0+1, . . . ⟩R = mn.

For each i ≥ j1 and j = 0, . . . , mn − 2, we define

σj(i) = k, Aj [i] = {Qk, Qk+1, . . . , Qi} and Yj(i) = ∥Qk−1∥,

where k ∈ {j0 + 1, . . . , i} is the smallest index such that dim ⟨Qk, . . . , Qi⟩R = j + 1.

Proposition 6.2 implies that

V2n−j

(
Aj [i]

)
= R[X]≤2n−j (j = 1, . . . , mn − 2). (9.3)

Definition 9.3. Let τ ∈ (0, 1). We associate to τ a sequence (τj)0≤j≤n/2 by setting
τ0 = τ , and for j = 1, . . . , ⌊n/2⌋

τj = αj

(
τj−1 − 2j − 1

2n − d

)
, where αj = (2n − d)τ2

(n − 2j)τ + n − j + 1 .

The first main result of this section is the following.

Proposition 9.4. Let τ ∈ (0, 1) and let (τj)0≤j≤n/2 be as in Definition 9.3. Suppose
that

∥Qi+1∥τ ≤ ∥Qi∥ for each sufficiently large i. (9.4)

Then for each large enough i, we also have

∥Qi∥τj ≪ Yj(i) for j = 0, . . . , min
{

⌊n/2⌋, mn − 2
}

, (9.5)

with implicit constants which do not depend on i and j.

Remark. We will use the exponent τ given by (9.2). We will prove that under suitable
conditions, the exponent of best approximation ωn(ξ) is not “too large”. This will
ensure that τ is “close” to 1. This issue, which is one of the delicate parts of this
paper, will be dealt with in Section 10.
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In order to get (9.5), we will try to adopt a strategy similar to the one of [17, §5] in the
setting of simultaneous approximation to the successive powers of ξ. New difficulties
arise however, for example we need to work with Dξ instead of the standard height
of subspaces (see Section 8.1). Schmidt’s inequality (8.6) will play a key-role in our
proofs. We use the notation of Definition 6.1 for the sets Bk(A) and the subspaces
Vk(A) ⊆ R[X]≤k.

Proof. Without loss of generality, we may suppose that the index j0 is large enough
so that (9.4) holds for each i ≥ j0 − 1. Fix i ≥ j1, and for simplicity write m = mn

and Yk := Yk(i) for k = 0, . . . , m − 2.

We prove (9.5) by induction on j. If j = 0, we have Y0 = ∥Qi−1∥ since σ0(i) = i.
By (9.4) applied with i−1 instead of i, we get ∥Qi∥τ0 ≤ Y0. Now, let j ∈ {1, . . . , m−2}
with j ≤ n/2 such that (9.5) holds for j − 1. If τj ≤ 0, then (9.5) holds trivially for
j. We assume that τj > 0. Consequently, we also have τj−1 > 0. Write P := Qσj(i)
and Q := Qσj(i)+1. By (9.4), we have

∥Q∥τ2
≤ ∥P∥τ ≤ Yj . (9.6)

Since P and Q are coprime, Lemma 6.4 implies that dim V2n−j(P, Q) ≥ 2(n − j + 1).
Therefore, there exists a family of 2n − 3j + 1 linearly independent polynomials

Uj := {U0, . . . , U2n−3j} ⊆ B2n−j(P, Q)

such that ⟨Aj [i]⟩R∩⟨Uj⟩R = {0}. Note that since j ≤ n/2, we may choose Uj such that
it contains at least n − 2j polynomials whose height is equal to ∥P∥. The remaining
n − j + 1 ones have height ≤ ∥Q∥. By (9.3), we have V2n−j

(
Aj [i]

)
= R[X]≤2n−j .

Therefore, there exists

Vj := {V1, . . . , Vj−1} ⊆ B2n−j(Aj [i]) = B2n−j(Qσj(i), . . . , Qi)

(with the convention Vj = ∅ if j = 1) such that we have the direct sum

⟨Aj [i]⟩R ⊕ ⟨Uj⟩R ⊕ ⟨Vj⟩R = R[X]≤2n−j .

All the polynomials of Vj have height at most ∥Qi∥. Let k ∈ {σj(i), . . . , i} which
maximizes |Qk(ξ)|/∥Qk∥ and define

A := ⟨Aj [i]⟩R and B := ⟨Uj ∪ Vj ∪ {Qk}⟩R ,

so that A + B = R[X]≤2n−j and A ∩ B = ⟨Qk⟩R. We will now make a crucial use of
the function Dξ introduced in Definition 8.1 (here, the ambient space is R[X]≤2n−j ,
identified to R2n−j+1 via (8.9)). Recall that

Dξ(A + B) = Dξ

(
R[X]≤2n−j

)
=

∥∥(1, ξ, . . . , ξ2n−j)
∥∥

2 ≍ 1,

and that according to (8.10) the primitive polynomial Qk satisfies

Dξ(A ∩ B) = Dξ

(
⟨Qk⟩R

)
= |Qk(ξ)|.

Schmidt’s inequality (8.6) applied with the subspaces A and B yields

|Qk(ξ)| ≍ Dξ(A + B)Dξ(A ∩ B) ≤ Dξ(A)Dξ(B), (9.7)
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the implicit constants depending only on n and ξ (and not on the indices i, j). It
remains to estimate Dξ(A) and Dξ(B). The subspace B ⊆ R[X]≤2n−j is generated
by the 2n − 2j + 1 linearly independent polynomials V = Uj ∪ Vj ∪ {Qk}. Moreover
(see the remarks after the constructions of Uj and Vj), we have∏

R∈V
∥R∥ ≤ ∥P∥n−2j∥Q∥n−j+1∥Qi∥j−1∥Qk∥.

By choice of k, for each R ∈ V we also have |R(ξ)|/∥R∥ ≪ |Qk(ξ)|/∥Qk∥, and
Lemma 8.3 combined with the above yields the upper bound

Dξ(B) ≪ |Qk(ξ)|∥P∥n−2j∥Q∥n−j+1∥Qi∥j−1.

The space A = ⟨Aj [i]⟩R ⊆ R[X]≤2n−j is spanned by a set U of j + 1 linearly polyno-
mials that may be chosen among Qσj−1(i)−1,...,Qi−1, Qi. For each R ∈ U , we have
∥R∥ ≤ ∥Qi∥ and |R(ξ)| ≤ ∥R∥−ω̂ ≤ Y −ω̂

j−1. Combined with Lemma 8.3, we obtain

Dξ(A) ≪
∑
R∈U

|R(ξ)|
∏
S∈U
S ̸=R

∥S∥ ≪ Y −ω̂
j−1∥Qi∥j .

Then, combining the above upper bounds for Dξ(B) and Dξ(A) with (9.7) and (9.6),
we get

Y ω̂
j−1 ≪ ∥P∥n−2j∥Q∥n−j+1∥Qi∥2j−1 ≪ Y

(n−2j)/τ+(n−j+1)/τ2

j ∥Qi∥2j−1,

where the implicit constants depend on n and ξ only. Using the induction hypothesis,
we also have ∥Qi∥ω̂ τj−1 ≪ Y ω̂

j−1, hence

∥Qi∥ω̂ τj−1−2j+1 ≪ Y
(n−2j)/τ+(n−j+1)/τ2

j = Y
(2n−d)/αj

j .

Rising each term to the power αj/(2n − d) and using ω̂ > 2n − d, we easily deduce
(9.5) for j. This concludes our induction step.

Remark 9.5. We could get a slightly greater exponent τj in the above proposition by
using a more precise estimate for Dξ(A). However, this improvement would at best
lead to a larger constant a in Theorem 1.2 ; the term n1/3 would remain the same,
whereas we are expecting n1/2. We preferred to keep the arguments simple.

The following result is inspired by Laurent’s approach in [12, Lemma 5].

Proposition 9.6. Let the hypotheses be as in Proposition 9.4 and write m = mn.
For any λ < λn(ξ), there are infinitely many indices i such that

Ym−2(i) < ∥Qi∥1/(ω̂λτ).

In particular, there are infinitely many indices i such that

Ym−2(i) ≤ ∥Qi∥µ, where µ := n

(2n − d)τ . (9.8)

Proof. By definition of m, the subspace

V =
〈
Qσm−2(i)−1, Qσm−2(i), . . . , Qi

〉
R (9.9)
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of R[X]≤n is independent of i for i ≥ j1, where j1 comes from Definition 9.2. It has
dimension m since dim Am−2[i] = m − 1 and Qσm−2(i)−1 /∈ Am−2[i]. Fix two positive
real numbers α, λ with λ < α < λn(ξ), and suppose by contradiction that there exists
an index i0 ≥ j1 such that for each i ≥ i0

Ym−2(i) ≥ ∥Qi∥θ, where θ = 1
ω̂λτ

. (9.10)

By hypothesis, we can also assume that ∥Qi+1∥τ ≤ ∥Qi∥ for each i ≥ i0. Identi-
fying R[X]≤n with Rn+1 via the isomorphism (8.9), we claim that the point Ξ =
(1, ξ, ξ2, . . . , ξn) is orthogonal to V , with respect to the standard scalar product (· | ·)
of Rn+1.
By definition of λn(ξ), there exist infinitely many non-zero y = (y0, . . . , yn) ∈ Zn+1

satisfying

L(y) = max
1≤k≤n

|y0ξk − yk| ≤ Y −α, where Y = ∥y∥ = max
1≤k≤n

|yk|.

Let (yi)i≥0 be an unbounded sequence of such points ordered by increasing norm. This
sequence converges projectively to Ξ = (1, ξ, ξ2, . . . , ξn). Without loss of generality,
we may assume that ∥y0∥α > 2(n + 1)∥Qi0∥. Fix an index j arbitrarily large. For
simplicity, set y := yj and Y = ∥yj∥. There exists an index i ≥ i0 such that

∥Qi∥ <
Y α

2(n + 1) ≤ ∥Qi+1∥ ≤ ∥Qi∥1/τ . (9.11)

Note that i tends to infinity with j. Let k ∈ {σm−2(i) − 1, . . . , i}. The polynomial
Q := Qk is identified with an integer point z ∈ Zn+1 such that Q(ξ) = (z | Ξ). Since
(z | y) = (z | y − y0Ξ) + y0 (z | Ξ), we get

| (z | y) | ≤ (n + 1)∥Q∥L(y) + Y |Q(ξ)|

(cf. [12, Lemma 5]). Our hypothesis (9.10) yields

∥Qi∥θ ≤ Ym−2(i) ≤ ∥Q∥ ≤ ∥Qi∥.

Using (9.11) together with L(y) ≤ Y −α, we get

(n + 1)∥Q∥L(y) <
1
2 .

Moreover, (9.11) also yields Y 1/ω̂ ≪ ∥Qi∥1/(ω̂ατ) = ∥Qi∥θλ/α, where the implicit
constant only depends on n. Since λ < α, we may choose j so large that (2Y )1/ω̂ <

∥Qi∥θ. Combining this with the estimate |Q(ξ)| ≤ ∥Q∥−ω̂ from (9.1), we also get

Y |Q(ξ)| ≤ Y ∥Q∥−ω̂ ≤ Y ∥Qi∥−θ ω̂ <
1
2 .

We conclude that the integer | (z | y) | is (strictly) less that 1. It is thus equal to 0, and
so y and z are orthogonal. By letting k vary, this implies that y = yj is orthogonal
to the subspace V . Since this is true for all sufficiently large j, it follows that the
(projective) limit Ξ is also orthogonal to V . This proves our claim and provides the
required contradiction since no Qi vanishes at the transcendental number ξ. Thus,
(9.10) does not hold for arbitrarily large indices i. Estimate (9.8) follows by noticing
that λn(ξ) ≥ 1/n by Dirichlet’s theorem, and recalling that ω̂ > 2n − d. We may
therefore choose λ < λn(ξ) so that λω̂ > (2n − d)/n.
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Corollary 9.7. Under the same hypotheses, suppose moreover that m = mn satisfies
m − 2 ≤ n/2, and let (τj)0≤j≤n/2 be as in Definition 9.3. Then, we have

τm−2 ≤ µ = n

(2n − d)τ .

Proof. By Propositions 9.4 and 9.6 there are infinitely many indices i for which
∥Qi∥τm−2 ≪ Ym−2(i) ≤ ∥Qi∥µ. Since ∥Qi∥ tends to infinity with i, we deduce that
τm−2 ≤ µ.

10 Upper bound on the exponent of best approxi-
mation

This section is devoted to the proof of the following upper bound for ωn(ξ).

Proposition 10.1. Suppose that ω̂n(ξ) > 2n − d, with an integer d ∈ N satisfying
2 ≤ d ≤ 3

√
n/4. Then, we have the upper bound

ωn(ξ) ≤ 2n + P (n, d), where P (n, d) = n(4d2 − d − 5) + 8d2 − 2d − 15
2n − 8d2 + 2d + 15 .

If moreover we have d ≤
⌈

3
√

n/16
⌉

and n > 16, then

ωn(ξ) ≤ 2n + 2d2.

Let d, n, ξ and ω̂ be as in Sections 5 and 9. We suppose thus that 2 ≤ d < 1 + n/2
and that (5.1) holds, namely

ω̂n(ξ) > ω̂ > 2n − d.

Fix a sequence of minimal polynomials (Pi)i≥0 associated to n and ξ as in Section 3.
We denote by (Qi)i≥0 the sequence of irreducible factors given by Proposition 5.1.
Unless otherwise stated, all the constants implicit in the symbols ≪, ≫, ≍ and O(·)
depend only on n, d, ξ and ω̂.

According to Proposition 5.1, we have ωn(ξ) = lim supi→∞ ω(Qi). By (5.3), we also
have

∥Pj∥ ≤ ∥Qi∥1+θi with θi = ω(Qi) − 2n + d

n − 2d + 3 , (10.1)

for each i ≥ 0 and each j such that Qi divides Pj . Proposition 10.1 implies that if d3

is small compared to n, then θi = O(d2/n) is small, and Qi has “almost” the same
norm as Pj .

In order to bound from above ωn(ξ), it suffices to do so for ω(Qi). We could try
to use (10.1), which implies that any minimal polynomial of height greater than
∥Qi∥1+θi is not divisible by Qi. They are thus coprime and we may consider their
(non-zero) resultant. However we cannot conclude, as θi is too large. To resolve this
problem, we need several lemmas. We first start by a few simple observations. A
quick computation yields

(1 + θi)(2n − d) = ω(Qi) + (n + d − 3)θi. (10.2)
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More generally, for each η ≥ 0, we have(
1 + θi(1 − η)

)
(2n − d) = ω(Qi) +

(
n + d − 3 − η(2n − d)

)
θi. (10.3)

Under the condition η < (n + d − 3)/(2n − d), which holds as soon as η < 1/2, this
implies that for each i ≥ 0, we have

|Qi(ξ)| = ∥Qi∥−ω(Qi) > ∥Qi∥−
(

1+θi(1−η)
)

(2n−d). (10.4)

Lemma 10.2. Let i ≥ 0 and η ∈ [0, 1/2), and suppose that R ∈ Z[X]≤d−2 is a
non-zero polynomial such that P := QiR has degree at most n and satisfies

∥P∥ ≤ H := ∥Qi∥1+θi(1−η) and |P (ξ)| ≤ H−2n+d. (10.5)

Define

η′ = (2n − d)η
n + d − 3 and η′′ = (2n − 2d + 3)η + d − 3

n + d − 3 .

Then, we have the following properties.

(i) The polynomial R is non-constant. We have d ≥ 3 and

∥R∥−(n+d−3) ≪ |R(ξ)| ≤ ∥Q∥−(n+d−3)(1−η′)θi . (10.6)

(ii) There exist a non-constant irreducible polynomial A ∈ Z[X]≤n and an integer
e ∈ [1, d − 2] such that Ae divides R,

∥Ae∥ ≫ ∥Q∥θ(1−η′′) and ∥Ae∥−(n+d−3) ≪ |Ae(ξ)|. (10.7)

(iii) Let A and e be as in (ii). If S ∈ Z[X]≤d−2 is a non-zero polynomial such that
A and S are coprime and ∥S∥ ≤ ∥Ae∥, then

|S(ξ)| ≫ ∥Ae∥−(2d−5). (10.8)

Proof. Fix i ≥ 0. For simplicity, write Q := Qi and θ = θi. By Gelfond’s Lemma, we
have

∥Q∥∥R∥ ≍ ∥QR∥ = ∥P∥ ≤ ∥Q∥1+θ(1−η),

so that
∥R∥ ≪ ∥Q∥θ(1−η). (10.9)

The first inequality of (10.6) and the second of (10.7) are consequences of Lemma 5.2
(using deg(Ae) ≤ deg(R) ≤ d−2). Using (10.3) together with (10.5) and ∥Q∥−ω(Q) =
|Q(ξ)|, we find

|Q(ξ)R(ξ)| = |P (ξ)| ≤ ∥Q∥−
(

1+θ(1−η)
)

(2n−d) = |Q(ξ)|∥Q∥−
(

n+d−3−η(2n−d)
)

θ.

Simplifying by |Q(ξ)| yields the second inequality of (10.6). In particular we have
|R(ξ)| < 1 since ∥Q∥ > 1 (and θ > 0 as well as η′ ≤ 2η < 1). Consequently
R ∈ Z[X]≤d−2 cannot be constant, and thus d ≥ 3.
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Without loss of generality, we may suppose that P (and thus R) is primitive. Let
us consider the factorization of R over Z. There exist an integer k ≥ 1, irreducible
(non-constant) pairwise distinct polynomials A1, . . . , Ak ∈ Z[X] and positive integers
α1, . . . , αk such that

R =
k∏

j=1
A

αj

j =
k∏

j=1
Bj with Bj := A

αj

j for each j = 1, . . . , k.

According to Lemma 4.2, there exists j ∈ {1, . . . , k} such that B = Bj satisfies

|B(ξ)| ≪ ∥R∥d−3|R(ξ)|.

Set A = Aj and e = αj . We use (10.9) to bound ∥R∥ from above, and the second
inequality of (10.6) to bound |R(ξ)| from above. Then, Lemma 5.2 applied to the
polynomial B ∈ Z[X]≤d−2 together with the above yields

∥B∥−(n+d−3) ≪ |B(ξ)| ≪ ∥R∥d−3|R(ξ)| ≪ ∥Q∥(d−3)(1−η)θ−(n+d−3)(1−η′)θ,

Since by definition of η′ and η′′ we have

1 − η′ − d − 3
n + d − 3(1 − η) = 1 − η′′,

we deduce that

∥B∥−(n+d−3) ≪ |B(ξ)| ≪ ∥Q∥−(n+d−3)θ(1−η′′). (10.10)

and (10.7) follows easily upon recalling that Ae = B. Now, suppose that S ∈
Z[X]≤d−2 is a non-zero polynomial coprime to A with ∥S∥ ≤ ∥B∥. If S is con-
stant, then (10.8) is trivial. We may therefore assume that S has degree at least 1.
Then, the estimate of Lemma 4.1 yields

1 ≤ |Res(B, S)| ≪ ∥B∥d−3∥S∥d−2|B(ξ)| + ∥B∥d−2∥S∥d−3|S(ξ)|
≪ ∥B∥2d−5(

|B(ξ)| + |S(ξ)|
)

(10.11)

(where the implicit constants depend on ξ, n and c). As B divides R, we have
∥B∥ ≪ ∥R∥. Together with (10.9), this gives ∥B∥ ≪ ∥Q∥θ(1−η). Combining the
above with (10.10), we obtain

∥B∥2d−5|B(ξ)| ≪ ∥Q∥(2d−5)θ(1−η)−(n+d−3)θ(1−η′′).

On the other hand, using η ≤ 1/2 we get

(2d − 5)(1 − η) − (n + d − 3)(1 − η′′) = (2n − 4d + 8)η − (n − 2d + 5) ≤ −1.

Since for each large enough i, the number θ = θi is bounded from below by

ρ = ω̂ − 2n + d

n − 2d + 3 > 0,

it follows that ∥B∥2d−5|B(ξ)| ≪ ∥Q∥−ρ tends to 0 as i tends to infinity. Consequently,
(10.11) becomes

1 ≪ ∥B∥2d−5|S(ξ)|,

hence (10.8).
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Lemma 10.3. Let η ∈ [0, 1/2). As in Lemma 10.2, we set

η′′ = (2n − 2d + 3)η + d − 3
n + d − 3 .

Suppose either that we have d = 2, or that we have d ≥ 3, η′′ ∈ [0, 1/2) and

1 − 2η′′

1 − η′′ ≥ 1 − 1
d − 2 + 2d

n
. (10.12)

Then for each large enough i ≥ 0, there exist Z ∈ R with ∥Qi∥ ≤ Z ≤ ∥Qi∥1+θi(1−η)

and a non-zero P ∈ Z[X]≤n, coprime to Qi, which satisfies |P (ξ)| < |Qi(ξ)| and

∥P∥ ≤ Z and |P (ξ)| ≤ Z−(2n−d). (10.13)

Proof. Since ω̂n(ξ) > 2n − d, there exists X0 ≥ 0 such that for each X ≥ X0 the
system

∥P∥ ≤ X and |P (ξ)| ≤ X−(2n−d)

has a non-zero solution P in Z[X]≤n. Fix i ≥ 0 such that ∥Qi∥ ≥ X0, and choose
a non-zero solution P ∈ Z[X]≤n of the above system with X := ∥Qi∥1+θi(1−η). For
simplicity, write Q = Qi and θ = θi. We have |P (ξ)| ≤ X−(2n−d) < |Q(ξ)| thanks
to (10.4). If P and Q are coprime, then the conclusion holds with Z = X. We may
therefore assume that P and Q are not coprime. Then Q divides P , and assertion (i)
of Lemma 10.2 implies that d ≥ 3. Let A ∈ Z[X]≤d−2 and e ∈ [1, d − 2] be the
non-constant irreducible polynomial and the integer given by Lemma 10.2 (ii). In
particular we have deg(Ae) ≤ d − 2 and (10.7) holds. Set Z := e−2n∥QAe∥, and
define ν by the relation

Z = ∥Q∥1+θ(1−ν).

By Gelfond’s Lemma and by definition of Z and ν, we have

∥Q∥θ(1−ν) ≍ ∥Ae∥ ≫ ∥Q∥θ(1−η′′),

the last inequality coming from (10.7). We deduce that ν ≤ η′′ +O
(
1/ log ∥Q∥

)
. Since

η′′ < 1/2 we may assume i large enough so that ν < 1/2. On the other hand, since
QAe divides P , by (2.1), we have

Z < e−n∥QAe∥ ≤ ∥P∥ ≤ X = ∥Q∥1+θ(1−η),

hence ν ≥ η. We now consider a non-zero solution P̃ ∈ Z[X]≤n of the system

∥P̃∥ ≤ Z and |P̃ (ξ)| ≤ Z−(2n−d). (10.14)

We claim that P̃ and Q are coprime. Suppose by contradiction that Q divides P̃ .
There exists R̃ ∈ Z[X] such that P̃ = QR̃. Write R̃ = Af S̃, with f ∈ N and
S̃ ∈ Z[X]≤d−2 coprime to A. By (2.1) and by definition of Z, and since Q and S̃

divide P̃ , we obtain

∥Q∥∥S̃∥ < en∥P̃∥ ≤ enZ = e−n∥QAe∥ < ∥Q∥∥Ae∥.

We deduce that ∥S̃∥ ≤ ∥Ae∥. Similarly,

∥QAf ∥ < en∥P̃∥ ≤ enZ = e−n∥QAe∥.
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Consequently, the polynomial QAe cannot be a factor of QAf (by (2.1) once again).
Thus f ≤ e − 1. Since ∥S̃∥ ≤ ∥Ae∥, the last assertion of Lemma 10.2 yields

|S̃(ξ)| ≫ ∥Ae∥−(2d−5). (10.15)

By hypothesis ν < 1/2, and Lemma 10.2 (i) applied to the solution P̃ = QR̃ of the
system (10.14) gives the estimate

|R̃(ξ)| ≤ ∥Q∥−(n+d−3)(1−ν′)θ, where ν′ = (2n − d)ν
n + d − 3 . (10.16)

We now use (10.15) and |Ae(ξ)| ≫ ∥Ae∥−(n+d−3) (coming from (10.7)) together with
f ≤ e − 1 ≤ d − 3. We get the lower bound

log |R̃(ξ)| = f

e
log |Ae(ξ)| + log |S̃(ξ)|

≥ −
[(

1 − 1
e

)
(n + d − 3) + 2d − 5

]
log ∥Ae∥ + O(1)

≥ −
[(

1 − 1
d − 2

)
(n + d − 3) + 2d − 5

]
θ(1 − ν) log ∥Q∥ + O(1),

the last inequality following from ∥Ae∥ ≍ ∥Q∥θ(1−ν). Comparing this with (10.16)
and noting that ν′ ≤ 2ν, we obtain

1 − 2ν

1 − ν
≤ 1 − ν′

1 − ν
≤ 1 − 1

d − 2 + 2d − 5
n + d − 3 + O

(
1/ log ∥Q∥

)
.

The function ν 7→ (1 − 2ν)/(1 − ν) is decreasing on [0, 1/2]. Using the estimate
ν ≤ η′′ + O

(
1/ log ∥Q∥

)
, we obtain

1 − 2η′′

1 − η′′ ≤ 1 − 1
d − 2 + 2d − 5

n + d − 3 + O
(
1/ log ∥Q∥

)
.

Since (2d − 5)/(n + d − 3) < 2d/n, this contradicts our hypothesis (10.12) when i is
sufficiently large. So, if i is large enough, then P̃ and Q are coprime. Finally, the
lower bound |P̃ (ξ)| ≤ Z−(2n−d) < |Q(ξ)| follows from (10.4) with η replaced by ν
(since ν < 1/2), by a similar argument as in the beginning of the proof.

Proof of Proposition 10.1. The condition d ≤ 3
√

n/4 implies that d ≤ 1 + n/2.
Define

η = 1
2d + 5/2 , η′′ = (2n − 2d + 3)η + d − 3

n + d − 3 and ν = 1
d + 1 .

We claim that the hypotheses of Lemma 10.3 are satisfied for this choice of parameters.
For d = 2, this is automatic since η < 1/2. If d ≥ 3, a direct computation yields

η′′ − ν = −n + 4d3 − 11d2 − 13d + 6
(4d + 5)(n + d − 3)(d + 1) < 0,

so that η′′ < ν ≤ 1/3. Since x 7→ (1 − 2x)/(1 − x) is decreasing on [0, 1/2], we deduce
that (1 − 2η′′)/(1 − η′′) ≥ (1 − 2ν)/(1 − ν). On the other hand, we have

1 − 2ν

1 − ν
−

(
1 − 1

d − 2 + 2d

n

)
= 2(n − d3 + 2d2)

nd(d − 2) ≥ 0,
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hence our claim. Consequently, for each large enough i there exists a non-zero poly-
nomial P ∈ Z[X]≤n coprime with Qi, satisfying

|P (ξ)| ≤ |Qi(ξ)| < 1 and ∥P∥ ≤ ∥Qi∥1+θ(1−η).

Such a polynomial is non-constant, and Lemma 4.1 yields

1 ≤ |Res(Qi, P )| ≪ ∥Qi∥n−1∥P∥n|Qi(ξ)| + ∥Qi∥n∥P∥n−1|P (ξ)|
≪ ∥Qi∥n−1+n(1+θ(1−η))−ω(Qi).

As ∥Qi∥ tends to infinity, it follows that

n − 1 + n(1 + θ(1 − η)) − ω(Qi) ≥ O
(

1/ log ∥Qi∥
)

.

Using the definition (10.1) of θi, this can be rewritten as

(nη − 2d + 3)ω(Qi) ≤ 2ηn2 − (3d + ηd − 5)n + 2d − 3 + O
(

1/ log ∥Qi∥
)

.

The hypothesis d ≤ 3
√

n/4 implies nη − 2d + 3 > 0. Thus, after simplification

ω(Qi) + O
(

1/ log ∥Qi∥
)

≤ 2ηn2 − (3d + ηd − 5)n + 2d − 3
nη − 2d + 3

= 2n + n(d − 1 − ηd) + 2d − 3
nη − 2d + 3 = 2n + P (n, d),

where P (n, d) is as in the statement of Proposition 10.1 (and η = 1/(2d + 5/2)). We
conclude that

ωn(ξ) = lim sup
i→∞

ω(Qi) ≤ 2n + P (n, d).

Set Q(n, d) = (2n − 8d2 + 2d + 15)(P (n, d) − 2d2). A direct computation yields

Q(n, d) = −n(d + 5) + 16d4 − 4d3 − 22d2 − 2d − 15.

If d ≤ 3
√

n/16 we have 16d4 ≤ nd, and therefore Q(n, d) ≤ 0. We obtain P (n, d) ≤
2d2, and consequently ω̂n(ξ) ≤ 2n + 2d2. It remains to show that in the case n ≥ 17
and d = ⌈ρ⌉ with

ρ = 3
√

n/16,

we still have Q(n, d) ≤ 0. If 17 ≤ n ≤ 128, or equivalently if 1 < ρ ≤ 2, then we
have d = 2 and Q(n, 2) = −7n + 117 ≤ 0. The same reasoning leads to Q(n, d) ≤ 0
for 2 < ρ ≤ 3 and 3 < ρ ≤ 4. We now suppose that ρ > 4. Writing d = ρ + t, with
t ∈ [0, 1], and using the fact that 16ρ3 = n, we find

Q(n, d) ≤ −n(d + 5) + 16d4 = −16ρ3(ρ + t + 5) + 16
(
ρ4 + 4tρ3 + 6t2ρ2 + 4t3ρ + t4)

= 16ρ3(3t − 5) + 16
(
6t2ρ2 + 4t3ρ + t4)

≤ 16R(ρ),

where R(x) = −2x3 +6x2 +4x+1. As the coefficients of R(x+4) are all negative, we
have R(x) ≤ 0 for each x ≥ 4. In particular, R(ρ) ≤ 0, and we once again we obtain
Q(n, d) ≤ 0.

Note that the upper bound 2n + P (n, d) is not optimal in Proposition 10.1 (and
could be slightly improved by choosing the parameter η closer to 1/(2d)).
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11 Proof of the main theorem
In this last section we prove our main Theorem 1.2 in the following stronger form.

Theorem 11.1. Let ε = 0.3748 · · · be the unique (positive) solution of the equation
(1 + x)ex = 2 and set a =

(
2ε(2 − eε)/9

)1/3 = 0.3567 · · · . There exists an explicit
constant C > 0 such that, for each n ≥ 1 and any transcendental real number ξ ∈ R,
we have

ω̂n(ξ) ≤ 2n − an1/3 + C.

Since 1/3 < a, it implies Theorem 1.2. We first establish a preliminary result
which uses the following notation. Let n, d be integers with 2 ≤ d ≤

√
n/4. In

particular d ≤ 1 + n/2. We define

ω(d, n) := 2n + P (n, d), where P (n, d) = n(4d2 − d − 5) + 8d2 − 2d − 15
2n − 8d2 + 2d + 15 ,

as well as

τ(d, n) = (2n − d)(n − 2d + 3)
ω(d, n)

(
ω(d, n) − n − d + 3

) and µ(d, n) := n

(2n − d)τ .

Let
(
τi(d, n)

)
0≤i≤n/2 be the sequence associated to τ = τ(d, n) ∈ (0, 1) by Defini-

tion 9.3.

Theorem 11.2. Let n, d, j be non-negative integers with 2 ≤ d ≤
√

n/4 and 1 ≤ j ≤
n/2. Suppose that

τk(d, n) > µ(d, n) for k = 0, . . . , j. (11.1)

Then for any transcendental real number ξ we have

ω̂n(ξ) ≤ 2n − min
{

d, dj

}
, where dj = 2j − 1 − j − 1

τj(d, n) . (11.2)

Proof. Fix a transcendental real number ξ. If ω̂n(ξ) ≤ 2n − d, then (11.2) holds. We
now assume that ω̂n(ξ) > 2n − d, and we choose a real number ω̂ such that

ω̂n(ξ) > ω̂ > 2n − d.

Let (Pi)i≥0 denote a sequence of minimal polynomials associated to n and ξ as in
Section 3. We denote by (Qi)i≥0 the sequence of irreducible factors given by Propo-
sition 5.1, and denote by

m := mn(ξ)

the dimension of the spaces ⟨Qi, Qi+1, . . . ⟩R for each large enough i (as in Defini-
tion 9.1). Proposition 10.1 yields ωn(ξ) ≤ ω(d, n), and by Proposition 5.1 (v), we get,
for each large enough i,

∥Qi+1∥τ(d,n) ≤ ∥Qi∥.

For simplicity, we write τ = τ(d, n) and τk = τk(d, n) for each k ∈ N with k ≤ n/2.
If m − 2 ≤ j ≤ n/2, then Corollary 9.7 yields τm−2 ≤ µ(d, n), which contradicts the

31



hypothesis (11.1). Hence, we must have j < m − 2. Let i ≥ 0. Set Q = Qσj(i). If i is
large enough, there exists a non-zero P ∈ Z[X]≤n such that

∥P∥ ≤ e−n∥Q∥ =: X and |P (ξ)| ≤ X−ω̂.

By (2.1) the (irreducible) polynomial Q does not divide P , they are thus coprime.
Lemma 6.4 implies that dim V2n−j(P, Q) ≥ 2n−2j+2. Choose a linearly independent
subset

Uj := {U1, . . . , U2n−2j+2} ⊆ B2n−j(P, Q)
of cardinality 2n − 2j + 2. According to (9.3), we have V2n−j(Aj [i]) = R[X]≤2n−j . So
there exists

Vj := {V1, . . . , Vj−1} ⊆ B2n−j(Aj [i]) = B2n−j(Qσj(i), . . . , Qi)

such that
⟨Uj⟩R ⊕ ⟨Vj⟩R = R[X]≤2n−j .

Then, identifying R[X]≤2n−j with R2n−j+1 via (8.9), we form the determinant

1 ≤
∣∣ det(U1, . . . , U2n−2j+2, V1, . . . , Vj−1)

∣∣. (11.3)

For k = 1, . . . , 2n − 2j + 2, we have

∥Uk∥ ≪ ∥Q∥ and |Uk(ξ)| ≪ ∥Q∥−ω̂.

On the other hand, for k = 1, . . . , j − 1, we have by Eq. (9.5) from Proposition 9.4

∥Q∥ ≪ ∥Vk∥ ≪ ∥Qi∥ ≪ ∥Q∥1/τj and |Vk(ξ)| ≪ ∥Vk∥−ω̂ ≪ ∥Q∥−ω̂.

For i = 2, . . . , 2n − j + 1, we add to the first row of the determinant (11.3) the i-th
row multiplied by ξi−1. This first row now becomes(

U1(ξ), . . . , U2n−2j+2(ξ), V1(ξ), . . . , Vj−1(ξ)).

By the above, the absolute value of each of its elements is ≪ ∥Q∥−ω̂. By expanding
the determinant, we obtain

1 ≪ ∥Q∥2n−2j+1∥Qi∥j−1∥Q∥−ω̂ ≪ ∥Q∥2n−2j+1+(j−1)/τj−ω̂.

By letting i tend to infinity, we deduce that

ω̂ ≤ 2n − 2j + 1 + (j − 1)τ−1
j = 2n − dj .

Since ω̂ may be chosen arbitrarily close to ω̂n(ξ), we finally get (11.2).

In view of (11.2), the idea is now to choose d and j so that d is maximal and
d ≈ dj . The next two results aim at simplifying condition (11.1) of Theorem 11.2.
The second one also provides a simple lower bound for the exponent τj .

Lemma 11.1. Let n, d, j be non-negative integers with 2 ≤ d ≤
√

n/4 and 1 ≤ j ≤
n/2. Suppose that j satisfies

(2n − d)τ(d, n)2

(n − 2j)τ(d, n) + n − j + 1 ≤ 1 and τj(d, n) ≥ 0. (11.4)

Then, the sequence
(
τk(d, n)

)
0≤k≤j

is (strictly) decreasing. In particular, condi-
tion (11.1) is fulfilled if moreover

τj(d, n) > µ(d, n).
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Proof. Let α1 ≤ · · · ≤ αj be as in Definition 9.3. Condition (11.4) is equivalent to
αj ≤ 1 and τj(d, n) ≥ 0. By definition, we have

τk−1(d, n) = α−1
k τk(d, n) + 2k − 1

2n − d
(for k = 1, . . . , j).

Since α−1
k ≥ α−1

j ≥ 1, this yields τk−1(d, n) > τk(d, n). This proves the first assertion
of our lemma. The second one follows easily.

Lemma 11.2. Let n, d, j be non-negative integers with 2 ≤ d ≤
√

n/4 and 1 ≤ j ≤
n/2. Define

α = α(d, n) := (2n − d)τ(d, n)2

(n − 2)τ(d, n) + n
,

and suppose that

αj >
j(2j − 1)τ(d, n)

(n − 2)τ(d, n) + n
= j(2j − 1)α

(2n − d)τ(d, n) . (11.5)

Then, α ∈ (0, 1) and for k = 0, . . . , j, we have

τk(d, n) ≥ αjτ(d, n) − j(2j − 1)τ(d, n)2

(n − 2)τ(d, n) + n
> 0.

Proof. We have α ∈ (0, 1) since τ(d, n) < 1 and d ≥ 2. For simplicity, we write
τ = τ(d, n). Let (σk)k≥0 be the sequence defined by σ0 = τ , and

σk = α

(
σk−1 − 2k − 1

2n − d

)
for k ≥ 1.

Using (11.5), we find

σj

αj
= σj−1

αj−1 − 2j − 1
(2n − d)αj−1 = σ0 − 1

2n − d

j∑
k=1

2k − 1
αk−1 ≥ τ − j(2j − 1)

(2n − d)αj−1 > 0.

(11.6)

In particular σj ≥ 0. Since σk−1 ≥ α−1σk, by induction, we get σj < σj−1 < · · · < σ0.
Moreover, α = α1 ≤ αk, for each k ∈ N with 1 ≤ k ≤ n/2, where αk is as in
Definition 9.3. Another quick induction yields σk ≤ τk for k = 0, . . . , j. We conclude
by combining σj ≤ σk ≤ τk with (11.6).

Proof of Theorem 11.1. Define a function f : [0, ∞) → R by f(x) = x(2 − ex).
Let ε = 0.3748 · · · be the unique solution of the equation (1 + x)ex = 2. It is the
abscissa of the maximum of f . Set

a = 3

√
2ε(2 − eε)

9 = 0.3567 · · ·

Let n ≥ 1 and define d = d(n) and j(n) by

d(n) = ⌈an1/3⌉ and j := j(n) :=
⌈

2εn

9d2

⌉
.
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We suppose n ≥ 30 so that 2 ≤ d ≤ 1 + n/2 and 1 ≤ j ≤ n/2. Since d4/n2 ≍ d/n =
O(n−2/3), we find ω(d, n) = 2n + 2d2 + O(d), and then

τ(d, n) = 1 − 3d2

n
+ O

(
1

n2/3

)
and α(d, n) = 1 − 9d2

2n
+ O

(
1

n2/3

)
,

(where α(d, n) is defined in Lemma 11.2). In particular, by choice of j, we have

α(d, n)j = exp
(
j log(α(d, n))

)
= exp

(
− 9jd2

2n
+ O

(
1

n1/3

))
= e−ε + O

(
1

n1/3

)
. (11.7)

Since
j(2j − 1)τ(d, n)

(n − 2)τ(d, n) + n
= O

(
1

n1/3

)
,

there exists N1 ≥ 30 such that condition (11.5) of Lemma 11.2 is fulfilled for each
n ≥ N1. Thus, for k = 0, . . . , j, we have

τk(d, n) ≥ α(d, n)jτ(d, n) − j(2j − 1)τ(d, n)2

2n − 2 = e−ε + O
(

1
n1/3

)
.

In particular dj = 2j − 1 − (j − 1)/τj(d, n) satisfies

dj ≥ j
(
2 − eε

)
+ O(1) = 2ε(2 − eε)n

9d2 + O(1) = a3n

d2 + O(1) = d + O(1).

On the other hand, we have

µ(d, n) = n

(2n − d)τ = 1
2 + O

(
1

n1/3

)
.

Since e−ε > 1/2, by (11.7) there exists N2 ≥ N1 such that condition (11.1) of The-
orem 11.2 is fulfilled for each n ≥ N2. We conclude that for any n ≥ N2 and any
transcendental real number ξ, we have

ω̂n(ξ) ≤ 2n − min{d, di} = 2n − d + O(1).

A Appendix: Twisted heights
The purpose of this appendix is to give another interpretation of the quantity Dξ(V )
defined in Section 8.2. Our first approach was actually to work with the heights HT

defined below. We are thankful to Damien Roy for pointed out the link with Hodge’s
duality.

Fix A ∈ GL(Rm+1) and let V be a k–dimensional subspace of Rm+1 defined overQ.
Its (twisted) height HA(V ) is defined as the covolume of the lattice A(V ∩Zm+1) inside
the subspace A(V ) (with the convention that HA(V ) = 1 if V = {0}). Explicitly, we
have

HA(V ) := ∥Ax1 ∧ · · · ∧ Axk∥2 , (A.1)
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where (x1, . . . , xk) is any Z–basis of the lattice V ∩Zm+1. Then Schmidt’s inequality
generalizes as follows

HA(U + V )HA(U ∩ V ) ≤ HA(U)HA(V ) (A.2)

for any subspaces U, V of Rm+1 defined over Q. The proof is the same as for rational
subspaces (see [27, 26, Chapter I, Lemma 8A] and [13, §5]). Similarly to Marnat and
Moshchevitin [13, §5], we consider twisted heights of the following form. Let T > 1
be a parameter. We define the matrix Am,T ∈ GL(Rm+1) as

Am,T =


T m 0 . . . 0
0 T −1

...
. . .

0 T −1




1 ξ · · · ξm

0 1 0 · · · 0
...

. . .
...

0 · · · 0 1

 ,

so that for each polynomial P = a0 + · · · + amXm ∈ Z[X]≤m (identified to a point of
Rm+1 via (8.9)), we have

Am,T

 a0
...

am

 =


T mP (ξ)
T −1a1

...
T −1am

 . (A.3)

We denote by Hm,T (or simply HT if there is no ambiguity about the integer m) the
twisted height HA associated to the matrix A = Am,T . Note that

HT

(
R[X]≤m

)
= HT (Rm+1) = det(A) = 1.

Definition A.1. Let V be a subspace of R[X]≤m defined over Q. We set

D′
ξ(V ) = lim

T →+∞
T −codim(V )Hm,T (V ),

where codim(V ) = m + 1 − dim(V ) denotes the codimension of the space V inside
R[X]≤m. In particular, D′

ξ(R[X]≤n) = 1, and for any primitive polynomial P ∈
Z[X]≤m, we have

D′
ξ

(
⟨P ⟩R

)
= |P (ξ)| = Dξ

(
⟨P ⟩R

)
.

Our goal is now to prove that for any non-zero subspace V ⊆ R[X]≤m ≃ Rm+1

defined over Q, we have
D′

ξ(V ) ≍ Dξ(V ),

where Dξ is as in Definition 8.1 (and the implicit constant depends on m and ξ only).
First, note that since dim(U + V ) + dim(U ∩ V ) = dim U + dim V for any subspaces
U, V of R[X]≤m, we deduce from (A.2) (with A = Am,T ) the following version of
Schmidt’s inequality, which is the analog of Proposition 8.2

D′
ξ(U + V )D′

ξ(U ∩ V ) ≤ D′
ξ(U)D′

ξ(V ), (A.4)

valid for any U, V of R[X]≤m defined over Q.
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Proposition A.2. Let V be a k–dimensional subspace of Rm+1 defined over Q, with
1 ≤ k ≤ m + 1, and set Ξm = (1, ξ, . . . , ξm). We have

Dξ(V ) ≪ D′
ξ(V ) ≤ Dξ(V ), (A.5)

where the implicit constant depends on ξ and m only. Moreover, for any Z–basis
(x1, . . . , xk) of V ∩ Zm+1, we have

D′
ξ(V ) =

∥∥∥∥∥
k∑

i=1
(−1)k−i (Ξm | xi) x+

1 ∧ · · · ∧ x̂+
i ∧ · · · ∧ x+

k

∥∥∥∥∥
2

, (A.6)

where x+
i ∈ Zm denotes the point xi deprived of its first coordinate.

Before to prove this result, we introduce some notation that we will need in the
proof. Given two positive integers p and q, we define I(p, q) as the set of p–tuples
(i1, . . . , ip) of integers with 1 ≤ i1 < · · · < ip ≤ q. Let e = (e1, . . . , eq) be the
canonical basis of Rq. For any I ∈ I(p, q) as above, set eI = ei1 ∧· · ·∧eip ∈

∧p Rq. For
any X ∈

∧p Rq, we call I–coordinate of X its eI–coordinate in the basis (eJ)J∈I(p,q).
For any x1, . . . , xp ∈ Rq, we denote by M(x1, . . . , xp) the q ×p matrix whose columns
are x1, . . . , xp written in the basis e, and by DI(x1, . . . , xp) the minor formed by the
rows of M(x1, . . . , xp) of index i in I. Then, writing X = x1 ∧ · · · ∧ xk, we have the
classical formulas

X =
∑

I∈I(p,q)

DI(x1, . . . , xp)eI and ∥X∥2
2 =

∑
I∈I(p,q)

DI(x1, . . . , xp)2. (A.7)

Therefore, for each I ∈ I(p, q), the I–coordinate of X is DI(x1, . . . , xp).

Proof of Proposition A.2. Fix T ≥ 1 and for i = 1, . . . , k set

Z =
k∑

i=1
pix1 ∧ · · · ∧ x̂i ∧ · · · ∧ xk, where pi = (−1)i+1 (Ξm | xi) ,

Y = lim
T →+∞

T −m+k−1y1(T ) ∧ · · · ∧ yk(T ), where yi = yi(T ) = Am,T (xi) ∈ Rm+1.

By (8.4) we have

Dξ(V ) = ∥Z∥2 and D′
ξ(V ) = ∥Y∥2 .

We prove the following properties. For i = 1, . . . , k we set zi = ((Ξm | xi) , xi) ∈
Rm+2.

(i) For each J = (1, j2, . . . , jk) ∈ I(k, m + 2), the J–coordinate of z1 ∧ · · · ∧ zk is
equal to the K–coordinate of Z, where K = (j2 −1, . . . , jk −1) ∈ I(k−1, m+1).

Fix I = (i1, . . . , ik) ∈ I(k, m + 1).

(ii) If i1 ≥ 2, then the I–coordinate of Y is equal to 0.

(iii) If i1 = 1, then the I–coordinate of Y is equal to the J–coordinate of z1 ∧· · ·∧zk,
where J = (1, i2 +1, . . . , ik +1). It is also equal to the K–coordinate of Z, where
K = (i2, . . . , ik).
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To prove the first assertion, it suffices to expand the determinant DJ(z1, . . . , zk) along
its first row. Let I = (i1, . . . , ik) ∈ I(k, m + 1). Suppose first that i1 ̸= 1. Then, by
Hadamard’s inequality, the I–coordinate of y1(T ) ∧ · · · ∧ yk(T ) satisfies

|DI(y1, . . . , yk)| ≪
k∏

j=1
T −1∥xj∥ = O(T −k),

and we deduce that the I–coordinate of Y is equal to 0, which proves assertion (ii).
Suppose now that i1 = 1 and set J = (1, i2 + 1, . . . , ik + 1). Then

DI(y1, . . . , yk) = T m+1−kDJ(z1, . . . , zk),

hence the first part of (iii). The second part is obtained by combining the above with
assertion (i).

We deduce from the last two assertions that all the non-zero coordinates of Y are
coordinates of Z, thus ∥Y∥2 ≤ ∥Z∥2, which proves the second inequality in (A.5).
For the first estimate, we need to estimate the K–coordinates of Z with K ∈ I(k −
1, m + 1) of the form (1, i2, . . . , ik−1). According to assertion (i), they are exactly the
determinants DJ(z1, . . . , zk) with J = (1, 2, j3, . . . , jk) in I(k, m + 2).

Fix a J ∈ I(k, m + 2) as above. The second row of the matrix M(z1, . . . , zk) is a
linear combination of the remaining rows (with coefficients in absolute value between
1 and |ξ|m). We deduce that DJ(z1, . . . , zk) can be written as a linear combination
of DJ′(z1, . . . , zk), where J ′ belong to the subset of I(k, m + 2) consisting in the
k–tuples whose second element is ≥ 3. By assertion (iii), they are all coordinates of
Y, hence |DJ(z1, . . . , zk)| ≪ ∥Y∥2. We conclude that ∥Z∥2 ≪ ∥Y∥2.

Finally, fix (i2, . . . , ik) ∈ I(k −1, m) and set K = (i2 +1, . . . , ik +1). By definition
of Z, the K–coordinate of Z is equal to

k∑
i=1

piDI(x1, · · · , x̂i, · · · , xk) =
k∑

i=1
piDJ(x+

1 , · · · , x̂+
i , · · · , x+

k ).

By assertion (iii), this is also the (1, K)–coordinate of Y. So, the set of non-zero
coordinates of Y is exactly equal to the set of non-zero coordinates of the point

k∑
i=1

pi x+
1 ∧ · · · ∧ x̂+

i ∧ · · · ∧ x+
k .

Eq. (A.6) follows from the second identity of (A.7).
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the referee for their work and valuable comments.
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