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ABSTRACT

Understanding materials properties depends largely on the
ability to determine its components, and in particular its min-
eral phases. Powder X-ray diffraction (XRD) is a powerful
tool for such purposes. This paper presents a Transformer-
based vision model (ViT) for mineral phase identification, and
proportion inference to quantify the mineral phases present in
a material. Our analysis shows that the tokenization strategy
is a critical step for XRD pattern analysis. The results ob-
tained for both tasks are excellent and more robust than those
obtained with a CNN. The proposed approach also makes it
possible to introduce visualization tools for signal analysis, to
better understand how information flows through the model
and how data is classified or quantified.

Index Terms— Vision Transformers, Deep Learning,
XRD patterns

1. INTRODUCTION

Powder X-Ray Diffraction (XRD) analysis [1] is a key tech-
nique for identifying and quantifying mineral phases in nat-
ural (e.g. soils, sediments) and synthetic (e.g. cement ma-
terials, batteries) materials, and thus for understanding their
chemical and mechanical characteristics. The signal resulting
from the X-ray scattering is known as an XRD pattern. Two
types of signals are considered in the present study. Firstly,
single-phase XRD patterns that consists of a single mineral
phase component and yield to a classification problem re-
ferred to as phase identification. Secondly, multi-compound
XRD patterns the analysis of which aims at retrieving the pro-
portions of each mineral phase in the material.

The so-called Rietveld refinement of an experimental
XRD pattern is probably the most widely used method for
refining structural parameters and quantifying mineral phases
[2]. However, the application of this method requires pre-
liminary phase identification by an expert user, which is
time-consuming or virtually impossible in the case of XRD
computed tomography (XRD-CT) [3, 4, 5].

Deep learning [6] is becoming a state-of-the-art technique
for large-scale data analysis, for example in natural language
processing, computer vision, and image and signal process-
ing. XRD pattern analysis is no exception, and numerous so-

lutions using Neural Networks (NN) have been proposed in
recent years [7]. Artificial Neural Network was first used to
analyze XRD patterns of clay [8]. Next, classification meth-
ods were used to identify mineral phases [9], or to classify
mineral phases according to various factors such as space
group or crystal size [10, 11, 12, 13]. However, to date, there
are only a few methods for quantifying mineral phases in mix-
tures. The authors of [14] have simplified the problem by
dividing the proportion space into different classes, thus turn-
ing the problem into a classification one. Conventional neu-
ral networks (CNNs) show promising results for identifying
mineral phases from their XRD patterns, but remain less ac-
curate for quantifying phases within a mixture [15]. Several
elements of the signal structure contribute to the limitations
of these models. The main difficulty lies in the fact that the
recognition of mineral phases from the signal is not solely
based on one or two main peaks, but rather on the simultane-
ous presence of several characteristic peaks. Besides, the par-
ticular structure of XRD pattern is not invariant by translation
and necessitate analysis relative to peak absolute positions as
well as peak co-occurence.

These observations lead us to look for more robust archi-
tectures and Transformers seem a strong alternative model.
They are built on the principle of self-attention [16] to treat
data as a sequence where the data position is explicitly en-
coded. They are a key component, for example in language
modeling [16] and computer vision with visual Transformers
(ViT) [17]. They have recently emerged in signal processing,
for example in hyperspectral unmixing [18] or electrocardio-
gram analysis [19]. As far as XRD is concerned, research is
still in its infancy, for example with the use of ViT to iden-
tify phases [20]. In addition to providing powerful modeling
capabilities, ViTs offer an Attention Rollout [21] to observe
how information propagates through the model.

Our proposal in this paper is twofold. Firstly, we aim to
assess the capabilities of a ViT in phase identification tasks
using single-phase XRD patterns. Secondly, we tackle the
more complex problem of proportion estimation for multi-
component XRD patterns using a ViT. To our knowledge, this
paper is the first to propose such an approach. Another im-
portant innovation is the integration of visualization tools to
understand the behavior of Transformers on 1D signals.



2. VISION TRANSFORMERS FOR XRD PATTERNS

2.1. Adapting ViT architecture

We use the traditional architecture of a ViT [17], adapted to
our 1D signal problem. Figure 1 outlines the model, which
is almost identical to that of Chen et al. [20], and consists
of multiple layers, starting with normalization, followed by
a multi-head attention (MHA) block. At MHA output, there
is again normalization followed by passage through a Multi-
Layer Perceptron (MLP). Residual connections are added to
ensure the model stability. Finally, an encoded output is ob-
tained and its class token (CLS) component is used to perform
the final task (classification or proportion estimation) by pass-
ing it through a linear head.

Before the original XRD pattern enters in the encoder
block, it must first undergo spectral embedding (or tokeniza-
tion) which is a critical step for signal processing. According
to [20], the most efficient strategy for XRD patterns is to
partition the signal into N segments of length C (C being an
hyperparameter). In most cases, the final part of the signal
is not included in the tokenization, unless the signal length
is a multiple of C. Anticipating on our results presented in
Section 3, our experiments show that choosing a good value
for the length C is critical: For our signal of length 2905,
the ViT architecture is most efficient for C = 80 (Table 1),
resulting in a partition of 36 segments to which the CLS to-
ken is added. It is worth mentioning that other approaches
can be considered for tokenizing the input signal, e.g. using a
CNN [18, 19]. However, as Table 1 shows, this method does
not appear to be effective for our application.

To complete the tokenization, positional encoding vectors
are concatenated to each token. In general, in image and sig-
nal processing, each positional encoding vector is a learnable
parameter, and the initialization values are zeros [17, 20].

2.2. Explainability and visualization for ViT

Positional encoding. The advantage of ViTs in the appli-
cation under consideration lies in their ability to provide in-
sight into signal understanding through visualization. Firstly,
by leveraging the positional encoding learnable parameters,
these vectors encode the positions of each segment after spec-
tral embedding. Each vector corresponds to a diffraction an-
gular range, allowing us to observe the proximity (via cosine
similarity [17]) between these vectors and uncover dependen-
cies between different angular ranges. We can for example
determine whether the presence of a peak in one angular range
influences the presence of a peak in another range.
Attention Rollout. Another visualization tool is Attention
Rollout [21], which uses the attention matrix to observe how
information propagates through the layers of the self-attention
part of the model. Denoting FAℓ = (Aℓ + I)/max(Aℓ + I),
where Aℓ is the fused attention matrix on the all attention head
(using the minimum) and I the identity matrix, the Attention
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Fig. 1: Schematic representation of the Visual Transformer
architecture [17]. The input embedding for XRD patterns
simply consists in taking the signal segment of length C = 80
represented by the red rectangle areas.

Rollout matrix ARL is recursively defined as follows:

AR1 = FAℓ;ARℓ = (FAℓ+I)×ARℓ−1, ℓ ∈ J2 ; LK. (1)

The identity matrix is added to account for residual connec-
tions between layers 1. Initialization consists in retrieving the
attention matrix A of the first layer. The matrix of interest
is that of the output corresponding to the last layer L = 12.
From this matrix, we retain only the first row associated with
the CLS token, as this will be used exclusively for the final
task (e.g., classification or proportion inference). This row al-
lows us to identify the segments that have contributed most
to the value of the CLS token and, consequently, the most
relevant angular ranges.

3. PHASE IDENTIFICATION FOR SINGLE PHASE
XRD PATTERNS

3.1. Dataset

All our XRD patterns are signals x ∈ Rd with signal length
d = 2905. We first consider a classification problem: given a
single-phase XRD pattern, the objective is to determine the
associated mineral phase among a set of K classes. Syn-
thetic XRD patterns are considered here. The problem in-
volves K = 6 different classes: Calcite (CaCO3, space group
R -3 c), Halite (NaCl, F m 3 m), Hematite (Fe2O3, R -3 c),
Dolomite (CaMgC2O6, R -3), Gibbsite (AlO3H3, P 1 21/n 1),
and Quartz (SiO2, P 32 2 1). Each signal consists of 2905
points over an angular range from 4.0001° to 90.020055° (2θ
CuKα) and the X-Ray wavelength is 1.5418. We consider
1800 signals for network training and 600 for model testing.

1https://jacobgil.github.io/deeplearning/vision-transformer-explainability



Table 1: CNN and ViT performance for phase identification.

Method Accuracy↑ F1 score↑ Recall↑

CNN 0.960 0.960 0.960
ViT-20 0.947 0.947 0.947
ViT-40 0.952 0.952 0.952
ViT-80 0.998 0.998 0.998
ViT-100 0.952 0.952 0.952
ViT-CNN 0.168 0.168 0.168

3.2. Results

The ViTs are trained using Cross-Entropy loss for 100 epochs
using Adam as optimizer, with a constant learning rate of
0.001 and a batch size of 64. Results for this classification
task show very high performance (Table 1). On the 600 syn-
thetic data points in the test set, the CNN achieves a classifi-
cation accuracy of 96%. All the ViT variants perform slightly
worse than the CNN to noticeable exception of ViT-80 that
further improves on these already excellent results, achieving
an accuracy of 99.8%. Indeed only one XRD pattern was mis-
classified by this model, showcasing the its potential for this
type of data. We emphasize that the CNN was trained with
the same loss function, number of epochs, batch size and op-
timizer as the ViTs.

In addition to this impressive performance, ViT also al-
lows for visualization of the propagation of information.
Starting from now we only consider the ViT-80 variant which
is simply referred as ViT.

3.3. Visualization

Figure 2 shows which angular ranges were decisive for the
classification of each class. In most cases, this result is
straightforwardly interpretable, such as for Calcite, Gibbsite,
or Dolomite, with values close to 1 on the signal peaks and
low values elsewhere. This indicates that ViT mainly uses
angular ranges with peaks to assign a data point to the right
class. However, in other cases, these graphs are more difficult
to interpret, with a majority of angular ranges used for classi-
fication. The absence of peaks in a number of cases may be
one of the reasons why a class distinguishes itself in this way.

Given these results and the significant improvement pro-
vided by ViT, it was justified to test it on a more complex
problem of mineral phase quantification.

4. PHASE QUANTIFICATION IN
MULTI-COMPOUNDS XRD PATTERNS

In this section, we consider a more challenging problem: the
signal x no longer corresponds to a single mineral phase,
but rather to a linear combination of several phases, i.e x =∑K

i=1 pici, where pi and ci are both related to the ith class
(i = 1, . . . ,K), and represent respectively the proportion of
mineral phase in the mixture and the associated XRD pattern.
K denotes the total number of mineral phases considered for
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Fig. 2: Attention Rollout visualization for six XRD patterns
from the classification test set: (a) Halite, (b) Quartz, (c)
Dolomite, (d) Calcite, (e) Gibbsite and (f) Hematite.

the mixture. Hence, p = (p1, . . . , pk) forms a vector of pro-
portions, with each pi ≥ 0 and

∑K
i=1 pi = 1. Each sig-

nal ci lives in Rd and, due to intraclass variation, the matrix
c ∈ RK×d is unknown. This intra-class variability gener-
ates significant fluctuations between the different XRD pat-
terns associated with the same mineral phases. This is mainly
due to variations in unit-cell parameters and crystallite size.
Finally, considering a XRD pattern x, the challenging task
presented here is to recover the proportion vector p ∈ RK .

4.1. Datasets

The data are multi-compound XRD patterns composed of
K = 4 mineral phases (Calcite, Dolomite, Gibbsite, and
Hematite) provided as supplementary material from [22].
The angular range and number of acquisition points are iden-
tical to those of the previous dataset. Independent synthetic
data were used to create the training (10,000), validation
(2,500), and testing (2,500) sets. This synthetic dataset is
complemented by a set of 32 laboratory XRD patterns we
additionally use to test the network in a realistic setting.

4.2. Results

The ViT was trained over 1000 epochs with the same param-
eters as the classification task. Only the loss function and the
batch size (128) were different. A novelty is introduced: the
ViT was trained with a specific loss for proportion estimation
proposed in [15]. It combines Dirichlet modeling and Mean
Square Error and appears to be the most efficient and stable
loss for proportion inference.

In order to compare with the CNN method used in [15],
we use the same evaluation metrics. The aim is to compare
the true proportion vector with that predicted by the model.
The Root Mean Square Error (RMSE) calculates the average
error over the entire proportion vector. The Mean Maximal



Table 2: Performance comparison between CNN and ViT for proportion inference on XRD patterns (measures in percentage)

Simulated data Real data

Method Parameters Training time (GPU) RMSE ↓ MMAE ↓ RRS↑ RMSE↓ MMAE↓ RRS↑

CNN 832,868 13 minutes 0.49% 0.55% 97.4% 5.16% 6.96% 71.87%
ViT 934,564 170 minutes 1.23% 1.56% 87.2% 4.56% 5.81% 96.9%
Rietveld Depends on the sample 1.3% 2.07% 100%

Absolute Error (MMAE) allows comparison by considering
the maximum error for each data. Finally, we evaluate the
network ability to correctly identify the mineral phases of a
mixture through the Rate of Recovered Support (RRS).

Table 2 reports these measures, comparing the perfor-
mances of the CNN and the ViT. Regarding computation time
(performed on a NVIDIA Tesla P4), the training time for the
CNN is faster since it only requires 100 epochs while the
ViT training necessitates 1,000 epochs. Regarding perfor-
mances, whatever the measure, the CNN is the best model
on the synthetic testing dataset, with errors of less than 1%
for phase quantification. In contrast, the ViT is less efficient
on synthetic data, with errors three times higher (MMAE and
RMSE). However, this relative counterperformance of ViT
is counterbalanced when applied on real data. Indeed, ViT
obtains better results on real laboratory data, suggesting that
it does not adapt too much to the synthetic data. Compared
with the CNN, there is a 1% improvement in MMAE and
RMSE, and a significant increase of over 25% in RRS. These
are excellent results, but still far from the Rietveld method,
which is very effective on this type of laboratory data. Ri-
etveld refinement was not tested on synthetic data, as the data
generation method is similar to that used by Rietveld to refine
quantification parameters.

4.3. Visualization

This study can be supplemented by visualization; here we fo-
cus on positional encoding. As mentioned above, this allows
us to observe the links between the different angular ranges.
Figure 3 shows the two most important links between tokens
6-7 (a) and 9-12 (b) respectively, with cosine similarity val-
ues close to 0.4 in absolute value. The most positively cor-
related corresponds to the co-occurence of two characteristic
peaks for the Gibbsite class (Figure 3 (a)) while the most neg-
atively correlated positions corresponds to an alternation of
secondary peaks and flat areas for the Dolomite and Gibbsite
classes (Figure 3 (b)).

5. CONCLUSION

In this paper, we have proposed and demonstrated the suitabil-
ity of Visual Transformers for processing X-ray diffraction
signals. The choice of Transformers was motivated on one
hand by the particular structure of these signals that is not in-
variant by translation and necessitate analysis relative to peak
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Fig. 3: Relationship between the most positively correlated
tokens (a), the most negatively correlated tokens (b).

absolute positions, and on the other by the ability of ViT to
outperform other types of architectures in various tasks. The
promising results obtained for the two tasks considered here
demonstrate the potential of Transformers, which outperform
a CNN for the classification task and also appear to better gen-
eralize for the proportion inference task. This is illustrated by
the results on real data, which are better than those obtained
with a CNN despite lower performance on simulations. In
addition to performance, the visualization tools show us how
the network analyse the signals of interest.

Our work adds yet another example of a practical appli-
cation for which ViT is highly effective, illustrating the ver-
satility of this architecture. Regarding XRD pattern analysis,
this work opens the way for further investigations on scal-
ing these promising results to more complex databases and
possibly training an XRD fundation model using all available
phase descriptions.
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