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A B S T R A C T

We obtain exponential inequalities for regularized Hotelling’s 𝑇 2
𝑛 statistics, that take into

account the potential high dimensional aspects of the problem. We explore the finite sample
properties of the tail of these statistics by deriving exponential bounds for symmetric distri-
butions and also for general distributions under weak moment assumptions (we never assume
exponential moments). For this, we use a penalized estimator of the covariance matrix and
propose an optimal choice for the penalty coefficient.

. Introduction

In many applications (for instance in genomics or natural language processing), the dimension of the parameter of interest 𝑝 is
arge in comparison to the sample size 𝑛 and sometimes increases with 𝑛. Consider for instance the problem of estimating or testing
mean of variables in R𝑝, with 𝑝 > 𝑛; in that case, the empirical covariance matrix is not full rank and does not approximate the

rue one (for the Frobenius or spectral norms) when 𝑛 tends to infinity (see Theorem 2 in Mestre [24]. It is also ill-conditioned,
ee Johnstone [16]). As a consequence, the usual Hotelling’s 𝑇 2

𝑛 tests in a large dimension framework are no longer valid (see
hen et al. [9], Li et al. [22]). It is thus important to construct estimators and testing procedures that take into account the high
imensional aspects of the problem (as done for instance in Ledoit and Wolf [19,20], Bodnar et al. [7], Yao et al. [35], see also
he references therein). Many papers have considered this problem of 𝑝 larger than 𝑛 in the last decades starting from the works of
empster [10] (see also the references and discussions in Bai and Saranadasa [4]). More recently, Srivastava and Du [30] proposed

o use the diagonal matrix of the sample variances instead of the covariance matrix (see also some variations in Dong et al. [11]).
One relevant proposition for our framework, which has been developed in the statistical literature is to use a penalized estimator

f the covariance matrix which is non-singular, and to use this matrix in tests. In that spirit, Chen et al. [9] have obtained
symptotically valid regularized Hotelling’s 𝑇 2

𝑛 tests for the mean in the Gaussian case in a high dimensional framework when 𝑛 and
≡ 𝑝(𝑛) tend to infinity at some specific rate. Li et al. [22] have extended these results to some sub-gaussian distributions. Dong

t al. [11] propose some related penalized tests for comparing two high-dimensional means. The purpose of this paper is to further
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explore the finite sample properties of Hotelling tests by deriving exponential bounds of some correctly regularized Hotelling’s 𝑇 2
𝑛

or general distributions, including ones with very few moments.
Exponential bounds allow for building conservative confidence regions for the parameter of interest or testing the value of a

arameter in a large-dimension framework as in Chen et al. [9] and Li et al. [22]. We will develop a testing procedure exploiting
ur inequalities in the paper. The main advantage of these inequalities is that they are valid under very few moments assumption
hereas most authors assume normality or subgaussian assumptions. They are also of interest in statistical learning to control risk
ven with unbounded loss functions.

For this, we derive exponential bounds for some regularized Hotelling’s 𝑇 2
𝑛 statistics in the spirit of Bertail et al. [6], who obtained

ounds for self-normalized quadratic forms or the Hotelling’s 𝑇 2
𝑛 statistic when 𝑝 < 𝑛. We show that for symmetric distributions,

nly moments of order 2 are needed and we only assume the existence of moments of order 8 for general distributions.
Let 𝑍,𝑍1,… , 𝑍𝑛 be i.i.d. centered random vectors with probability distribution 𝑃 , defined on a probability space (𝛺,,P) with

alues in
(

R𝑝(𝑛),, 𝑃
)

endowed with the 𝐿2 norm ‖.‖2. We denote E the expectation under 𝑃 . Put 𝑍(𝑛) =
(

𝑍𝑖
)

1≤𝑖≤𝑛. As 𝑛 and 𝑝(𝑛)
o to infinity, notice that (𝑍(𝑛))𝑛 defines a triangular array of random variables with varying dimensions. However, since we are
nterested in finite sample properties, we will drop the dependence in 𝑛. In particular, we use 𝑝 instead of 𝑝(𝑛). But keep in mind
hat 𝑝 is a function of 𝑛 in an asymptotic framework. The covariance matrix of the observation is given by 𝛴𝑛 = E

(

𝑍𝑍⊤), where
e denote by 𝑍⊤ the transpose of 𝑍 and 𝛴1∕2

𝑛 the square root of 𝛴𝑛. Denote by �̄�𝑛 = 𝑛−1
∑𝑛

𝑖=1𝑍𝑖 the sample mean. The sample
covariance matrix is defined here by

𝑆𝑛 =
1
𝑛

𝑛
∑

𝑖=1
𝑍𝑖𝑍

⊤
𝑖 .

Notice that we do not center the 𝑍𝑖’s by the empirical mean. By a slight abuse of notation, we call Hotelling’s 𝑇 2
𝑛 the statistic

defined by

𝑇 2
𝑛 = 𝑛�̄�⊤

𝑛 𝑆
−1
𝑛 �̄�𝑛,

If we use a recentered version say

 2
𝑛 = 𝑛�̄�⊤

𝑛

(

1
𝑛

𝑛
∑

𝑖=1

(

𝑍𝑖 − �̄�𝑛
) (

𝑍𝑖 − �̄�𝑛
)⊤

)−1

�̄�𝑛,

t is known that controlling 𝑇𝑛 is equivalent to controlling 𝑛 as shown by Eaton and Efron [13] using the relationship

𝑇 2
𝑛 =

 2
𝑛

1 +  2
𝑛
.

For some positive real numbers, 𝜌1 and 𝜌2, define 𝑆𝑛
(

𝜌1, 𝜌2
)

the linear combination of the identity matrix with the sample
covariance matrix

𝑆𝑛
(

𝜌1, 𝜌2
)

= 𝜌1𝐼𝑝 + 𝜌2𝑆𝑛,

with 𝐼𝑝 the identity matrix of size 𝑝. For 𝜌1 = 0 and 𝜌2 = 1, 𝑆𝑛(0, 1) = 𝑆𝑛 is the empirical covariance matrix, which is singular for
𝑝 > 𝑛. When 𝜌2 = 1 and 𝜌1 > 0 (and small), 𝑆𝑛

(

𝜌1, 1
)

corresponds to a Tikhonov regularization of the sample covariance matrix:
see Tikhonov [32]. It is precisely this estimator which is used in the tests proposed by Chen et al. [9] or Bai et al. [3] and which is
studied in detail in Ledoit and Wolf [19]. In particular, it is shown in Ledoit and Wolf [19] that if one chooses adequately 𝜌1 and 𝜌2
then one can obtain a well-conditioned estimator of the covariance matrix which is invertible and more accurate than the sample
covariance for some 𝐿2-distance.

We denote by �̃�𝑛 the expectation of 𝑆𝑛
(

𝜌1, 𝜌2
)

, which is given for any 𝜌1, 𝜌2 > 0 by

�̃�𝑛 ≡ �̃�𝑛
(

𝜌1, 𝜌2
)

= 𝜌1𝐼𝑝 + 𝜌2𝛴𝑛.

In the following, we are interested in Hotelling’s 𝑇 2
𝑛 statistic with a linear combination of the sample covariance and the identity,

that we now call the regularized Hotelling’s 𝑇 2
𝑛 statistic defined by

𝑇 2
𝑛
(

𝜌1, 𝜌2
)

= 𝑛�̄�⊤
𝑛 𝑆

−1
𝑛

(

𝜌1, 𝜌2
)

�̄�𝑛

generalizing the proposal of Chen et al. [9].
In the framework of high dimension, such quantities also appear naturally when studying empirical likelihood under a lot of

constraints, penalized in its dual form by an 𝐿2-norm: see for instance Newey and Smith [25], Lahiri and Mukhopadhyay [17]
among others.

When 𝑝 < 𝑛, exponential bounds for 𝑇 2
𝑛 (0, 1) (that is, with the empirical covariance matrix instead of a regularized one) have

been obtained by Bertail et al. [6]. Their exponential bound is controlled by two terms: (i) an exponential term corresponding to a
‘‘Hoeffding’’ or Pinelis [27] type of inequality applied to a symmetrized version of the observations and (ii) an exponential bound
which essentially controls the minimum eigenvalue of the sample covariance matrix and the proximity of 𝑆𝑛 to 𝛴𝑛. However, for
𝑝 ≥ 𝑛 such inequality cannot hold since in this case the minimum of the eigenvalues of 𝑆𝑛 is always 0. Moreover, it can easily be
2

seen from the results of Bertail et al. [6] that the bound becomes very bad when 𝑝 > 𝑛 or/and when 𝑝 and 𝑛 are of the same order.
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We obtain in this paper general results for 𝑇 2
𝑛
(

𝜌1, 𝜌2
)

for general values of 𝜌1 and 𝜌2 as well as for some adequate estimations of
these parameters, when 𝑝 is bigger than 𝑛 and when 𝑝 and 𝑛 are such that 𝑝∕𝑛 → 𝓁 ∈ ]0,∞[.

Many other estimators of the covariance matrix have been proposed in the literature since the proposal of Ledoit and Wolf [19].
See for instance the book by Pourahmadi [28]. However, note that the purpose of this paper is not to estimate correctly the
covariance matrix but rather to have an estimator close to the true one, that keeps at the same time the universal properties of
self-normalized sums in a multivariate context. The goal is to obtain exponential inequalities for correctly standardized Hotelling’s
𝑇 2
𝑛 statistics (the quadratic version of self-normalized sums) under second-order moment assumptions in the symmetric case and

very few assumptions in the general case (covering some heavy-tailed multivariate distributions). For reasons that will appear later,
we are successful with the estimator proposed by Ledoit and Wolf [19]. Indeed with this estimator, we are able to keep the self-
normalized structure of the sum after a correct rotation of the data. This is not the case for many other more complex estimators of
the covariance matrix including the one developed in Ledoit and Wolf [20], Yao et al. [35] or Bodnar et al. [7] and most of the ones
presented in Pourahmadi [28]. We can obtain some partial results (under some additional assumptions) for the estimators proposed
in Bodnar et al. [7] which are generalizations of the estimator of Ledoit and Wolf [19]. Indeed we also obtain in the appendix some
bounds for the Hotelling statistics in the symmetric case, when using the estimator proposed by Bodnar et al. [7]. It would be of
great interest to extend our work under some sparsity assumptions since in that case it is known that concentration inequalities for
some estimators of the variances may be obtained (see the forthcoming book of Tropp [34]) but this is another topic and it requires
further developments.

The paper is divided into four parts including this introduction. In the second part, we recall some known exponential inequalities
for 𝑇 2

𝑛 (0, 1) when 𝑝 < 𝑛 under weak moments assumptions. Then we obtain an oracle exponential inequality for the regularized
Hotteling’s 𝑇 2

𝑛
(

𝜌1, 𝜌2
)

, assuming that the values 𝜌1 and 𝜌2 are fixed and known. Some interesting sharp bounds that may be useful
in statistical learning assuming symmetry are obtained for any 𝑛 and 𝑝 large. We then establish a general inequality for 𝑝 = 𝑂(𝑛)
for non-symmetric distributions under weak moment assumptions. In the third part, we estimate the optimal values 𝜌∗1 and 𝜌∗2 and
show that the inequality remains valid up to some additional small terms controlling the concentration of these estimators around
their true value. We illustrate our results with some simulations in the supplementary material.

2. Oracle exponential bounds for regularized Hotelling’s 𝑻 𝟐
𝒏

In the following, we define the penalized Hotelling’s 𝑇 2
𝑛 as the particular regularized Hotelling’s statistic 𝑇 2

𝑛 (𝜌, 1) with 𝜌 ≥ 0. The
aim of this section is to establish an oracle exponential inequality for the penalized Hotelling’s 𝑇 2

𝑛 in the case 𝑝 ≥ 𝑛 and when the
distribution of the data is symmetric (Theorem 1 and Theorem 2) as well as in the general case, that is when the distribution is not
necessarily symmetric (Theorem 3).

2.1. Known bounds for Hotelling’s 𝑇 2
𝑛

Some bounds for 𝑇 2
𝑛 or self-normalized sums may be quite easily obtained in the symmetric case (that is for random variables

having a symmetric distribution see Pinelis [27]) and are well-known in the unidimensional case 𝑝 = 1. In non-symmetric and/or
multidimensional cases with 𝑝 < 𝑛, these bounds are new and not trivial to prove. One of the main tools for obtaining exponential
inequalities in various settings is the famous Hoeffding inequality (see Hoeffding [15]). For centered independent real random
variables 𝑌1,… , 𝑌𝑛, that are bounded, say |

|

𝑌𝑖|| < 1, for all 𝑖 ∈ {1,… , 𝑛}, we have, for 𝑎𝑖 ∈ [−1, 1] such that ∑ 𝑎2𝑖 = 1,

∀𝑡 > 0, P
⎛

⎜

⎜

⎝

( 𝑛
∑

𝑖=1
𝑎𝑖𝑌𝑖

)2

≥ 𝑡
⎞

⎟

⎟

⎠

≤ 2 exp
(

− 𝑡
2

)

.

A direct application of this inequality to self-normalized sums (via a randomization step introducing independent Rademacher
.v.’s 𝜀𝑖) yields that, for independent real (𝑝 = 1) symmetric random variables 𝑍𝑖, 𝑖 ∈ {1,… , 𝑛}, and not necessarily bounded (nor

identically distributed). Indeed, we have by putting 𝑌𝑖 = 𝜀𝑖 and 𝑎𝑖 =
𝑍𝑖

(

∑

𝑍2
𝑖

)1∕2 ; for 𝑡 > 0,

P
(

𝑇 2
𝑛 ≥ 𝑡

)

= P

(
(
∑𝑛

𝑖=1𝑍𝑖
)2

∑𝑛
𝑖=1𝑍

2
𝑖

≥ 𝑡

)

= P

(
(
∑𝑛

𝑖=1𝑍𝑖𝜀𝑖
)2

∑𝑛
𝑖=1𝑍

2
𝑖

≥ 𝑡

)

= E

[

P

(
(
∑𝑛

𝑖=1𝑍𝑖𝜀𝑖
)2

∑𝑛
𝑖=1𝑍

2
𝑖

≥ 𝑡 ||
|

(𝑍𝑖)𝑖∈{1,…,𝑛}

)]

≤ 2 exp
(

− 𝑡
2

)

.

Pinelis [27] has obtained with a different technique, a sharp 𝜒2 type of bounds which generalizes this kind of results for
multivariate data when 𝑝 < 𝑛. He proved that, if 𝑍 has a symmetric distribution, without any moment assumption on the variables
𝑍𝑖, then one has

∀𝑡 > 0, P
(

𝑇 2
𝑛 ≥ 𝑡

)

≤ 2𝑒3
9

𝐹 𝑝(𝑡), (1)

where 𝐹𝑝(𝑡) is the cumulative distribution function (cdf) of a 𝜒2(𝑝) distribution. The density is denoted by 𝑓𝑝. A crude approximation
yields that for 𝑡 large enough,

P
(

𝑇 2
𝑛 ≥ 𝑡

)

≤ 𝑒3 22−
𝑝
2
𝑝 𝑡

𝑝
2−1 exp(−𝑡∕2),
3

9 𝛤 ( 2 )
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where 𝛤 (𝑥) = ∫ +∞
0 𝑡𝑥−1𝑒−𝑡𝑑𝑡 is the gamma function.

Notice that, for 𝑝 = 1 this bound (only valid for large 𝑡) is better than the crude Hoeffding bound since we recover the
issing factor 1

√

𝑡
in front of the exponential (see Talagrand [31]). When 𝑝 < 𝑛, using a multidimensional version of Panchenko’s

ymmetrization lemma (Panchenko [26]) Bertail et al. [6] have obtained an exponential inequality for the general distribution of
with finite kurtosis 𝛾4 = E

(

‖

‖

‖

𝛴−1∕2
𝑛 𝑍‖

‖

‖

4

2

)

. More precisely, they establish that under 0 < 𝛾4 < ∞,

(i) for 𝑡 > 𝑛𝑝, P
(

𝑇 2
𝑛 ≥ 𝑡

)

= 0,
(ii) for any 𝑎 > 1, and any positive 𝑡 such that 2𝑝(1 + 𝑎) ≤ 𝑡 ≤ 𝑛𝑝, the following bound holds for some explicit constant 𝐶(𝑝),

P(𝑇 2
𝑛 ≥ 𝑡) ≤ 2𝑒3

9𝛤 ( 𝑝2 + 1)

(

𝑡 − 𝑝(1 + 𝑎)
2(1 + 𝑎)

)
𝑝
2
exp

(

−
𝑡 − 𝑝(1 + 𝑎)
2(1 + 𝑎)

)

+ 𝐶(𝑝)𝑛3−
6

𝑝+1 exp

⎛

⎜

⎜

⎜

⎝

−
𝑛
(

1 − 1
𝑎

)2

𝛾4(𝑝 + 1)

⎞

⎟

⎟

⎟

⎠

.

The first term is essentially equivalent to the tail of a 𝜒2(𝑝) distribution (up to an explicit constant), while the second term
controls the speed of convergence of 𝑆𝑛 to 𝛴𝑛, when 𝛾4 < ∞. The constant 𝑎 controls the balance between these two terms on the
ight-hand side of the inequality and may be optimized. Notice that this second exponential term is small when 𝑝 ≪ 𝑛 but explodes
n 𝑛3 if 𝑝∕𝑛 → 𝑙 > 0 for large 𝑛, making this bound useless in that case.

In the general multidimensional framework considered in Bertail et al. [6] and in this paper, the main difficulty is to keep the
elf-normalized structure when symmetrizing the initial sum. In the next sections, the results of Bertail et al. [6] obtained for 𝑝 < 𝑛
re extended to the case 𝑝 ≥ 𝑛 by using a regularized version of 𝑆𝑛 proposed in Ledoit and Wolf [19]. This inequality is based
n an appropriate diagonalization of the regularized sample covariance matrix which allows applying Pinelis’ inequality [27] (see
ection 2.2). This crude inequality is refined in Section 2.3. When dealing with the general case (see Section 2.4), we establish first
multivariate symmetrization Lemma 3 in the spirit of Panchenko [26]. This symmetrization partially destroys the self-normalized

tructure (the normalization is then 𝑆𝑛
(

𝜌1, 𝜌2
)

+�̃�𝑛 = 2𝑆𝑛
(

𝜌1, 𝜌2
)

+(�̃�𝑛−𝑆𝑛
(

𝜌1, 𝜌2
)

) instead of the expected normalization 𝑆𝑛
(

𝜌1, 𝜌2
)

),
ut the right standardization can be recovered (up to the factor 2) by obtaining a lower tail control of the distance between 𝑆𝑛

(

𝜌1, 𝜌2
)

nd �̃�𝑛. To control this distance and make it as small as possible we will use the results of Ledoit and Wolf [19]. We also discuss
hat can be obtained with the estimator proposed by Bodnar et al. [7].

.2. Bounds for regularized Hotelling’s 𝑇 2
𝑛 in a symmetric framework

We now obtain a simple inequality for the regularized Hotelling’s 𝑇 2
𝑛 in the symmetric case, based on previous results by

inelis [27]. It essentially shows that the tail of the regularized Hotelling’s 𝑇 2
𝑛 is controlled by the tail of a 𝜒2 (𝑛) distribution.

heorem 1. Assume that 𝑍 has a symmetric distribution, then without any moment assumption, we have, for any 𝑛 > 1, for 𝑡 > 𝑛, for
ny 𝜌1, 𝜌2 > 0,

P
(

𝑇 2
𝑛

(

𝜌1
𝜌2

, 1
)

≥ 𝑡
)

= P
(

𝑛�̄�⊤
𝑛 𝑆

−1
𝑛

(

𝜌1, 𝜌2
)

�̄�𝑛 ≥
𝑡
𝜌2

)

≤ 2𝑒3
9

𝐹𝑛 (𝑡) ≤
2𝑒3
9

exp
(

−
(𝑡 − 𝑛)2

4𝑡

)

, (2)

here 𝐹𝑛 is the cdf of a 𝜒2(𝑛) distribution.
Moreover, for any 𝜌 > 0, we have

P

(

𝑇 2
𝑛 (𝜌, 1) − 𝑛

√

2𝑛
≥ 𝑡

)

= P

(

𝑛�̄�⊤
𝑛 𝑆

−1
𝑛 (𝜌, 1) �̄�𝑛 − 𝑛
√

2𝑛
≥ 𝑡

)

≤ 2𝑒3
9

exp

⎛

⎜

⎜

⎜

⎜

⎝

−𝑡2

2
(

1 +
√

2 𝑡
√

𝑛

)

⎞

⎟

⎟

⎟

⎟

⎠

. (3)

Inequality (2) yields a control of 𝑇 2
𝑛 (𝜌1, 𝜌2) = 𝑛�̄�⊤

𝑛 𝑆
−1
𝑛

(

𝜌1, 𝜌2
)

�̄�𝑛, when using a linear shrinkage estimator of the variance. This,
in turn, can be simplified in inequality (3), to a truly penalized Hotelling’s 𝑇 2

𝑛 . Note that for any 𝜌1, 𝜌2 > 0,

𝑆𝑛
(

𝜌1, 𝜌2
)

𝜌2
=

𝜌2𝑆𝑛 + 𝜌1𝐼𝑝
𝜌2

= 𝑆𝑛 +
𝜌1
𝜌2

𝐼𝑝

and for any 𝜌 > 0,

𝑆𝑛 (𝜌, 1) = 𝑆𝑛 + 𝜌𝐼𝑝

is a penalized estimator of the covariance matrix. Inequality (3) can be interpreted as a Bernstein-type inequality.

Remark 1. These inequalities hold for any choice of positive 𝜌1 and 𝜌2. However for the inequalities to be sharp, 𝜌1 and 𝜌2 should
be chosen adequately. First from the proof of Theorem 1, we see that the inequality is sharp only when 𝜌1 is close to 0, which is in
accordance with what we know about Tikhonov regularization [32]. Notice that the proof of Theorem 1 and the inequality remain
valid if we use 𝑛�̄�⊤

𝑛
(

𝑆𝑛
)− �̄�𝑛 rather than 𝑛�̄�⊤

𝑛 𝑆
−2
𝑛 (𝜌, 1) �̄�𝑛. In the procedure of Chen et al. [9] this means that asymptotically there

is no difference between standardizing by the regularized variance or by the generalized inverse of the covariance matrix. Such a
̄ ⊤ −1 ̄
4

proposal using the Moore–Penrose inverse was also studied in Srivastava [29]. Actually when 𝜌 tends to 0, then 𝑛𝑍𝑛 𝑆𝑛 (𝜌, 1)𝑍𝑛
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converges to 𝑛�̄�⊤
𝑛 (𝑆𝑛)−�̄�𝑛 where (𝐴)− is the Moore–Penrose or generalized inverse of 𝐴 which is unique for symmetric matrices (see

Theorem 4.3 in the survey of Barata et al. [5]). We give a short proof of this result in Section 6 of the supplementary material. We
also refer to the book by Golub and Van Loan [14] for general results about the Moore–Penrose inverse and the link to least-square
problems and Tikhonov regularization (see p. 257). As a consequence, the tail probabilities of 𝑛�̄�⊤

𝑛 𝑆
−1
𝑛 (𝜌, 1) �̄�𝑛 and 𝑛�̄�⊤

𝑛 (𝑆𝑛)−�̄�𝑛 are
the same by a straightforward continuity argument and dominated convergence theorem. The regularization just serves as a trick to
approximate the generalized inverse. However, the finite sample properties of the regularized Hotelling’s 𝑇 2

𝑛 will strongly depend
on the choice of 𝜌1 and 𝜌2.

Remark 2. Bodnar et al. [7] have proposed an improved estimator of the variance–covariance matrix in a large dimension setting
by replacing the identity in Ledoit and Wolf’s shrinkage estimator by a general matrix, that is an estimator of the form:

𝜌1𝛴0 + 𝜌2𝑆𝑛,

for some matrix 𝛴0 such that for any 𝑝 and 𝑛, 𝑇 𝑟(𝛴0) < ∞, where 𝑇 𝑟(𝐴) denotes the trace of the matrix 𝐴. They proved the strong
consistency of this estimator for well-chosen values of 𝜌1 and 𝜌2 for several different matrix norms (including the Frobenius norm),
under improved conditions. The purpose of this paper is not to have the best estimator of the true variance–covariance matrix but
to use an estimator of this quantity, that keeps the nice self-normalized properties of the penalized Hotelling’s statistics. This is
more restrictive and imposes some strong conditions on the type of regularization that can be chosen if one wants to obtain a sharp
control. The main reason for this is the fact that eigenvalues are continuous functions of matrices while eigenvectors are not. When
using a perturbation 𝛴0 of the empirical variance–covariance function 𝑆𝑛 (centered at the true mean), the corresponding orthogonal
transition matrices of this penalized matrix will not keep the self-normalized structure unless the perturbation matrix 𝛴0 and the
empirical covariance matrix 𝑆𝑛 are commuting which is true for a penalization matrix 𝛴0 proportional to the identity but more
difficult to check for other cases. We give in the supplementary material (see subsection 6.5) an example of a random matrix 𝛴0
depending on 𝑆𝑛, which commutes with 𝑆𝑛. Notice that even if the perturbation matrix 𝛴0 is diagonal, in general, 𝑆𝑛 and 𝛴0 will
not commute. The particular case considered in Bodnar et al. [7] when 𝛴0 = 1∕𝑝𝐼𝑝 with the corresponding optimal value given in
their paper (see their expressions in Equations (3.8) and (3.9)) is covered by our results and Theorem 1 still holds in that case (by
replacing 𝜌1 by the term 𝜌1∕𝑝 in the inequality).

In the following paragraph, we will obtain an improved bound in the symmetric case. Recall that, for symmetric matrices 𝐴
and 𝐵 of size 𝑝 × 𝑝, we have 𝐴 ≤ 𝐵 if the matrix 𝐵 − 𝐴 is nonnegative. Note that, if we assume that there exists 𝜂𝑝 > 0 such
that 𝜂𝑝𝐼𝑝 ≤ 𝛴0, then without any further assumptions, we can control the tail distribution of 𝑛�̄�⊤

𝑛
(

𝜌1𝛴0 + 𝜌2𝑆𝑛
)−1 �̄�𝑛 by the tail of

𝑛�̄�⊤
𝑛
(

𝜂𝑝𝜌1𝐼𝑝 + 𝜌2𝑆𝑛
)−1 �̄�𝑛. This amounts to replacing 𝜌1 by 𝜂𝑝𝜌1 in the preceding inequalities. This will induce some additional cost

in the inequalities of Theorems 3 and 4. Therefore, for the sake of simplicity, we will only present our results for 𝑆𝑛(𝜌1, 𝜌2).
Actually, we also obtain in Section 8 of the supplementary material a general result with the estimator proposed in Bodnar

et al. [7] in the symmetric case (by working on a previous self-normalization of the data). The result is more difficult to state in
comparison to the one obtained with Ledoit and Wolf’s estimator [19]. However, it may be of independent interest.

2.3. An improved bound for penalized Hotelling’s 𝑇 2
𝑛 in the symmetric case

It can be seen from the proof of Theorem 1 that the penalized Hotelling’s 𝑇 2
𝑛 statistic essentially behaves like a weighted sum

of independent 𝜒2(1) random variables. This also explains the results of Chen et al. [9]. Actually, we can obtain a bound for this
quantity relying on the results of Pinelis [27] and Laurent and Massart [18] (see p. 24 of their paper) who control the tail of the
weighted sum of independent 𝜒2(1) random variables. Let 𝜆 = (𝜆𝑗 )𝑗=1,…,𝑝 ∈ R𝑝

+ be the eigenvalues of 𝑆𝑛 (ordered in a decreasing
order). We define for any 𝜌1, 𝜌2 > 0, the following effective dimensions (see Chen et al. [9] for other expressions of these quantities):

𝛩1(𝜆, 𝜌1, 𝜌2) =
inf(𝑛,𝑝)
∑

𝑗=1

𝜆𝑗
𝜌1 + 𝜌2𝜆𝑗

; 𝛩2(𝜆, 𝜌1, 𝜌2) =

√

√

√

√

√

inf(𝑛,𝑝)
∑

𝑗=1

𝜆2𝑗
(𝜌1 + 𝜌2𝜆𝑗 )2

; 𝛩∞(𝜆, 𝜌1, 𝜌2) = sup
1≤𝑗≤inf(𝑛,𝑝)

( 𝜆𝑗
𝜌1 + 𝜌2𝜆𝑗

)

.

In the next result, we obtain a sharp bound for regularized and penalized Hotelling’s 𝑇 2
𝑛 . Notice that, in that case, the recentering

factor depends on 𝛩1(𝜆, 𝜌1, 𝜌2) and is random. In the proof of Theorem 2, this value is essentially bounded by 𝑛∕𝜌2, which is a very
bad approximation when 𝜌2 is small. Theorem 2 tells that, for 𝑝 ≥ 𝑛, the tail of the regularized Hotelling’s 𝑇 2

𝑛 statistic behaves as
the weighted sum of 𝑛 independent 𝜒2(1) r.v.’s where the weights are given by the random factors 𝜆𝑗

𝜌1+𝜌2𝜆𝑗
. We get some Bernstein

bounds for this weighted sum by first randomizing by some independent Gaussian r.v.’s, then conditioning on the data and applying
Laurent and Massart’s Bernstein inequality [18]. This inequality in turn can be transformed into some exact bounds for the statistics
of interest.

Theorem 2. Assume that 𝑍 has a symmetric distribution then, without any moment assumption, we have, for any 𝑛 > 1 and 𝑝 > 0, for
any 𝑡 > 0 and for any 𝜌1, 𝜌2 > 0 including random values depending on the data we have,

P

(

𝑇 2
𝑛 (𝜌1, 𝜌2) − 𝛩1(𝜆, 𝜌1, 𝜌2)

√
≥
√

2
(

√

𝑡 +
𝛩∞(𝜆, 𝜌1, 𝜌2) 𝑡

)

)

≤ 𝐶 exp(−𝑡), 𝐶 = 3 𝑒2.
5

2𝛩2(𝜆, 𝜌1, 𝜌2)2 𝛩2(𝜆, 𝜌1, 𝜌2) 4



Journal of Multivariate Analysis 203 (2024) 105342E.M. Issouani et al.

T

c

2

Equivalently, we have for the penalized Hotelling’s statistic, for 𝑛 > 1 and 𝑝 > 0, for any 𝑡 > 0 and, for any 𝜌 > 0,

P

(

𝑇 2
𝑛 (𝜌, 1) − 𝛩1(𝜆, 𝜌, 1)

𝛩2(𝜆, 𝜌, 1)
≥
√

2𝑡 +
𝛩∞(𝜆, 𝜌, 1)
𝛩2(𝜆, 𝜌, 1)

𝑡

)

≤ 𝐶 exp
(

− 𝑡
2

)

.

Remark 3. (i) As mentioned before, it is possible to extend this theorem to the case when we use a standardization of the form
𝑆𝐴
𝑛
(

𝜌1, 𝜌2
)

= 𝜌1𝐴+ 𝜌2𝑆𝑛 where 𝐴 is any symmetric (deterministic or not) matrix provided that 𝑆𝐴
𝑛
(

𝜌1, 𝜌2
)

is invertible. This covers
both Ledoit and Wolf [19] and Bodnar et al. [7] estimators. However, in some cases, the eigenvalues of 𝑆𝐴

𝑛 may explode making
the inequality rather useless. We give a general result (with the correct standardization) and discuss the choice for 𝐴 in Section 8
of the supplementary material.

(ii) The constant 𝐶 ≈ 5.54 comes from Remark 4.1 of Chasapis et al. [8] who extended a result of Pinelis [27]. Indeed they
state that, when symmetrizing, for smooth functions of quadratic forms, Rademacher variables may be replaced by standard normal
variables. However, their constant is probably not optimal and we expect the optimal value 𝐶 to be 2𝑒3∕9 ≈ 4.46 as in Pinelis [27].
This is indeed supported by some simulations in the supplementary material.

The bounds in Theorem 2 can be used in practice for testing purposes in particular in anomaly detection in statistical learning.
See for instance the literature on intrusion detection systems using multivariate control charts based on Hotelling’s 𝑇 2

𝑛 (for instance
see Tracy et al. [33] and Ajadi et al. [2] for recent references in quality control). We develop this idea in the following example.

From Theorem 2, we can derive and construct an acceptance region for high-dimensional mean testing. Let 𝑊 ,𝑊1,… ,𝑊𝑛 be i.i.d.
random vectors of dimension 𝑝, orthant symmetric around their mean. We aim to test if the true mean vector of these observations
is equal to 𝜇0 or not, for some fixed risk error 𝛿. For this we define ∀𝑖 ∈ {1,… , 𝑛} 𝑍𝑖 = 𝑊𝑖 − 𝜇0. Now we want to test:

𝐻0 ∶ E(𝑍𝑖) = 𝜇 = 0𝑝 vs 𝐻1 ∶ 𝜇 ≠ 0𝑝

where 0𝑝 = (0,… , 0)⊤.
First of all, compute the corresponding penalized Hotelling’s 𝑇 2

𝑛 (using any positive value for 𝜌1 and 𝜌2 including the optimal
estimated values proposed in Ledoit and Wolf [19]) defined by

𝑇 2
𝑛 (𝜌1, 𝜌2) = 𝑛�̄�⊤

𝑛
(

𝑆𝑛
(

𝜌1, 𝜌2
))−1 �̄�𝑛

where 𝑆𝑛 =
1
𝑛
∑𝑛

𝑖=1 𝑍𝑖𝑍⊤
𝑖 and 𝑆𝑛

(

𝜌1, 𝜌2
)

= 𝜌1𝐼𝑞 + 𝜌2𝑆𝑛. Now put 𝑐(𝛿) = log 𝐶
𝛿 with 𝐶 = 3

4 𝑒
2 ≈ 5.54.

Then the acceptance region of level 1 − 𝛿 is given by

𝑇 2
𝑛 (𝜌1, 𝜌2) ≤ 𝛩1(𝜆, 𝜌1, 𝜌2) + 2𝛩2(𝜆, 𝜌1, 𝜌2)

(

√

𝑐(𝛿) +
𝛩∞(𝜆, 𝜌1, 𝜌2)
𝛩2(𝜆, 𝜌1, 𝜌2)

𝑐(𝛿)
)

.

he proof of this result is left to the reader. This result holds for any 𝑛 and 𝑝. When 𝑝 ≤ 𝑛 is large, we can put 𝜌1 = 0 and get some
Pinelis’ type bounds (when the 𝜒2 distribution tail is itself approximated by a Gaussian tail).

2.4. Bounds for regularized Hotelling’s 𝑇 2
𝑛 for non symmetric distribution

We now consider 𝑍 with a general (not necessarily symmetric) distribution. We will later prove a symmetrization lemma
that generalizes the one obtained in Bertail et al. [6]. In the following, we use the results of Ledoit and Wolf [19] to optimally
control the distance between 𝑆𝑛

(

𝜌1, 𝜌2
)

and 𝛴𝑛. For this, consider the modified Frobenius scalar product between matrices and the
corresponding norm given by

⟨𝐴,𝐵⟩ =
𝑇 𝑟

(

𝐴𝐵⊤)

𝑝
, ‖𝐴‖2 = ⟨𝐴,𝐴⟩ =

𝑇 𝑟
(

𝐴𝐴⊤)

𝑝
.

Note that dividing the standard Frobenius scalar product by 𝑝 enables the norm of the identity 𝐼𝑝 to be equal to 1, which is more
onvenient. In the following, we extend this modified Frobenius norm to vectors by considering, for any vector 𝑍 ∈ R𝑝,

‖𝑍‖

2 = 𝑇 𝑟
(

𝑍𝑍⊤) ∕𝑝.

.4.1. Additional notations and hypotheses
Put 𝛴𝑛 =

(

𝜎𝑘𝑗
)

1≤𝑘,𝑗≤𝑝 and consider 𝛬 the diagonal matrix of the eigenvalues of 𝛴𝑛 and 𝑂 the matrix of associated eigenvectors.
The eigenvalues are denoted 𝜇1,… , 𝜇𝑝 with 𝜇max = 𝜇1 ≥ ⋯ ≥ 𝜇𝑝 = 𝜇min. We have 𝛴𝑛 = 𝑂𝛬𝑂⊤. Now, for 𝑖 ∈ {1,… , 𝑛}, we define
𝑌𝑖 = 𝑂⊤𝑍𝑖 with 𝑌𝑖 =

(

𝑌𝑖,1,… , 𝑌𝑖,𝑝
)⊤.

In order to provide a well-conditioned estimator for large dimensional covariance matrices, Ledoit and Wolf (2004) [19] have
studied the minimum of E

(

‖

‖

‖

𝑆𝑛
(

𝜌1, 𝜌2
)

− 𝛴𝑛
‖

‖

‖

2
)

. This minimization can be seen as a projection problem in the Hilbert space of

random matrices, equipped with the inner product ⟨𝐴,𝐵⟩ = E
[

⟨𝐴,𝐵⟩
]

with associated norm ‖.‖2 = E ‖.‖2. We assume the four
following assumptions:

𝐴1 ∃𝐾0, 𝐾1 > 0 such that, for any 𝑛 and any 𝑝 ≥ 𝑛, 𝐾0 ≤
𝑝
𝑛 ≤ 𝐾1.

𝐴 ∃𝐾 > 0 such that, for any 𝑛 and any 𝑝 ≥ 𝑛, 1 ∑𝑝 E
[

𝑌 8
]

≤ 𝐾 .
6

2 2 𝑝 𝑗=1 1,𝑗 2
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𝐴3 ∃𝐾3 > 0 such that for any 𝑛 and any 𝑝 ≥ 𝑛, 1
𝐾3

< 𝜇min ≤ 𝜇max < 𝐾3.

𝐴4 ∃𝐾4 > 0 such that for any 𝑛 and any 𝑝 ≥ 𝑛,

𝜈 =
𝑝2

𝑛2
×

∑

(𝑖,𝑗,𝑘,𝑙)∈𝐐
(

Cov
(

𝑌1,𝑖𝑌1,𝑗 , 𝑌1,𝑘𝑌1,𝑙
))2

𝐶𝑎𝑟𝑑 (𝐐)
≤

𝐾4
𝑛
,

where 𝐐 denotes the set of all the quadruples that are made of four distinct integers between 1 and 𝑝.

emark 4. 𝐴2 and 𝐴4 are already assumed in Ledoit and Wolf [19]. First assumption 𝐴1 essentially means that 𝑝 = 𝑝(𝑛) is of the
ame order as 𝑛. 𝐴2 states that the moment of order 8 is bounded in average: this condition holds if the following moment of order
, 1

𝑝
∑𝑝

𝑗=1 E
[

𝑍8
1,𝑗

]

is finite (by sub-multiplicative inequality and the fact that ‖𝑂‖ = 1). Notice that we need this condition to have
rate of convergence (and control the variance of the estimator) whereas this condition is used to obtain consistency in Ledoit and
olf [19]. As noticed in Bodnar et al. [7], it is a strong hypothesis for consistency but we cannot avoid it to obtain a rate. This is

till a weak condition since we do not require exponential moments and allow for a fat tail behavior of the sample. 𝐴3 ensures that
he largest and the smallest eigenvalue of the true covariance matrix are bounded. This rules out the case when the components
f the vector 𝑍 are too correlated: consider for instance the degenerate case where 𝛴𝑛 is a matrix full of 1, then in that case the
mallest eigenvalue is 0 and the largest is 𝑝. The case of a vector with long memory components is studied in Merlevède et al. [23]:
hey show that the largest eigenvalue is unbounded. Thus, this case does not enter our framework. Assumption 𝐴4 is immediate
n the Gaussian case, since 𝜈 = 0 because of the rotation which makes the 𝑌1,𝑗 ’s, 𝑗 ∈ {1,… , 𝑝}, independent. Obviously, for (𝑍1,𝑗 )𝑗
ndependent, 𝜈 = 0 as well. More generally if the components of the vector satisfy some adequate 𝛼-mixing conditions, then the sum
n the hypothesis 𝐴4 can be seen as a sum of cumulants and may also be controlled using the arguments of Doukhan and León [12].

.4.2. Inequalities for random variables with a general distribution
The next Theorem 3 extends Theorem 1 to general distributions which are not necessarily symmetric. From now on, following

edoit and Wolf [19], we denote 𝜌∗1 and 𝜌∗2 the optimal values defined as the minimum arguments of E ‖

‖

‖

𝑆𝑛
(

𝜌1, 𝜌2
)

− 𝛴𝑛
‖

‖

‖

2
. Ledoit

nd Wolf [19] have obtained

𝜌∗1 =
𝛽2

𝛿2
𝜎2, 𝜌∗2 = 𝛼2

𝛿2
, 𝜎2 =

⟨

𝛴𝑛, 𝐼𝑝
⟩

, 𝛼2 = ‖

‖

‖

𝛴𝑛 − 𝜎2𝐼𝑝
‖

‖

‖

2
,

𝛽2 = E ‖

‖

𝑆𝑛 − 𝛴𝑛
‖

‖

2 , 𝛿2 = 𝛼2 + 𝛽2 = E ‖

‖

‖

𝑆𝑛 − 𝜎2𝐼𝑝
‖

‖

‖

2
.

Now, we define, for 𝛼2 ≠ 0, 𝜌∗ =
𝜌∗1
𝜌∗2

= 𝛽2

𝛼2
𝜎2, which yields the optimal penalized estimator of 𝑆𝑛:

𝑆∗
𝑛 =

𝑆𝑛
(

𝜌∗1 , 𝜌
∗
2
)

𝜌∗2
= 𝑆𝑛 + 𝜌∗𝐼𝑝.

If 𝛼2 = 0, take 𝑆∗
𝑛 = 𝜎2𝐼𝑝 (in that case we will need to estimate 𝜎2).

Theorem 3. Assume that 𝑍 has a general distribution with finite variance 𝛴𝑛. Assume in addition that assumptions 𝐴1 to 𝐴3 hold. Put
𝑎∗ = 1 + 𝐾3

𝜌∗ . Then we have, for any 𝑛 > 1, for any 𝑝 ≥ 𝑛, and for 𝑡 > 2𝑛,

P
(

𝑇 2
𝑛 (𝜌

∗, 1) ≥ (1 + 𝑎∗) 𝑡
)

≤ 2𝑒3
9

( 𝑡 − 𝑛
2

)
𝑛
2
exp

(

− 𝑡−𝑛
2

)

𝛤
(

𝑛
2 + 1

) .

Remark 5. Here the bounding function for large 𝑡 behaves like a centered 𝜒2 (𝑛) distribution, up to the factor 2𝑒3
9 . The term (1+𝑎∗)

nsures that the maximal eigenvalue of 𝛴𝑛 does not contribute to the inequality.
Notice that the inequality is still valid when using 𝑆𝑛

(

𝜌1, 𝜌2
)

, the regularized version of 𝑆𝑛 instead of the penalized version 𝑆∗
𝑛 ,

up to a small modification of the bound (1 + 𝑎∗)𝑡 by the factor 1∕𝜌∗2: for 𝑛 > 1, 𝑝 ≥ 𝑛, for any 𝑡 > 2𝑛

P

(

𝑇 2
𝑛
(

𝜌∗1 , 𝜌
∗
2
)

≥ 1
𝜌∗2

(1 + 𝑎∗) 𝑡

)

≤ 2𝑒3
9

( 𝑡 − 𝑛
2

)
𝑛
2
exp

(

− 𝑡−𝑛
2

)

𝛤
(

𝑛
2 + 1

) .

Notice that the green dashed line in Fig. 1 represents the set of penalized estimators 𝑆𝑛(𝜌, 1) for which we obtain universal bounds
n Theorems 1 and 2.

. Inequality with estimated parameters

We have proved an exponential inequality for the penalized Hotelling’s 𝑇 2
𝑛 with theoretical values 𝑎∗ and 𝜌∗. In practice these

alues are unknown. In this section, we estimate these quantities and obtain an inequality for the penalized Hotelling’s 𝑇 2
𝑛 with
7

stimated parameters.
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Fig. 1. True covariance 𝛴𝑛, sample covariance 𝑆𝑛, and 𝑆𝑛(𝜌∗1 , 𝜌
∗
2), 𝑆

∗
𝑛 respectively regularized and penalized sample covariance.

The scalar product is ⟨, ⟩ with its associated norm. We represent 𝑆𝑛(𝜌∗1 , 𝜌
∗
2), the optimal combination of 𝑆𝑛 and 𝐼𝑝 defined by orthogonal projection of the true

covariance matrix 𝛴𝑛 on the random vector-space generated by 𝑆𝑛 and 𝐼𝑝. Thus 𝑆∗
𝑛 = 𝑆𝑛(𝜌∗ , 1) is the penalization of 𝑆𝑛 by 𝐼𝑝 with 𝜌∗ = 𝜌∗1

𝜌∗2
for which we obtain

a bound in Theorem 3.

We first recall several results of Ledoit and Wolf [19] on the asymptotic behavior of regularized empirical covariance estimator
𝑆𝑛

(

𝜌1, 𝜌2
)

. Lemma 1 and Proposition 1 below summarize these results with our notations and are proved by Ledoit and Wolf [19]
in different lemmas and a theorem of their paper.

We use the same assumptions as in Ledoit and Wolf [19]:
𝐿4
⟶ denotes the fourth-moment convergence as 𝑛 goes to infinity, i.e.

𝑈𝑛
𝐿4
⟶ 𝑈 ⟺ E

[

(

𝑈𝑛 − 𝑈
)4
]

⟶
𝑛→∞

0.

Ledoit and Wolf [19] essentially have shown that 𝐿4-consistent estimators for 𝜎2, 𝛼2, 𝛽2 and 𝛿2 are simply given by their empirical
counterparts that is

�̂�2𝑛 =
⟨

𝑆𝑛, 𝐼𝑝
⟩

, 𝛿2𝑛 = ‖

‖

‖

𝑆𝑛 − �̂�2𝑛𝐼𝑝
‖

‖

‖

2
, �̂�2𝑛 = 𝛿2𝑛 − 𝛽2𝑛 , 𝛽2𝑛 = 1

𝑛2

𝑛
∑

𝑖=1

‖

‖

‖

𝑍𝑖(𝑍𝑖)⊤ − 𝑆𝑛
‖

‖

‖

2
, 𝛽2𝑛 = min

(

𝛽2𝑛 , 𝛿
2
𝑛
)

.

Lemma 1 (Ledoit and Wolf [19] Lemma 3.2, Lemma 3.3, Lemma 3.4, Lemma 3.5). Under Assumptions 𝐴1 to 𝐴4, we have

(i) 𝜎2, 𝛼2 and 𝛽2 remain bounded (as 𝑛 and 𝑝 tend to ∞).
(ii) For all 𝑛, E

[

�̂�2𝑛
]

= 𝜎2, �̂�2𝑛 − 𝜎2
𝐿4
⟶ 0, �̂�4𝑛 − 𝜎4

𝐿4
⟶ 0.

(iii) 𝛿2𝑛 − 𝛿2
𝐿4
⟶ 0.

(iv) 𝛽2𝑛 − 𝛽2
𝐿4
⟶ 0 and 𝛽2𝑛 − 𝛽2

𝐿4
⟶ 0.

(v) �̂�2𝑛 − 𝛼2
𝐿4
⟶ 0.

After replacing the unobservable scalars 𝜎2, 𝛼2, 𝛽2 and 𝛿2 by their sample counterparts in the formula of 𝑆𝑛
(

𝜌1, 𝜌2
)

, Ledoit and
Wolf [19] obtained an estimation of the regularized empirical covariance matrix say

�̂�𝑛 =
𝛽2𝑛
𝛿2𝑛

�̂�2𝑛𝐼𝑝 +
�̂�2𝑛
𝛿2𝑛

𝑆𝑛.

Ledoit and Wolf [19] have shown that �̂�𝑛 and 𝑆𝑛
(

𝜌1, 𝜌2
)

are asymptotically equivalent in the modified Frobenius norm.

Proposition 1 (Ledoit and Wolf [19], Theorem 3.2). Under Assumptions 𝐴1–𝐴4, we have

(i) lim𝑛→∞ E ‖

‖

‖

�̂�𝑛 − 𝑆𝑛
(

𝜌1, 𝜌2
)

‖

‖

‖

2
= 0.

(ii) Moreover, �̂�𝑛 has the same asymptotic expected loss (or risk) as 𝑆𝑛
(

𝜌1, 𝜌2
)

, i.e.,

lim
𝑛→∞

E ‖

‖

‖

�̂�𝑛 − 𝛴𝑛
‖

‖

‖

2
− E ‖

‖

‖

𝑆𝑛
(

𝜌1, 𝜌2
)

− 𝛴𝑛
‖

‖

‖

2
= 0.

In the same way as Ledoit and Wolf [19] we define the optimal coefficients 𝜌∗1 and 𝜌∗2. They are estimated respectively by �̂�∗1
and �̂�∗2, where �̂�∗1 = 𝛽2𝑛

𝛿2𝑛
�̂�2𝑛 and �̂�∗2 = �̂�2𝑛

𝛿2𝑛
. Now, if �̂�2𝑛 ≠ 0, we introduce �̂�∗

𝑛 the ‘‘estimated optimal’’ penalized version of 𝑆𝑛 given by

�̂�∗
𝑛 = 𝑆𝑛

(

�̂�∗1
∗ , 1

)

= 𝑆𝑛 + �̂�∗𝑛𝐼𝑝, �̂�∗𝑛 =
𝛽2𝑛 �̂�

2
𝑛

2
.

8

�̂�2 �̂�𝑛
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Fig. 2. We denote the true covariance 𝛴𝑛, the sample covariance 𝑆𝑛, the regularized and the penalized estimators of 𝑆𝑛, respectively �̂�𝑛 and �̂�∗
𝑛 . The principle is

similar to Fig. 1 except that �̂�𝑛 is determined first so that the regularized estimator belongs to the yellow line and the penalized optimal estimator �̂�∗
𝑛 = 𝑆𝑛

(

�̂�∗1
�̂�∗2
, 1
)

is the closest value to 𝛴𝑛 on this line. This difference induces an additional error term in our inequalities. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Similarly the unobservable threshold constant 𝑎∗ introduced in Theorem 3 is estimated by �̂�∗𝑛 = 1 + 𝐾3
�̂�∗𝑛

. Theorem 4 establishes
an exponential bound for the penalized self-normalized sums, when 𝑆∗

𝑛 is replaced by the estimator �̂�∗
𝑛 and 𝑎∗ by �̂�∗𝑛, up to a small

error term that we control explicitly (see Fig. 2).

Theorem 4. Under Assumptions 𝐴1 to 𝐴4, we have, for any 𝑛 > 1, for any 𝑝 > 𝑛, for any 𝑡 > 2𝑛 and for any small value of 𝜖 > 0,

P
(

𝑇 2
𝑛 (�̂�

∗
𝑛 , 1) ≥ 𝑡

(

1 + �̂�∗𝑛 + 2𝜖
))

≤ 2𝑒3
9

( 𝑡 − 𝑛
2

)
𝑛
2 𝑒−

𝑡−𝑛
2

𝛤
(

𝑛
2 + 1

) +
𝐶 (𝜖)
𝑛𝜖

, (4)

where �̂�∗𝑛 = 1 + 𝐾3
�̂�∗𝑛

, and 𝐶 (𝜖) is a real positive function, independent of 𝑛, defined by

𝐶 (𝜖) = 4𝐾1
√

𝐾2

(

2 + 1
𝑝
+𝐾1

)

+ 2𝐾1𝐺
(
√

𝜖
2𝐾1

)

+
4𝐾2

1𝜎
4

𝜖
𝐺
(

𝜖
2𝜎2𝐾1

)

+
𝐾2

3
𝜖

𝐺
(

𝜖
𝐾3

)

.

The function 𝐺 is defined explicitly in Lemma 7. Notice that 𝐶(𝜖)∕𝜖 explodes when 𝜖 goes to 0.

These results essentially show that we have a 𝜒2(𝑛) control in the tail of the distribution, for a threshold larger than 2𝑛(1 + �̂�∗𝑛)
(recall that 2𝑛 is the variance of a 𝜒2(𝑛) distribution). The loss (1 + �̂�∗𝑛) is essentially due to the correlation between the components
of 𝑍 and the deviation from homoscedasticity. The value of 𝜖 cannot be too small but can be optimized by balancing the two terms
in the inequality. For a given 𝜖 and a given level 𝛿 it is possible to solve numerically the second term of inequality (4) equal to 𝛿
to get a valid bound for the Hotelling’s 𝑇 2

𝑛 for any 𝑛 and 𝑝.

4. Simulations and conclusion

We defer the intensive simulation study to Section 2 of the supplementary material. For different multidimensional distributions
(respectively, Gaussian, Log-Normal, and multivariate Pareto type II distributions, with different dependency structures, see details
in the supplementary material) we give the distribution of the estimated optimal penalty as well as the distribution of the penalized
Hotelling 𝑇 2 (with estimated penalty) compared to our exponential bounds. From these simulations, we draw the following
conclusions:
(i) When the components of the vector are independent, the penalty coefficient �̂�∗𝑛 can be very large, especially for very asymmetric
and fat tail distributions (see Remarks 1 and 2 of the supplementary material). It means that the covariance matrix does not play
any role in the standardization. Conversely, when the data coordinates are dependent, the penalty coefficient �̂�∗𝑛 tends to become
relatively small. This is in accordance with the simulation results obtained by Dong et al. [11], in a slightly different framework
(comparison of two samples) showing that it may be useless to use the covariance matrix component in the independent case.
(ii) The values of �̂�∗𝑛 depend on the level of dependence but also on the dispersion of eigenvalues in the case of independence.
Specifically, if 𝛼2 is small (indicating low dispersion of eigenvalues), the observed mean value of �̂�∗𝑛 is smaller compared to the
case with a large 𝛼2 (indicating high dispersion of eigenvalues). This phenomenon is more pronounced for asymmetric and for
heavy-tailed distributions. In that case, it is clear that the estimator of the covariance matrix is closer to the identity (up to a scaling
factor) than to the empirical covariance matrix (see also the conclusions of Dong et al. [11]).
(iii) On the contrary, in the case of dependence, the estimated value �̂�∗𝑛 remains relatively small (does not explode as in independent
scenarios). As the level of dependence increases, the �̂�∗ value decreases.
9
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(iv) For the normal distribution, a strong linear relationship is observed between the optimal estimated penalty coefficient �̂�∗𝑛 and
he ratio 𝑝∕𝑛. It seems that the penalty should be of order 2𝑝∕𝑛 in the independent case but more of order 𝑝∕𝑛 in the dependent

case (for our specific values of the parameters).
(v) The distribution of the penalized Hotelling’s 𝑇 2

𝑛 statistics clearly depends on the ratio 𝑝∕𝑛 but exhibits a stable behavior even
when the penalty coefficient becomes exceedingly large.

Since our bounds are universally applicable and valid regardless of the data distribution, they inherently tend to be conservative
(especially in the Gaussian case) but can be used safely when the asymptotic normal approximation is quite inappropriate (see the
log-normal and Pareto cases in particular). From this simulation study, we conclude that our work gives some interesting information
both on the optimal penalty that one may choose and on the order of the bounds. However, there is still room for improvement.
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Appendix A. Proofs

In the first part of this section, we provide all the proofs of Theorems 1, 2, 3 and 4 given in Sections 2, 3 and 4. In the second
part of the appendix, we detail all the calculations to obtain an explicit constant 𝐶(𝜖) appearing in Theorem 4 when replacing the
rue quantities by their empirical estimators.

We set some notations that we will consider in the following proofs. 𝑆𝑛 is a symmetric and nonnegative matrix. Denote by 𝑂𝑛
n orthogonal matrix in 𝑝 (R) such that 𝑆𝑛 = 𝑂𝑛𝛬𝑛𝑂⊤

𝑛 where 𝛬𝑛 is a diagonal matrix and

𝛬𝑛 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜆1
⋱

𝜆𝑛
0

∖
0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

for any 𝑝 > 𝑛.

et 𝜆1 ≥ ⋯ ≥ 𝜆𝑝 denote eigenvalues of 𝑆𝑛. Put 𝑌𝑖 = 𝑂⊤
𝑛 𝑍𝑖 with 𝑌𝑖 =

(

𝑌𝑖,1 … , 𝑌𝑖,𝑝
)⊤.

roof of Theorems 1 and 2. We first establish a simple inequality for the penalized Hotelling’s 𝑇 2
𝑛 in the symmetric case, based on

revious results by Pinelis [27]. The idea of the theorem is to use a rotation trick of the 𝑍𝑖 that allows us to return to the ‘‘small’’
imension case given by Pinelis [27]. This yields a bound given by the survival function of a 𝜒2 with 𝑛 degrees of freedom. □

roof of Theorem 1. Note that Vectors 𝑌𝑖 remain symmetric in distribution and uncorrelated. It is easy to see that, by construction,
he empirical covariance matrix of the 𝑌1,… , 𝑌𝑛 is

1
𝑛

𝑛
∑

𝑖=1
𝑌𝑖𝑌

⊤
𝑖 = 1

𝑛

𝑛
∑

𝑖=1
𝑂⊤
𝑛 𝑍𝑖𝑍

⊤
𝑖 𝑂𝑛 = 𝑂

⊤
𝑛 𝑆𝑛𝑂𝑛 = 𝛬𝑛.

his implies that for any vector 𝑌𝑖, their coordinates for 𝑗 ≥ 𝑛 + 1 are zero. Indeed, for 𝑗 ≥ 𝑛 + 1, 𝑛−1 ∑𝑛
𝑖=1 𝑌

2
𝑖,𝑗 = 0, implies in turn

hat each 𝑌𝑖,𝑗 = 0, 𝑗 ∈ {𝑛 + 1,… , 𝑝}, 𝑖 ∈ {1,… , 𝑛}. Define 𝑌𝑖 the 𝑛-dimensional vector version of 𝑌𝑖 with these non-zero components,
hat is to say ∀𝑗 ≤ 𝑛, 𝑌𝑖,𝑗 = 𝑌𝑖,𝑗 and their corresponding empirical mean ̄̃𝑌𝑛 on the collection 𝑌 (𝑛) =

(

𝑌𝑖
)

1≤𝑖≤𝑛. Thus, for all 𝜌1, 𝜌2 > 0,
we have

𝑛�̄�⊤
𝑛 𝑆

−1
𝑛

(

𝜌1, 𝜌2
)

�̄�𝑛 = 𝑛

(

1
𝑛

𝑛
∑

𝑖=1
𝑌 ⊤
𝑖

)

(

𝜌1𝐼𝑝 + 𝜌2𝛬𝑛
)−1

(

1
𝑛

𝑛
∑

𝑖=1
𝑌𝑖

)

= 𝑛
𝑛
∑

𝑗=1

(

𝑛−1
∑𝑛

𝑖=1 𝑌𝑖,𝑗
)2

𝜌1 + 𝜌2𝜆𝑗
≤ 𝑛

𝑛
∑

𝑗=1

(

𝑛−1
∑𝑛

𝑖=1 𝑌𝑖,𝑗
)2

𝜌2𝜆𝑗
≤ 1

𝜌2

𝑛
∑

𝑗=1

(

𝑛−1∕2
∑𝑛

𝑖=1 𝑌𝑖,𝑗
)2

𝜆𝑗
.

As 𝜆𝑗 = 𝑛−1
∑𝑛

𝑖=1 𝑌
2
𝑖,𝑗 , we have reduced the problem to the sum of 𝑛 self normalized sums, which can be seen as Hotelling’s 𝑇 2

𝑛
f symmetric random variables in R𝑛. In other words, 𝑛�̄�⊤

𝑛 𝑆
−1
𝑛

(

𝜌1, 𝜌2
)

�̄�𝑛 ≤
1
𝜌2
𝑛 ̄̃𝑌 ⊤

𝑛 𝑆−1
𝑛

(

𝑌 (𝑛)) ̄̃𝑌𝑛. Thus, by applying Pinelis [27] (1),
we have

∀𝑡 > 0, P
(

𝑛�̄�⊤
𝑛 𝑆

−1
𝑛

(

𝜌1, 𝜌2
)

�̄�𝑛 ≥
𝑡
𝜌2

)

≤ 2𝑒3
9

𝐹𝑛 (𝑡) .

Recall that, if 𝑁 ,… , 𝑁 are independent  (0, 1) r.v.s, then by Lemma 1 of Laurent and Massart [18], one has,
10

1 𝑛
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P
w
N

𝜉

N
e
h

w

W

∀𝑢 > 0, P

(

∑𝑛
𝑖=1 𝑁

2
𝑖 − 𝑛

√

2𝑛
≥
√

2(
√

𝑢 + 𝑢
√

𝑛
)

)

≤ 𝑒−𝑢 .

By inverting the polynomial in
√

𝑢, this is a Bernstein type inequality for i.i.d random variables

∀𝜈 > 0, P

(

∑𝑛
𝑖=1 𝑁

2
𝑖 − 𝑛

√

2𝑛
≥ 𝜈

)

≤ exp

⎛

⎜

⎜

⎜

⎜

⎝

− 2𝜈2
(

1 +
√

1 + 2
√

2 𝜈
√

𝑛

)2

⎞

⎟

⎟

⎟

⎟

⎠

≤ exp

⎛

⎜

⎜

⎜

⎝

− 𝜈2

2(1 +
√

2 𝜈
√

𝑛
)

⎞

⎟

⎟

⎟

⎠

.

It follows that, for 𝑡 > 𝑛,

𝐹𝑛 (𝑡) = P

(

∑𝑛
𝑖=1 𝑁

2
𝑖 − 𝑛

√

2𝑛
≥ 𝑡 − 𝑛

√

2𝑛

)

≤ exp
(

−
(𝑡 − 𝑛)2

4𝑡

)

. □

roof of Theorem 2. Recall that: �̄�𝑛 = 1
𝑛
∑𝑛

𝑖=1 𝑍𝑖 with 𝑍𝑖 ∈ R𝑝. Introduce independent Rademacher r.v.’s 𝜀𝑖 taking the values ±1
ith probability 1∕2. Define �̄�𝜖

𝑛 = 1
𝑛
∑𝑛

𝑖=1 𝜖𝑖𝑍𝑖. Then, in the symmetric case considered here, �̄�𝑛 and �̄�𝜖
𝑛 have the same distribution.

ow write

𝑛(�̄�𝜖
𝑛 )

⊤𝑆−1
𝑛

(

𝜌1, 𝜌2
)

�̄�𝜖
𝑛 = 𝑛

(

1
𝑛

𝑛
∑

𝑖=1
𝜖𝑖𝑌

⊤
𝑖

)

(

𝜌1𝐼𝑝 + 𝜌2𝛬𝑛
)−1

(

1
𝑛

𝑛
∑

𝑖=1
𝜖𝑖𝑌𝑖

)

= 𝜖⊤𝑉 𝑉 ⊤𝜖, (5)

where 𝑌 = (𝑌1,… , 𝑌𝑛)⊤, 𝜖 =
(

𝜖1,… , 𝜖𝑛
)⊤ , and 𝑉 = 1

√

𝑛
𝑌
(

𝜌1𝐼𝑝 + 𝜌2𝛬𝑛
)−1∕2.

Chasapis et al. [8] obtain an extension of Pinelis [27] result, stating that for smooth functions of quadratic forms, Rademacher
variables may be replaced by standard normal variables. More precisely, define the Euclidian norm ‖𝑥‖2 =

√

⟨𝑥, 𝑥⟩ and consider
1,… , 𝜉𝑛 independent standard Gaussian random variables. Then, for any 𝑡 ≥ 0, for any vectors 𝜈1,… , 𝜈𝑛 in R𝑝, we have

P
[

‖

‖

𝜖1𝜈1 +⋯ + 𝜖𝑛𝜈𝑛‖‖2 ≥ 𝑡
]

≤ 𝐶P
[

‖

‖

𝜉1𝜈1 +⋯ + 𝜉𝑛𝜈𝑛‖‖2 ≥ 𝑡
]

, 𝐶 = 3
4
𝑒2.

ote that the value 𝐶 = 3
4 𝑒

2 ≈ 5.54 (see Chasapis et al. [8]) is probably not optimal. See the supplementary material for numerical
xperiments supporting the fact that the optimal value is the one appearing in Pinelis equal to 2𝑒3∕9 for smooth function. Since we
ave

𝜖1𝜈1 +⋯ + 𝜖𝑛𝜈𝑛 = 𝜖⊤𝑉

here 𝑉 is the matrix of vectors 𝜈𝑖 =
(

𝜈𝑖1,… , 𝜈𝑖𝑝
)

corresponding to the rows, we can rewrite

‖

‖

𝜖1𝜈1 +⋯ + 𝜖𝑛𝜈𝑛‖‖
2
2 =

‖

‖

‖

𝜖⊤𝑉 ‖

‖

‖

2

2
= 𝜖⊤𝑉 𝑉 ⊤𝜖.

It follows that, for any 𝑢 > 0,

P
[

𝜖⊤𝑉 𝑉 ⊤𝜖 ≥ 𝑢
]

≤ 𝐶P
[

𝜉⊤𝑉 𝑉 ⊤𝜉 ≥ 𝑢
]

By conditioning according to 𝑌𝑖’s and using Eq. (5), we have, for any 𝑛 > 1, for any 𝑝 > 1, for any 𝑢 > 0 and, for any 𝜌1, 𝜌2 > 0,

P
[

𝑛(�̄�𝜖
𝑛 )

⊤𝑆−1
𝑛

(

𝜌1, 𝜌2
)

�̄�𝜖
𝑛 ≥ 𝑢

]

= E
[

P
(

𝜖⊤𝑉 𝑉 ⊤𝜖 ≥ 𝑢 |

|

|

𝑌1,… , 𝑌𝑛
)]

≤ 𝐶E
[

P
(

𝜉⊤𝑉 𝑉 ⊤𝜉 ≥ 𝑢 |

|

|

𝑌1,… , 𝑌𝑛
)]

.

Moreover, recall from the preceding proof that we have

𝑛(�̄�𝜖
𝑛 )

⊤𝑆−1
𝑛

(

𝜌1, 𝜌2
)

�̄�𝜖
𝑛 = 𝑛

(

1
𝑛

𝑛
∑

𝑖=1
𝜖𝑖𝑌

⊤
𝑖

)

(

𝜌1𝐼𝑝 + 𝜌2𝛬𝑛
)−1

(

1
𝑛

𝑛
∑

𝑖=1
𝜖𝑖𝑌𝑖

)

= 𝑛
inf(𝑝,𝑛)
∑

𝑗=1

(

𝑛−1
∑𝑛

𝑖=1 𝜖𝑖𝑌𝑖,𝑗
)2

𝜌1 + 𝜌2𝜆𝑗

= 𝑛
inf(𝑝,𝑛)
∑

𝑗=1

(

𝑛−1
∑𝑛

𝑖=1 𝜖𝑖𝑌𝑖,𝑗
)2

𝜆𝑗

𝜆𝑗
𝜌1 + 𝜌2𝜆𝑗

e obtain

P
[

𝑛(�̄�𝜖
𝑛 )

⊤ (

𝑆𝑛
(

𝜌1, 𝜌2
))−1 �̄�𝜖

𝑛 > 𝑢
]

≤ 𝐶E
⎡

⎢

⎢

⎣

P
⎛

⎜

⎜

⎝

𝑛
inf(𝑝,𝑛)
∑

𝑗=1

(

𝑛−1
∑𝑛

𝑖=1 𝜉𝑖𝑌𝑖,𝑗
)2

𝜆𝑗

𝜆𝑗
𝜌1 + 𝜌2𝜆𝑗

> 𝑢
|

|

|

|

|

|

𝑌1,… , 𝑌𝑛
⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎦

. (6)

Let us now work conditionally to 𝑌1,… , 𝑌𝑛. Put 𝐾𝑗 =
√

𝑛
(

𝑛−1
∑𝑛

𝑖=1 𝜉𝑖𝑌𝑖,𝑗
)

∕
√

𝜆𝑗 , 𝑗 ∈ {1,… , inf(𝑝, 𝑛)}. Thus for any 𝑗 ≠ 𝑘

Cov
(

𝐾𝑗 , 𝐾𝑘
|

|

|

𝑌1,… , 𝑌𝑛
)

= Cov

(

√

𝑛
𝑛−1

∑𝑛
𝑖=1 𝜉𝑖𝑌𝑖,𝑗
√

,
√

𝑛
𝑛−1

∑𝑛
𝑖=1 𝜉𝑖𝑌𝑖,𝑘
√

|

|

|

|

𝑌1,… , 𝑌𝑛

)

= 1
𝑛

𝑛
∑ 𝑌𝑖,𝑗𝑌𝑖,𝑘

√
= 0.
11

𝜆𝑗 𝜆𝑘 |

|

𝑖=1 𝜆𝑗𝜆𝑘
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Since 𝐾 =
(

𝐾1,… , 𝐾inf(𝑝,𝑛)
)

is a Gaussian vector (as a linear combination of independent variables), it follows that 𝐾2
1 ,… , 𝐾2

inf(𝑝,𝑛)
are iid 𝜒2(1).

Now, consider the vector 𝑏 =
(

𝑏1,… , 𝑏𝑝
)

with nonnegative components (conditionally to 𝑌𝑖,𝑗 ’s) defined by

𝑏𝑗 =
𝜆𝑗

𝜌1 + 𝜌2𝜆𝑗
.

A direct application of Laurent and Massart [18] Lemma 1 to ∑inf(𝑝,𝑛)
𝑗=1 𝑏𝑗

(

𝐾2
𝑗 − 1

)

gives for any 𝑢 > 0

P

(inf(𝑝,𝑛)
∑

𝑗=1
𝑏𝑗

(

𝐾2
𝑗 − 1

)

> 2‖𝑏‖2
√

𝑢 + 2‖𝑏‖∞𝑢

)

≤ exp (−𝑢) .

In other words, for any 𝑢 > 0, we have

P
⎛

⎜

⎜

⎜

⎝

∑inf(𝑝,𝑛)
𝑗=1 𝑏𝑗𝐾2

𝑗 − ‖𝑏‖1
√

2‖𝑏‖22

>
√

2
√

𝑢 +
√

2
‖𝑏‖∞
‖𝑏‖2

𝑢

⎞

⎟

⎟

⎟

⎠

≤ exp (−𝑢) . (7)

Now by combining (6) and (7) we obtain the following result for the recentered version of our quantity of interest,

P
⎛

⎜

⎜

⎜

⎝

𝑛(�̄�𝜖
𝑛 )

⊤𝑆−1
𝑛

(

𝜌1, 𝜌2
)

�̄�𝜖
𝑛 − ‖𝑏‖1

√

2‖𝑏‖22

>
√

2
√

𝑢 +
√

2
‖𝑏‖∞
‖𝑏‖2

𝑢

⎞

⎟

⎟

⎟

⎠

≤ 𝐶E
⎡

⎢

⎢

⎢

⎣

P
⎛

⎜

⎜

⎜

⎝

∑inf(𝑝,𝑛)
𝑗=1 𝑏𝑗𝐾2

𝑗 − ‖𝑏‖1
√

2‖𝑏‖22

>
√

2
√

𝑢 +
√

2
‖𝑏‖∞
‖𝑏‖2

𝑢

|

|

|

|

|

|

|

|

(

𝑌1,𝑗 ,… , 𝑌𝑛,𝑗
)

𝑗∈{1,…,inf(𝑝,𝑛)}

⎞

⎟

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎦

≤ 𝐶 exp(−𝑢).

he result of the theorem follows by noticing that ‖𝑏‖𝑘 = 𝛩𝑘(𝜆, 𝜌1, 𝜌2), 𝑘 ∈ {1, 2} and ‖𝑏‖∞ = 𝛩∞(𝜆, 𝜌1, 𝜌2). □

roof of Theorem 3. In the following, we adapt Panchenko’s symmetrization lemma to a 𝜒2 distribution. This ensures that, if we
ave a 𝜒2 (𝑘) type of control for the tail of a random variable 𝜈, which stochastically dominates some random variable 𝜉, then we
re also able to control the tail of 𝜉. For large values, this tail is essentially the same as the one of a 𝜒2(𝑘) distribution. We use exactly
he same ideas as in Panchenko’s lemma 1 and corollary 1 (which assumes an exponential control of the tail of the distribution of
he variable 𝜈). □

emma 2. Let 𝜈 and 𝜉 be two real r.v.’s. For 𝑎 ∈ R, put 𝛷𝑎(𝑥) = max (𝑥 − 𝑎; 0). Assume that:

(i) for any 𝑎 ∈ R,

E𝛷𝑎 (𝜉) ≤ E𝛷𝑎 (𝜈)

(ii) there exists 𝑘 and constants 𝖢1 > 0, 𝑐1 > 0, such that for any 𝑡 > 0

P (𝜈 ≥ 𝑡) ≤ 𝖢1𝐹𝑘
(

𝑐1𝑡
)

hen, for 𝑡 > 2𝑘∕𝑐1, we have

P (𝜉 ≥ 𝑡) ≤ 𝖢1

(

𝑐1𝑡 − 𝑘
2

)
𝑘
2 𝑒−

𝑐1 𝑡−𝑘
2

𝛤
(

𝑘
2 + 1

)

nd, for 𝑡 > 𝑘∕𝑐1, we also get

P (𝜉 ≥ 𝑡) ≤ 𝖢1𝐹𝑘+2
(

𝑐1𝑡 − 𝑘
)

.

roof of Lemma 2. We follow the lines of the proof of Panchenko’s lemma, with a function 𝛷𝑎 with 𝑎 = 𝑡 − 𝑘
𝑐1

given by
(𝑥) = max

(

𝑥 − 𝑡 + 𝑘∕𝑐1; 0
)

, for 𝑡 > 𝑘∕𝑐1. Remark that 𝛷 (𝑥) is convex, nondecreasing and that 𝛷 (0) = 0 and 𝛷 (𝑡) = 𝑘∕𝑐1. We
thus have by Markov’s inequality

P (𝜉 ≥ 𝑡) ≤
𝐸𝛷 (𝜉)
𝛷 (𝑡)

≤ 𝐸𝛷 (𝜈)
𝛷 (𝑡)

≤ 1
𝛷 (𝑡)

(

𝛷 (0) + ∫

+∞

𝑡−𝑘∕𝑐1
𝛷⊤ (𝑥)P (𝜈 ≥ 𝑥) 𝑑𝑥

)

≤ 𝖢1
𝑐1
𝑘 ∫

+∞

𝑡−𝑘∕𝑐1
𝐹 𝑘

(

𝑐1𝑥
)

𝑑𝑥.

By integration by parts, we get
+∞

𝐹𝑘
(

𝑐1𝑥
)

𝑑𝑥 =
+∞

𝑐1𝑥𝑓𝑘
(

𝑐1𝑥
)

𝑑𝑥 −
(

𝑡 − 𝑘∕𝑐1
)

+∞
𝑐1𝑓𝑘

(

𝑐1𝑥
)

𝑑𝑥.
12

∫𝑡−𝑘∕𝑐1 ∫𝑡−𝑘∕𝑐1 ∫𝑡−𝑘∕𝑐1
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Recall that

𝑓𝑘(𝑢) =
1

2𝑘∕2𝛤 ( 𝑘2 )
𝑢
𝑘
2 −1 exp(− 𝑢

2
),

we thus have
𝑐1
𝑘 ∫

+∞

𝑡−𝑘∕𝑐1
𝑐1𝑥𝑓𝑘

(

𝑐1𝑥
)

𝑑𝑥 =
𝑐1

2𝑘∕2+1 𝑘
2𝛤 ( 𝑘2 )

∫

+∞

𝑡−𝑘∕𝑐1
(𝑐1𝑥)

𝑘+2
2 −1 exp(−

𝑐1𝑥
2

)𝑑𝑥 = 𝐹 𝑘+2
(

𝑐1𝑡 − 𝑘
)

.

It follows by straightforward calculations that, for 𝑡 > 𝑘∕𝑐1,

P (𝜉 ≥ 𝑡) ≤ 𝖢1

(

𝐹 𝑘+2
(

𝑐1𝑡 − 𝑘
)

−
𝑐1𝑡 − 𝑘

𝑘
𝐹 𝑘

(

𝑐1𝑡 − 𝑘
)

)

.

Using the recurrence relation 26.4.8 of Abramovitch and Stegun [1], (page 941), for 𝑢 ≥ 2𝑘,

𝖢1

(

𝐹 𝑘+2 (𝑢 − 𝑘) − 𝑢 − 𝑘
𝑘

𝐹 𝑘 (𝑢 − 𝑘)
)

≤ 𝖢1

(

𝐹 𝑘+2 (𝑢 − 𝑘) − 𝐹 𝑘 (𝑢 − 𝑘)
)

≤
(

(𝑢 − 𝑘)
2

)𝑘∕2 𝖢1𝑒
− (𝑢−𝑘)

2

𝛤
(

𝑘
2 + 1

) .

We get with 𝑢 = 𝑐1𝑡, for 𝑡 ≥ 2𝑘∕𝑐1,

P (𝜉 ≥ 𝑡) ≤

(
(

𝑐1𝑡 − 𝑘
)

2

)𝑘∕2
𝖢1𝑒

− (𝑐1 𝑡−𝑘)2

𝛤
(

𝑘
2 + 1

) .

Moreover, for 𝑡 > 𝑘∕𝑐1 we have P (𝜉 ≥ 𝑡) ≤ 𝖢1

(

𝐹 𝑘+2
(

𝑐1𝑡 − 𝑘
)

)

. Notice that we only lose 2 degrees of freedom in this case. It will
not be important if 𝑘 is large, typically of the order of 𝑛 in our case. □

Now, we extend Panchenko symmetrization lemma (see Panchenko [26] Corollary 1, p. 2069) to the multidimensional
framework. Let 𝑝 =

{

𝑢 ∈ R𝑝, ‖𝑢‖2 = 1
}

be the unit circle of R𝑝. Let 𝑋(𝑛) =
(

𝑋𝑖
)

1≤𝑖≤𝑛 be an independent copy of 𝑍(𝑛) =
(

𝑍𝑖
)

1≤𝑖≤𝑛.
Since 𝑝 > 𝑛, the matrix 𝑆𝑛

(

𝑍(𝑛) −𝑋(𝑛)) = 1
𝑛
∑𝑛

𝑖=1
(

𝑍𝑖 −𝑋𝑖
) (

𝑍𝑖 −𝑋𝑖
)⊤ is not invertible. We derive from 𝑆𝑛

(

𝑍(𝑛) −𝑋(𝑛)) the
corresponding penalized empirical covariance matrix

𝑆𝑛 ≡ 𝑆𝑛
(

𝜌1, 𝜌2
)

= 2𝜌1𝐼𝑝 + 𝜌2𝑆𝑛
(

𝑍(𝑛) −𝑋(𝑛)) .

It is easy to see that

E
(

𝑆𝑛
(

𝑍(𝑛) −𝑋(𝑛))) = 2𝛴𝑛 and E
(

𝑆𝑛
(

𝑍(𝑛) −𝑋(𝑛)) ∣ 𝑍(𝑛)) = 𝑆𝑛 + 𝛴𝑛.

Since 𝑆𝑛
(

�̃�1, �̃�2
)

= 𝜌1𝐼𝑝 + 𝜌2𝑆𝑛
(

𝑍(𝑛) −𝑋(𝑛)), we get that

E
(

𝑆𝑛 ∣ 𝑍(𝑛)
)

= 𝜌1𝐼𝑝 + 𝜌2
(

𝑆𝑛 + 𝛴𝑛
)

= 2𝜌1𝐼𝑝 + 𝜌2
(

𝑆𝑛 + 𝛴𝑛
)

.

As a consequence, define

𝛽2 = E
(

‖

‖

‖

𝑆𝑛
(

𝑍(𝑛) −𝑋(𝑛)) − 2𝛴𝑛
‖

‖

‖

2
)

= E
(

‖

‖

‖

𝑆𝑛
(

𝑍(𝑛)) − 𝛴𝑛
‖

‖

‖

2
)

+ E
(

‖

‖

‖

𝑆𝑛
(

𝑋(𝑛)) − 𝛴𝑛
‖

‖

‖

2
)

= 2𝛽2.

Similarly, put

𝛼2 = 2𝛼2, 𝛿 = 2𝛿2, 𝜎2 = ⟨2𝛴𝑛, 𝐼𝑛⟩ = 2𝜎2,

hen we have

𝜌1 =
𝛼2

𝛿2
𝜎2 = 2𝛼

2

𝛿2
𝜎2 = 2𝜌1, 𝜌2 =

𝛽2

𝛿2
=

𝛽2

𝛿2
= 𝜌2.

It thus follows with this natural choice of 𝜌1 and 𝜌2 that we have

E
(

𝑆𝑛
(

𝜌1, 𝜌2
)

|

|

|

𝑍(𝑛)
)

= 𝑆𝑛
(

𝜌1, 𝜌2
)

+ 𝛴𝑛, E
(

𝑆𝑛
(

𝜌1, 𝜌2
)

)

= 2(𝜌1𝐼𝑝 + 𝜌2𝛴𝑛) = 2𝛴𝑛.

These quantities will appear in the following symmetrization lemma. Its proof is an extension of Corollary 1 of Panchenko
see [26]) with some adaptations to the multidimensional 𝜒2 case. See also Bertail et al. [6] for the non-penalized version of this
esult for 𝑝 < 𝑛.

emma 3. Choose some fixed positive value of 𝜌1 and 𝜌2. If there exists 𝑘 ∈ N∗, 𝖢2 > 0 and 𝑐2 > 0 such that, for all 𝑡 ≥ 0,

P
⎛

⎜

⎜

⎜

sup
𝑢∈𝑝

⎛

⎜

⎜

⎜

√

𝑛𝑢⊤
(

�̄�𝑛 − �̄�𝑛
)

√

𝑢⊤𝑆 𝑢

⎞

⎟

⎟

⎟

≥
√

𝑡

⎞

⎟

⎟

⎟

≤ 𝖢2𝐹𝑘(𝑐2𝑡),
13
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⎠ ⎠
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P

T

then, for all 𝑡 ≥ 2𝑘∕𝑐2,

P

⎛

⎜

⎜

⎜

⎜

⎝

sup
𝑢∈𝑝

⎛

⎜

⎜

⎜

⎜

⎝

√

𝑛𝑢⊤�̄�𝑛
√

𝑢⊤
(

𝑆𝑛
(

𝜌1, 𝜌2
)

+ 𝛴𝑛

)

𝑢

⎞

⎟

⎟

⎟

⎟

⎠

≥
√

𝑡

⎞

⎟

⎟

⎟

⎟

⎠

≤ 𝖢2

(
(

𝑐2𝑡 − 𝑘
)

2

)𝑘∕2
𝑒−

(𝑐2 𝑡−𝑘)
2

𝛤
(

𝑘
2 + 1

)

and, for all 𝑡 ≥ 𝑘∕𝑐2,

P

⎛

⎜

⎜

⎜

⎜

⎝

sup
𝑢∈𝑝

⎛

⎜

⎜

⎜

⎜

⎝

√

𝑛𝑢⊤�̄�𝑛
√

𝑢⊤
(

𝑆𝑛
(

𝜌1, 𝜌2
)

+ 𝛴𝑛

)

𝑢

⎞

⎟

⎟

⎟

⎟

⎠

≥
√

𝑡

⎞

⎟

⎟

⎟

⎟

⎠

≤ 𝖢2𝐹 𝑘+2
(

𝑐2𝑡 − 𝑘
)

.

Proof of Lemma 3. Denote

𝐴𝑛
(

𝑍(𝑛)) = 𝑛 sup
𝑢∈𝑝

sup
𝑏>0

{

E
[

4𝑏
(

𝑢⊤
(

�̄�𝑛 − �̄�𝑛
)

− 𝑏𝑢⊤�̃�𝑛𝑢
)

∣ 𝑍(𝑛)]}

and

𝐶𝑛
(

𝑍(𝑛), 𝑋(𝑛)) = 𝑛 sup
𝑢∈𝑝

sup
𝑏>0

{

4𝑏
(

𝑢⊤
(

�̄�𝑛 − �̄�𝑛
)

− 𝑏𝑢⊤�̃�𝑛𝑢
)}

.

We have by Jensen’s inequality, that for any convex function 𝜙

𝜙
(

𝐴𝑛
(

𝑍(𝑛))) ≤ E
[

𝜙
(

𝐶𝑛
(

𝑍(𝑛), 𝑋(𝑛))) ∣ 𝑍(𝑛)] . (8)

Finally, we can rewrite 𝐴𝑛
(

𝑍(𝑛)) and 𝐶𝑛
(

𝑍(𝑛), 𝑋(𝑛)) in an explicit form of self-normalized sums by maximizing according to 𝑏,
the two expressions above, which leads to

𝐴𝑛
(

𝑍(𝑛)) = sup
𝑢∈𝑝

⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎜

⎜

⎝

√

𝑛𝑢⊤�̄�𝑛
√

�̃�1 + �̃�2𝑢⊤
(

𝑆𝑛 + 𝛴𝑛
)

𝑢

⎞

⎟

⎟

⎟

⎠

2
⎫

⎪

⎬

⎪

⎭

= sup
𝑢∈𝑝

⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎜

⎜

⎝

√

𝑛𝑢⊤�̄�𝑛
√

𝑢⊤𝑆𝑛
(

𝜌1, 𝜌2
)

𝑢 + 𝑢⊤𝛴𝑛𝑢

⎞

⎟

⎟

⎟

⎠

2
⎫

⎪

⎬

⎪

⎭

.

Similarly, we have

𝐶𝑛
(

𝑍(𝑛), 𝑋(𝑛)) = sup
𝑢∈𝑝

⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎜

⎜

⎝

√

𝑛𝑢⊤
(

�̄�𝑛 − �̄�𝑛
)

√

𝑢⊤�̃�𝑛𝑢

⎞

⎟

⎟

⎟

⎠

2
⎫

⎪

⎬

⎪

⎭

.

Now we conclude by applying Lemma 2 to inequality (8) with these expressions of 𝐴𝑛
(

𝑍(𝑛)) and 𝐶𝑛
(

𝑍(𝑛), 𝑋(𝑛)) with 𝖢2 = 𝖢1
and 𝑐2 = 𝑐1. □

roof of Theorem 3. We now control the Hotelling’s 𝑇 2
𝑛 in the general case, by cutting its distribution tail into two parts. The

first part allows us to get back to the expression above sup
𝑢∈𝑝

⎧

⎪

⎨

⎪

⎩

(

√

𝑛𝑢⊤�̄�𝑛
√

𝑢⊤𝑆𝑛(𝜌1 ,𝜌2)𝑢+𝑢⊤𝛴𝑛𝑢

)2⎫
⎪

⎬

⎪

⎭

controlled by Lemma 2. The second term is

controlled by the largest eigenvalue of 𝛴𝑛.
Let

𝐵𝑛 = sup
𝑢∈𝑝

⎧

⎪

⎨

⎪

⎩

𝑢⊤�̄�𝑛
√

𝑢⊤𝑆𝑛
(

𝜌1, 𝜌2
)

𝑢

⎫

⎪

⎬

⎪

⎭

.

Notice that by construction we have, for any 𝑡 > 0, (and particularly for any 𝑡 > 2𝑛)
{

𝑛�̄�⊤
𝑛 𝑆𝑛

(

𝜌1, 𝜌2
)−1 �̄�𝑛 ≥ 𝑡

}

=
{

𝑛1∕2𝐵𝑛 ≥
√

𝑡
}

.

o transform the penalized self-normalized sum from the expression 𝑛�̄�⊤
𝑛
(

𝑆𝑛
(

𝜌1, 𝜌2
))−1 �̄�𝑛 to its ‘‘pseudo’’ version with the wrong

normalization, sup
𝑢∈𝑝

⎧

⎪

⎨

⎪

⎩

(

√

𝑛𝑢⊤�̄�𝑛
√

𝑢⊤𝑆𝑛(𝜌1 ,𝜌2)𝑢+𝑢⊤𝛴𝑛𝑢

)2⎫
⎪

⎬

⎪

⎭

, let us introduce 𝐷𝑛 defined by

𝐷𝑛 = sup
𝑢∈𝑝

⎧

⎪

⎨

⎪

√

√

√

√1 +
𝑢⊤𝛴𝑛𝑢

𝑢⊤𝑆𝑛
(

𝜌1, 𝜌2
)

𝑢

⎫

⎪

⎬

⎪

= sup
𝑢∈𝑝

⎧

⎪

⎨

⎪

√

√

√

√1 +
𝑢⊤

(

𝜌1𝐼𝑝 + 𝜌2𝛴𝑛
)

𝑢

𝑢⊤
(

𝜌1𝐼𝑝 + 𝜌2𝑆𝑛
)

𝑢

⎫

⎪

⎬

⎪

.

14
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First, notice that we have

√

𝑛
𝐵𝑛
𝐷𝑛

= sup
𝑢∈𝑝

⎧

⎪

⎨

⎪

⎩

√

𝑛𝑢⊤�̄�𝑛
√

𝑢⊤𝑆𝑛
(

𝜌1, 𝜌2
)

𝑢

⎫

⎪

⎬

⎪

⎭

inf
𝑢∈𝑝

⎧

⎪

⎨

⎪

⎩

(√

1 +
𝑢⊤�̃�𝑛𝑢

𝑢⊤𝑆𝑛
(

𝜌1, 𝜌2
)

𝑢

)−1⎫
⎪

⎬

⎪

⎭

≤ sup
𝑢∈𝑝

⎛

⎜

⎜

⎜

⎝

√

𝑛𝑢⊤�̄�𝑛
√

𝑢⊤𝑆𝑛
(

𝜌1, 𝜌2
)

𝑢

(√

1 +
𝑢⊤�̃�𝑛𝑢

𝑢⊤𝑆𝑛
(

𝜌1, 𝜌2
)

𝑢

)−1⎞
⎟

⎟

⎟

⎠

≤

√

√

√

√

√

√

√

√

sup
𝑢∈𝑝

⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎜

⎜

⎝

√

𝑛𝑢⊤�̄�𝑛
√

𝑢⊤𝑆𝑛
(

𝜌1, 𝜌2
)

𝑢 + 𝑢⊤𝛴𝑛𝑢

⎞

⎟

⎟

⎟

⎠

2
⎫

⎪

⎬

⎪

⎭

, (9)

for which we have an exponential bound by Lemma 3 and Theorem 1.
Thus by splitting the probability according to the event {𝐷2

𝑛 ≥ 1 + 𝑎}, for 𝑎 > 1 and, for any 𝑡 ≥ 2𝑛, we have

P
(

𝑛�̄�⊤
𝑛 𝑆

−1
𝑛

(

𝜌1, 𝜌2
)

�̄�𝑛 ≥ 𝑡
)

≤ P

(

𝐵𝑛 ≥
√

𝑡
𝑛
, 𝐷𝑛 ≤

√

1 + 𝑎

)

+ P
(

𝐷𝑛 ≥
√

1 + 𝑎
)

≤ P
(

𝐵𝑛
𝐷𝑛

≥
√

𝑡
𝑛 (1 + 𝑎)

)

+ P
(

𝐷𝑛 ≥
√

1 + 𝑎
)

.

(10)

So now, it remains to treat the second term in the right-hand side of inequality (10). Notice that we have, for 𝑎 > 1,
{

𝐷𝑛 ≥
√

1 + 𝑎
}

=

{

sup
𝑢∈𝑝

(

𝑢⊤�̃�𝑛𝑢
𝑢⊤𝑆𝑛

(

𝜌1, 𝜌2
)

𝑢

)

≥ 𝑎

}

=

{

inf
𝑢∈𝑝

(

𝑢⊤𝑆𝑛
(

𝜌1, 𝜌2
)

𝑢

𝑢⊤�̃�𝑛𝑢

)

≤ 1
𝑎

}

.

First, if 𝛴𝑛 = 𝜎2𝐼𝑝 is diagonal, then we have

𝑢⊤�̃�𝑛𝑢 = 𝑢⊤(𝜌1𝐼𝑝 + 𝜌2𝜎
2𝐼𝑝)𝑢 = 𝜌1 + 𝜌2𝜎

2.

Since

inf
𝑢∈𝑝

(

𝑢⊤𝑆𝑛
(

𝜌1, 𝜌2
)

𝑢
)

= inf
𝑢∈𝑝

(

𝑢⊤(𝜌1𝐼𝑝 + 𝜌2𝑆𝑛)𝑢
)

= 𝜌1,

if we choose 𝑎 such that 𝑎 > (𝜌1 + 𝜌2𝜎2)∕𝜌1, then we have

P
[

𝐷𝑛 ≥
√

1 + 𝑎
]

≤ P
⎛

⎜

⎜

⎜

⎝

inf
𝑢∈𝑝

(

𝑢⊤𝑆𝑛
(

𝜌1, 𝜌2
)

𝑢
)

𝜌1 + 𝜌2𝜎2
≤ 1

𝑎

⎞

⎟

⎟

⎟

⎠

= 0.

Remark that, in this case, we have 𝜌∗1 = 𝜎2 and 𝜌∗2 = 0 and it follows that the inequality is true for any 𝑎 > 1. Notice that the
proximity between 𝛴𝑛 and 𝜎2𝐼𝑝 is precisely controlled by the term 𝛼2 = ‖

‖

‖

𝛴𝑛 − 𝜎2𝐼𝑝
‖

‖

‖

.
Now consider the general case. For sake of clarity, we will use the notation 𝜇min (𝐴) for the minimum eigenvalue of a matrix 𝐴,

nd respectively 𝜇max (𝐴) for the maximum. First, notice that

inf
𝑢∈𝑝

(

𝑢⊤𝑆𝑛
(

𝜌1, 𝜌2
)

𝑢

𝑢⊤𝛴𝑛𝑢

)

= inf
𝑢∈𝑝

(

𝑢⊤𝛴−1
𝑛 𝑆𝑛

(

𝜌1, 𝜌2
)

𝛴−1
𝑛 𝑢

)

= inf
𝑢∈𝑝

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

=𝑣⊤
⏞⏞⏞⏞⏞⏞⏞
𝑢⊤𝛴−1

𝑛
‖

‖

‖

𝛴−1
𝑛 𝑢‖‖

‖2

𝑆𝑛
(

𝜌1, 𝜌2
)

=𝑣
⏞⏞⏞⏞⏞⏞⏞
𝛴−1
𝑛 𝑢

‖

‖

‖

𝛴−1
𝑛 𝑢‖‖

‖2

‖

‖

‖

𝛴−1
𝑛 𝑢‖‖

‖

2

2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

≥ inf
𝑣∈𝑝

(

𝑣⊤𝑆𝑛
(

𝜌1, 𝜌2
)

𝑣
)

× inf
𝑢∈𝑝

(

𝑢⊤𝛴−2
𝑛 𝑢

)

≥ 𝜌1𝜇min(𝛴−1
𝑛 ) =

𝜌1
𝜇max(𝛴𝑛)

.

Now, using the optimal values 𝜌∗1 and 𝜌∗2, we have the decomposition

�̃�𝑛
(

𝜌∗1 , 𝜌
∗
2
)

= 𝜌∗1𝐼𝑝 + 𝜌∗2𝛴𝑛,

t follows that we get

𝜇max(�̃�𝑛
(

𝜌∗1 , 𝜌
∗
2
)

) = 𝜌∗1 + 𝜌∗2 𝜇max(𝛴𝑛), inf
𝑢∈𝑝

(

𝑢⊤𝑆𝑛
(

𝜌∗1 , 𝜌
∗
2
)

𝑢

𝑢⊤�̃�𝑛
(

𝜌∗1 , 𝜌
∗
2
)

𝑢

)

≥
𝜌∗1

𝜌∗1 + 𝜌∗2 𝜇max(𝛴𝑛)
.

It follows that if we choose 𝑎 such that
1
𝑎
< 1

1 + 𝜇max(𝛴𝑛)
𝜌∗

nd, since 𝑎∗ = 1 + 𝐾3
𝜌∗ > 1 + 𝜇max(𝛴𝑛)

𝜌∗ by Assumption 𝐴3, then, if 𝑎 ≥ 𝑎∗, we get

P
(

𝐷 ≥
√

1 + 𝑎
)

= 0. (11)
15

𝑛



Journal of Multivariate Analysis 203 (2024) 105342E.M. Issouani et al.

T

F

P

T

w

a

i

As a consequence, we obtain an exponential inequality for any value 𝑎 ≥ 𝑎∗. Combining inequalities (10) and (11), we get, for any
𝑎 ≥ 𝑎∗,

∀𝑡 ≥ 2𝑛, P
(

𝑛�̄�⊤
𝑛 𝑆

−1
𝑛

(

𝜌1, 𝜌2
)

�̄�𝑛 ≥ 𝑡 (1 + 𝑎)
)

≤ P
(

√

𝑛
𝐵𝑛
𝐷𝑛

≥
√

𝑡
)

. (12)

Let 𝑋(𝑛) =
(

𝑋𝑖
)

1≤𝑖≤𝑛 be an independent copy of 𝑍(𝑛) =
(

𝑍𝑖
)

1≤𝑖≤𝑛. Applying Theorem 1 to (𝑍𝑖 − 𝑋𝑖)1≤𝑖≤𝑛 which is symmetric, we
obtain

P
⎛

⎜

⎜

⎜

⎝

sup
𝑢∈𝑝

⎛

⎜

⎜

⎜

⎝

√

𝑛𝑢⊤
(

�̄�𝑛 − �̄�𝑛
)

√

𝑢⊤𝑆𝑛𝑢

⎞

⎟

⎟

⎟

⎠

≥
√

𝑡

⎞

⎟

⎟

⎟

⎠

≤ 2𝑒3
9

𝐹𝑛 (𝑡) .

hus, applying Lemma 3 to the inequality above implies that, for all 𝑡 ≥ 2𝑛,

P

⎛

⎜

⎜

⎜

⎜

⎝

sup
𝑢∈𝑝

⎛

⎜

⎜

⎜

⎜

⎝

√

𝑛𝑢⊤�̄�𝑛
√

𝑢⊤
(

𝑆𝑛
(

𝜌1, 𝜌2
)

+ 𝛴𝑛

)

𝑢

⎞

⎟

⎟

⎟

⎟

⎠

≥
√

𝑡

⎞

⎟

⎟

⎟

⎟

⎠

≤ 2𝑒3
9

(

(𝑡 − 𝑛)
2

)𝑛∕2 𝑒−
(𝑡−𝑛)
2

𝛤
(

𝑛
2 + 1

) . (13)

inally by combining (9), (12) and (13), the result holds. □

roof of Theorem 4. The following lemmas will allow us to control explicitly the deviation P
[

|

|

|

|

1
�̂�∗𝑛

− 1
𝜌∗
|

|

|

|

> 𝜖
]

for small positive
values of 𝜖. □

Lemma 4 (Inversion). Let 𝑤 > 0, and consider
(

𝑊𝑛
)

𝑛≥1 a sequence of nonnegative random variables. Assume that there exists a positive
constant 𝖢3, such that ∀𝜖 > 0,∃𝑁 > 0,∀𝑛 > 𝑁 ,

P
(

|

|

𝑊𝑛 −𝑤|

|

> 𝜖
)

≤
𝖢3
𝑛

1
𝜖2

.

hen there exists a function 𝖢3;1∕𝑤 positive, such that ∀𝜖 > 0,∀𝑛 > 𝑁

P
(

|

|

|

|

1
𝑊𝑛

− 1
𝑤
|

|

|

|

> 𝜖
)

≤
𝖢3;1∕𝑤 (𝜖)

𝑛𝜖2
,

here 𝖢3;1∕𝑤 (𝜖) = 𝐶3
𝑤4

(

1 + (𝑤𝜖)2∕5
)5.

Proof of Lemma 4. Since 𝑤 > 0, we have

P
(

|

|

|

|

1
𝑊𝑛

− 1
𝑤
|

|

|

|

> 𝜖
𝑤

)

= P
(

|

|

|

|

𝑤
𝑊𝑛

− 1
|

|

|

|

> 𝜖
)

.

Now, ∀𝜂 ∈ ]0, 𝑤[ we get

P
(

|

|

|

|

1
𝑊𝑛

− 1
𝑤
|

|

|

|

> 𝜖
𝑤

)

≤

(I)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

P
(

|

|

|

|

𝑤
𝑊𝑛

− 1
|

|

|

|

> 𝜖, |
|

𝑊𝑛 −𝑤|

|

≤ 𝜂
)

+

(II)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
P
(

|

|

𝑊𝑛 −𝑤|

|

> 𝜂
)

.

On the interval [𝑤 − 𝜂;𝑤 + 𝜂], 𝑓 ∶ 𝑥 ↦ 𝑤
𝑥 is Lipschitz with |

|

𝑓 ′ (𝑥)|
|

≤ 𝑤
(𝑤−𝜂)2

, thus we obtain

∀𝑊𝑛 ∈ [𝑤 − 𝜂;𝑤 + 𝜂] ,
|

|

|

|

𝑤
𝑊𝑛

− 1
|

|

|

|

≤ 𝑤
(𝑤 − 𝜂)2

|

|

𝑊𝑛 −𝑤|

|

.

∀𝜂 ∈ ]0;𝑤[ , (I) ≤ P
(

𝑤
(𝑤 − 𝜂)2

|

|

𝑊𝑛 −𝑤|

|

> 𝜖
)

≤
𝖢3
𝑛

𝑤2

𝜖2 (𝑤 − 𝜂)4

nd since

∀𝜂 ∈ ]0;𝑤[ , (II) ≤
𝖢3
𝑛

1
𝜂2

,

t follows that

P
(

|

|

|

|

1
𝑊𝑛

− 1
𝑤
|

|

|

|

> 𝜖
𝑤

)

≤
𝖢3
𝑛

× 𝑤2

𝜖2 (𝑤 − 𝜂)4
+

𝖢3
𝑛

× 1
𝜂2

≤
𝖢3
𝑛

min
𝜂∈]0;𝑤[

⎧

⎪

⎨

⎪

⎩

𝑤2

𝜖2
(

1 − 𝜂
𝑤

)4
𝑤4

+ 1

𝑤2
(

𝜂
𝑤

)2

⎫

⎪

⎬

⎪

⎭

𝛼= 𝜂
𝑤

≤
𝖢3

𝑛𝑤2
min

𝛼∈]0;1[

{

1
𝜖2 (1 − 𝛼)4

+ 1
𝛼2

}

≤
𝖢3

𝑛𝑤2
min

𝛼∈]0;1[

{

1
𝜖2 (1 − 𝛼)4

+ 1
𝛼4

}

≤
𝖢3

𝑛𝑤2

(

1 + 𝜖−2∕5
)5 .

Setting 𝜖⊤ = 𝜖 and 𝖢
(

𝜖′
)

= 𝜖′2 × 𝖢3
(

1 +
(

𝑤𝜖′
)−2∕5

)5
= 𝐶3

(

1 +
(

𝑤𝜖′
)2∕5

)5
, the result holds. □
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Lemma 5. Consider 𝑢, 𝑣 two positive scalars, and (𝑈𝑛), (𝑉𝑛) some random sequences. Assume that there exists positive constants �̃�4 and
�̆�4 such that ∀𝜖 > 0,∀𝑛 ≥ 1:

P
(

|

|

𝑈𝑛 − 𝑢|
|

> 𝜖
)

≤
�̃�4
𝑛

1
𝜖2

, P
(

|

|

𝑉𝑛 − 𝑣|
|

> 𝜖
)

≤
�̆�4
𝑛

1
𝜖2

.

Then there exists a function 𝖢4;𝑢𝑣 such that ∀𝜖 > 0,

P
(

|

|

𝑈𝑛𝑉𝑛 − 𝑢𝑣|
|

> 𝜖
)

≤
𝖢4;𝑢𝑣 (𝜖)

𝑛
1
𝜖2

,

here 𝖢4;𝑢𝑣 (𝜖) = �̃�4

(

2𝑢𝑣+𝜖
𝑢

)2
+ �̆�4 (2𝑢)

2 is a positive function of 𝜖 depending on 𝑢, 𝑣, �̃�4 and �̆�4.

Proof of Lemma 5. By straightforward inequalities, we get for any 𝜖 > 0,

P
(

|

|

𝑈𝑛𝑉𝑛 − 𝑢𝑣|
|

> 𝜖
)

= P
(

|

|

𝑈𝑛𝑉𝑛 − 𝑢𝑉𝑛 + 𝑢𝑉𝑛 − 𝑢𝑣|
|

> 𝜖
)

≤ P
(

𝑉𝑛 ||𝑈𝑛 − 𝑢|
|

> 𝜖
2
, 𝑢 |

|

𝑉𝑛 − 𝑣|
|

≤ 𝜖
2

)

+ P
(

𝑢 |
|

𝑉𝑛 − 𝑣|
|

> 𝜖
2

)

≤ P
((

𝑣 + 𝜖
2𝑢

)

|

|

𝑈𝑛 − 𝑢|
|

> 𝜖
2

)

+ P
(

|

|

𝑉𝑛 − 𝑣|
|

> 𝜖
2𝑢

)

≤ P
(

|

|

𝑈𝑛 − 𝑢|
|

> 𝜖𝑢
2𝑢𝑣 + 𝜖

)

+ P
(

|

|

𝑉𝑛 − 𝑣|
|

> 𝜖
2𝑢

)

≤
�̃�4
𝑛

( 2𝑢𝑣 + 𝜖
𝜖𝑢

)2
+

�̆�4
𝑛

( 2𝑢
𝜖

)2
≤

𝖢4;𝑢𝑣 (𝜖)
𝑛

1
𝜖2

. □

Lemma 6 (Proximity Between 𝜎2, 𝛼2, 𝛽2, 𝛿2 and Their Estimators). Let 𝑢2 ∈
{

𝜎2, 𝛼2, 𝛽2, 𝛿2
}

be one of these quantities of interest and �̂�2𝑛
its corresponding estimator. Then ∀𝑛 ≥ 1 and ∀𝜖 > 0, we have:

P
(

|

|

|

�̂�2𝑛 − 𝑢2||
|

> 𝜖
)

≤
𝐶𝑢2 (𝜖)
𝑛𝜖2

,

ith

• 𝐶𝜎2 =
√

𝐾2 for the case where 𝑢2 = 𝜎2 and �̂�2𝑛 = 𝜎2𝑛 ,
• 𝐶𝛿2 = 2𝐾4 + (100 +𝐾2

1 )𝐾2 + 24
√

6𝐾5∕4
2 + 4𝐾3∕2

2 + 223𝐾2
2 + 4𝐾1∕2

2

(

𝐾1∕4
2 + 2

√

6
)√

𝐾2
1𝐾2 + 4𝐾2

(

1 + 3𝐾2
)

+ 2𝐾4 for the case where
𝑢2 = 𝛿2 and �̂�2𝑛 = 𝛿2𝑛 ,

• 𝐶𝛽2 (𝜖) = 4𝐾2
1

√

𝐾2 + 𝖢𝛿2 + 2𝐾1
√

𝐾2 𝜖 for the case where 𝑢2 = 𝛽2 and �̂�2𝑛 = 𝛽2𝑛 ,
• 𝐶𝛼2 (𝜖) = 23𝖢𝛿2 + 24𝐾2

1

√

𝐾2 + 22𝐾1
√

𝐾2 𝜖. for the case where 𝑢2 = 𝛼2 and �̂�2𝑛 = 𝛼2𝑛 .

Proof of Lemma 6. Consider �̂�2𝑛 and 𝜎2. Recall that �̂�2𝑛 = 1
𝑝
∑𝑝

𝑗=1

(

1
𝑛
∑𝑛

𝑖=1 𝑦
2
𝑖𝑗

)

and 𝜎2 = 1
𝑝
∑𝑝

𝑗=1 E
[

𝑦21𝑗
]

= 1
𝑝
∑𝑝

𝑗=1 𝜇𝑗 .
Following the ideas of Ledoit and Wolf [19] who obtain the convergence of the fourth order moment, we rather control the

econd order moment as follows:

E
[

(

�̂�2𝑛 − 𝜎2
)2] = E

⎡

⎢

⎢

⎣

(

1
𝑝

𝑝
∑

𝑗=1

1
𝑛

𝑛
∑

𝑖=1

(

𝑦2𝑖𝑗 − 𝜇𝑗
)

)2
⎤

⎥

⎥

⎦

= E
⎡

⎢

⎢

⎣

(

1
𝑛

𝑛
∑

𝑖=1

1
𝑝

𝑝
∑

𝑗=1

(

𝑦2𝑖𝑗 − 𝜇𝑗
)

)2
⎤

⎥

⎥

⎦

= 1
𝑛2

𝑛
∑

𝑖1=1

𝑛
∑

𝑖2=1
E

[

1
𝑝

𝑝
∑

𝑗=1

(

𝑦2𝑖1𝑗 − 𝜇𝑗
)

× 1
𝑝

𝑝
∑

𝑗=1

(

𝑦2𝑖2𝑗 − 𝜇𝑗
)

]

.

This last expression is equal to zero for any 𝑖1 ≠ 𝑖2 because of the independence between observations. Thus we get

E
[

(

�̂�2𝑛 − 𝜎2
)2] = 1

𝑛2

𝑛
∑

𝑖=1
E
⎡

⎢

⎢

⎣

(

1
𝑝

𝑝
∑

𝑗=1

(

𝑦21𝑗 − 𝜇𝑗
)

)2
⎤

⎥

⎥

⎦

= 1
𝑛
E
⎡

⎢

⎢

⎣

(

1
𝑝

𝑝
∑

𝑗=1

(

𝑦21𝑗 − 𝜇𝑗
)

)2
⎤

⎥

⎥

⎦

= 1
𝑛

⎛

⎜

⎜

⎝

E
⎡

⎢

⎢

⎣

(

1
𝑝

𝑝
∑

𝑗=1
𝑦21𝑗

)2
⎤

⎥

⎥

⎦

−

(

E

[

1
𝑝

𝑝
∑

𝑗=1
𝑦21𝑗

])2
⎞

⎟

⎟

⎠

≤ 1
𝑛
E
⎡

⎢

⎢

⎣

(

1
𝑝

𝑝
∑

𝑗=1
𝑦21𝑗

)2
⎤

⎥

⎥

⎦

≤ 1
𝑛

⎛

⎜

⎜

⎝

E
⎡

⎢

⎢

⎣

(

1
𝑝

𝑝
∑

𝑗=1
𝑦21𝑗

)4
⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

1∕2

≤ 1
𝑛

(

1
𝑝

𝑝
∑

𝑗=1
E
[

𝑦81𝑗
]

)1∕2

.

Therefore, using the second assumption 𝐴2, one gets

E
[

(

�̂�2𝑛 − 𝜎2
)2] ≤

√

𝐾2

𝑛
. (14)

Finally, we have by Markov inequality the bound

∀𝜖 > 0, P
[

|

|

|

�̂�2𝑛 − 𝜎2||
|

> 𝜖
]

≤
E
[

(

�̂�2𝑛 − 𝜎2
)2
]

𝜖2
≤

√

𝐾2

𝑛𝜖2
.

Consider 𝛿2𝑛 and 𝛿2. Combining the expressions (A.2) and (A.3) on page 394 in Ledoit and Wolf [19], we get

𝛿2 − 𝛿2 =
(

�̂�2 − 𝜎2
)2 − 2𝜎2

(

�̂�2 − 𝜎2
)

+ ‖𝑆 ‖

2 − E
(

‖𝑆 ‖

2
)

.
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Similarly using their expressions, (A.4) from page 394 to page 399, and (A.1) on page 390, we have respectively the inequalities

Var
(

‖

‖

𝑆𝑛
‖

‖

2
)

≤ 1
𝑛
(

𝐾2
1𝐾2 + 4𝐾2

(

1 + 3𝐾2
)

+ 2𝐾4
)

, 𝜎2 ≤
√

𝐾2.

Combining these expressions with Bienaymé-Tchebychev, Markov and Cauchy-Schwartz inequalities, we obtain a control of
P
(

|

|

|

𝛿2𝑛 − 𝛿2||
|

> 𝜖
)

by a function of 𝑛, 𝜖, 𝐴2, 𝐴4 and Var(‖𝑆𝑛‖
2) where 𝐴𝑘 = E

(

|

|

|

�̂�2𝑛 − 𝜎2||
|

𝑘
)

. Indeed we have, by Markov inequality, for
all 𝜖 > 0,

P
(

|

|

|

𝛿2𝑛 − 𝛿2||
|

> 𝜖
)

≤ 1
𝜖2

{

E
[

(

�̂�2𝑛 − 𝜎2
)4] + 4𝜎4E

[

(

�̂�2𝑛 − 𝜎2
)2] + E

[

(

‖

‖

𝑆𝑛
‖

‖

2 − E‖
‖

𝑆𝑛
‖

‖

2
)2

]

+ 4𝜎2E
[

|

|

|

�̂�2𝑛 − 𝜎2||
|

3
]

+4𝜎2E
[

|

|

|

�̂�2𝑛 − 𝜎2||
|

(

‖

‖

𝑆𝑛
‖

‖

2 − E
(

‖

‖

𝑆𝑛
‖

‖

2
))]

+ 2E
[

(

�̂�2𝑛 − 𝜎2
)2 |

|

|

|

‖

‖

𝑆𝑛
‖

‖

2 − E
(

‖

‖

𝑆𝑛
‖

‖

2
)

|

|

|

|

]}

≤ 1
𝜖2

{

𝐴4 + 4𝜎4𝐴2 + Var
(

‖

‖

𝑆𝑛
‖

‖

2
)

+ 4𝜎2
√

𝐴2𝐴4 + 4𝜎2
√

𝐴2Var
(

‖

‖

𝑆𝑛
‖

‖

2
)

+ 2
√

𝐴4Var
(

‖

‖

𝑆𝑛
‖

‖

2
)

}

.

Now by some previous controls established by Ledoit and Wolf (2004) [19] (page 394), we have

𝐴4 ≤
96𝐾2
𝑛

; Var
(

‖

‖

𝑆𝑛
‖

‖

2
)

≤ 1
𝑛
(

𝐾2
1𝐾2 + 4𝐾2

(

1 + 3𝐾2
)

+ 2𝐾4
)

= 1
𝑛
𝐾 and 𝜎2 ≤

√

𝐾2.

Using the control stated in inequality (14), 𝐴2 ≤
√

𝐾2∕𝑛, we can easily get the explicit constant 𝐶𝛿2 as a function of 𝐾1, 𝐾2,
and 𝐾4. For all 𝜖 > 0, for all 𝑛 ∈ N∗, we have

P
(

|

|

|

𝛿2𝑛 − 𝛿2||
|

> 𝜖
)

≤ 1
𝑛𝜖2

[

96𝐾2 + 4𝐾2𝐾
1∕2
2 +𝐾 + 4𝐾1∕2

2

√

96𝐾1∕2
2 𝐾2 + 4𝐾1∕2

2

√

𝐾1∕2
2 𝐾 + 2

√

96𝐾2𝐾
]

≤ 1
𝑛𝜖2

{

2𝐾4 + (100 +𝐾2
1 )𝐾2 + 24

√

6𝐾5∕4
2 + 4𝐾3∕2

2 + 223𝐾2
2 + 4𝐾1∕2

2

(

𝐾1∕4
2 + 2

√

6
)
√

𝐾2
1𝐾2 + 4𝐾2

(

1 + 3𝐾2
)

+ 2𝐾4

}

≤
𝖢𝛿2

𝑛𝜖2
.

Consider 𝛽2𝑛 and 𝛽2. Since 𝛿2 = 𝛼2 + 𝛽2 yielding 𝛿2 ≥ 𝛽2, Ledoit and Wolf [19] showed (proof of Lemma 3.4 page 401, lines from
−12 to −6) that

−max
(

⏐ 𝛽2𝑛 − 𝛽2 ⏐, ⏐ 𝛿2𝑛 − 𝛿2 ⏐
)

≤ 𝛽2𝑛 − 𝛽2 ≤⏐ 𝛽2𝑛 − 𝛽2 ⏐ .

From this we deduce

⏐ 𝛽2𝑛 − 𝛽2 ⏐≤ max
{

max
(

⏐ 𝛽2𝑛 − 𝛽2 ⏐, ⏐ 𝛿2𝑛 − 𝛿2 ⏐
)

, ⏐ 𝛽2𝑛 − 𝛽2 ⏐
}

≤ max
(

⏐ 𝛽2𝑛 − 𝛽2 ⏐, ⏐ 𝛿2𝑛 − 𝛿2 ⏐
)

.

Controlling ⏐ 𝛽2𝑛 − 𝛽2 ⏐ leads to a control for ⏐ 𝛿2𝑛 − 𝛿2 ⏐ and ⏐ 𝛽2𝑛 − 𝛽2 ⏐. By the same arguments as in Ledoit and Wolf [19] (proof
of Lemma 3.4, page 399, equation (A.7)), we have the following expression

𝛽2𝑛 − 𝛽2 = 1
𝑛
‖𝑆𝑛 − 𝛴𝑛‖

2 +

(

1
𝑛2

𝑛
∑

𝑖=1
‖𝑍𝑖𝑍

′
𝑖 − 𝛴𝑛‖

2 − E

[

1
𝑛2

𝑛
∑

𝑖=1
‖𝑍𝑖𝑍

′
𝑖 − 𝛴𝑛‖

2

])

.

ow, splitting the probability into two terms, on the one hand, using Markov inequality on the first term and applying Bienaymé-
chebychev inequality to the second term, we get for all 𝜖 > 0,

P
(

⏐ 𝛽2𝑛 − 𝛽2 ⏐> 𝜖
)

≤ 2
𝜖
E
( 1
𝑛
‖𝑆𝑛 − 𝛴𝑛‖

2
)

+ 4
𝜖2

Var

(

1
𝑛2

𝑛
∑

𝑖=1
‖𝑍𝑖𝑍

′
𝑖 − 𝛴𝑛‖

2

)

.

ollowing Ledoit and Wolf [19] (proof of Lemma 3.1 page 391 line +5), we have

E
(

‖

‖

𝑆𝑛 − 𝛴𝑛
‖

‖

2
)

≤ 𝐾1
√

𝐾2.

oreover, we have by Ledoit and Wolf [19] (in the proof of Lemma 3.4, page 401 line +3)

Var

(

1
𝑛2

𝑛
∑

𝑖=1

‖

‖

‖

𝑍𝑖𝑍
⊤
𝑖 − 𝛴𝑛

‖

‖

‖

2
)

≤ 𝐾2
1

√

𝐾2∕𝑛.

e obtain for any 𝜖 > 0,

P
(

|

|

|

𝛽2𝑛 − 𝛽2||
|

> 𝜖
)

≤ 2
𝜖
𝐾1

√

𝐾2

𝑛
+ 4

𝜖2
𝐾2

1

√

𝐾2

𝑛
.

Finally, with P
(

|

|

|

𝛿2𝑛 − 𝛿2||
|

> 𝜖
)

≤
𝐶𝛿2
𝑛𝜖2

and

P
(

|

|

|

𝛽2𝑛 − 𝛽2||
|

> 𝜖
)

≤ P
(

|

|

|

𝛽2𝑛 − 𝛽2||
|

> 𝜖
)

+ P
(

|

|

|

𝛿2𝑛 − 𝛿2||
|

> 𝜖
)

,

we obtain for any 𝜖 > 0,

P
(

|

|𝛽2 − 𝛽2|| > 𝜖
)

≤ 1 (

4𝐾2√𝐾 + 𝖢 2 + 2𝐾
√

𝐾 𝜖
)

≤
𝐶𝛽2 (𝜖) .
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)

.

Remark that 𝐶𝛽2 (𝜖) tends to 4𝐾2
1

√

𝐾2 +𝖢𝛿2 when 𝜖 tends to 0. Consider �̂�2𝑛 and 𝛼2. Since we have �̂�2𝑛 = 𝛿2𝑛 − 𝛽2𝑛 and 𝛼2 + 𝛽2 = 𝛿2, one
an easily see that �̂�2𝑛 − 𝛼2 = 𝛿2𝑛 − 𝛽2𝑛 − 𝛿2 + 𝛽2. For all 𝜖 > 0, we get

P
(

|

|

|

�̂�2𝑛 − 𝛼2||
|

> 𝜖
)

≤ P
(

|

|

|

𝛿2𝑛 − 𝛿2||
|

> 𝜖
2

)

+ P
(

|

|

|

𝛽2𝑛 − 𝛽2||
|

> 𝜖
2

)

≤
22𝖢𝛿2

𝑛𝜖2
+

22𝖢𝛽2 (𝜖∕2)

𝑛𝜖2
≤ 1

𝑛𝜖2
(

23𝖢𝛿2 + 24𝐾2
1

√

𝐾2 + 22𝐾1
√

𝐾2 𝜖
)

≤
𝐶𝛼2 (𝜖)
𝑛𝜖2

.

emark that 𝐶𝛼2 (𝜖) tends to 23𝖢𝛿2 + 24𝐾2
1

√

𝐾2 when 𝜖 tends to 0. □

In the next lemma, we control the proximity between 1∕�̂�∗𝑛 and 1∕𝜌∗, that we denote 𝑔𝑛 (𝜖) and show that it is of order 𝑂 (1∕𝑛).
or this, we first apply product Lemma 5 to 𝛽2𝑛 and �̂�2𝑛 . Then, we apply the inverse Lemma 4 to 𝛽2𝑛 �̂�

2
𝑛 . Finally, we use another time

roduct Lemma 5 applied to �̂�2𝑛 and 1∕𝛽2𝑛 �̂�
2
𝑛 .

emma 7 (Proximity Between 1∕𝜌∗ and 1∕�̂�∗𝑛).
For any 𝜖 > 0, we have

𝑔𝑛 (𝜖) = P

(

|

|

|

|

|

1
�̂�∗𝑛

− 1
𝜌∗

|

|

|

|

|

> 𝜖

)

≤ 𝖦(𝜖)
𝑛𝜖2

with 𝐶𝛽2 and 𝖢𝛼2 defined in Lemma 6 and

𝖦(𝜖) = 𝖢3;1∕𝛽2𝜎2 (𝜖)
(

2𝛼2 + 𝜖𝛽2𝜎2
)2 +

22𝖢𝛼2 (𝜖)
𝛽4𝜎4

𝖢3;1∕𝛽2𝜎2 (𝜖) =

[

𝐾1∕2
2

(

2𝜎2𝛽2 + 𝜖
)2

𝛽8𝜎12
+

22𝖢𝛽2 (𝜖)

𝛽8𝜎4

]

(

1 +
(

𝛽2𝜎2𝜖
)2∕5)5

.

Remark 6. the function 𝖢3;1∕𝛽2𝜎2 (𝜖) may be clearly bounded by a polynomial of degree 4 in 𝜖. As a consequence, the function 𝐺(𝜖)
may be bounded by a polynomial of degree 6.

Proof of Lemma 7. We apply the product Lemma 5 to obtain a control for 𝛽2𝑛 �̂�
2
𝑛 thanks to Lemma 6 which gives us some control

of �̂�2𝑛 and 𝛽2𝑛 . For all 𝜖 > 0, one gets

P
(

|

|

|

𝛽2𝑛 �̂�
2
𝑛 − 𝛽2𝜎2||

|

> 𝜖
)

≤
𝐶4;𝛽2𝜎2 (𝜖)

𝑛𝜖2
, (15)

with

𝐶4;𝜎2𝛽2 (𝜖) = 𝐾1∕2
2

(

2𝜎2𝛽2 + 𝜖
𝜎2

)2

+ 𝐶𝛽2 (𝜖)
(

2𝜎2
)2 .

We now apply the inverse Lemma 4 with inequality (15) to obtain a control of 1∕𝛽2𝑛 �̂�2𝑛 . That is, for all 𝜖 > 0, we have

P

(

|

|

|

|

|

1
𝛽2𝑛 �̂�2𝑛

− 1
𝛽2𝜎2

|

|

|

|

|

> 𝜖

)

≤
𝐶3;1∕𝛽2𝜎2 (𝜖)

𝑛𝜖2
,

ith 𝖢3;1∕𝛽2𝜎2 defined by 𝖢3;1∕𝛽2𝜎2 (𝜖) =
𝖢4;𝛽2𝜎2 (𝜖)

𝛽8𝜎8

(

1 +
(

𝛽2𝜎2𝜖
)2∕5

)5
. Applying the product Lemma 5 with 𝑢 = 1∕(𝛽2𝜎2) and 𝑣 = 𝛼2,

e obtain for all 𝜖 > 0,

𝖢4;1∕𝜌∗ (𝜖) = 𝖢3;1∕𝛽2𝜎2 (𝜖)
(

2𝛼2 + 𝜖𝛽2𝜎2
)2 + 𝖢𝛼2 (𝜖)

22

𝛽4𝜎4
.

emark that when 𝜖 tends to 0, 𝖢4;1∕𝜌∗ tends to
24𝛼4𝐾1∕2

2
𝛽4𝜎8

+
26𝛼4

(

22𝐾2
1
√

𝐾2+𝖢𝛿2
)

𝛽8𝜎4
+

25
(

2𝐾2
1
√

𝐾2+𝖢𝛿2
)

𝛽4𝜎4
□

Proof of Theorem 4. Recall that �̂�∗𝑛 = 1 + 𝐾3
�̂�∗𝑛

and 𝑎∗ = 1 + 𝐾3
𝜌∗ . For any 𝑢 ≥ 2𝑛, we have for 𝜖 > 0

P
(

𝑛�̄�⊤
𝑛 �̂�

∗−1
𝑛 �̄�𝑛 ≥ 𝑢

(

1 + �̂�∗𝑛 + 2𝜖
))

≤ P
(

𝑛�̄�⊤
𝑛 �̂�

∗−1
𝑛 �̄�𝑛 ≥ 𝑢

(

1 + 𝑎∗ + 𝜖
))

+ P
(

|

|

�̂�𝑛 − 𝑎∗|
|

≥ 𝜖
)

≤ (I) + (II). (16)

We start by establishing a control for (I). Define 𝛥𝑛 = 𝑛�̄�⊤
𝑛
(

�̂�∗−1
𝑛 − 𝑆∗−1

𝑛
)

�̄�𝑛, then we have (I) = P
(

𝑛�̄�⊤
𝑛 𝑆

∗−1
𝑛 �̄�𝑛 + 𝛥𝑛 ≥ 𝑢 (1 + 𝑎∗ + 𝜖)

Since 𝑢 ≥ 2𝑛 > 𝑛, we have

(I) ≤ P
(

𝑛�̄�⊤
𝑛 𝑆

∗−1
𝑛 �̄�𝑛 + 𝛥𝑛 ≥ 𝑢

(

1 + 𝑎∗ + 𝜖
)

, |
|

𝛥𝑛
|

|

≤ 𝜖𝑛
)

+ P
(

|

|

𝛥𝑛
|

|

> 𝜖𝑛
)

≤ P
(

𝑛�̄�⊤
𝑛 𝑆

∗−1
𝑛 �̄�𝑛 ≥ 𝑢

(

1 + 𝑎∗ + 𝜖
)

− 𝜖𝑛
)

+ P
(

|

|

𝛥𝑛
|

|

> 𝜖𝑛
)

≤ P
(

𝑛�̄�⊤
𝑛 𝑆

∗−1
𝑛 �̄�𝑛 ≥ 𝑢

(

1 + 𝑎∗
))

+ P
(

|

|

𝛥𝑛
|

|

> 𝜖𝑛
)

. (17)

Theorem 3 gives us an exponential bound controlling the first term of the right hand of inequality (17) when 𝑎 = 𝑎∗ and 𝑢 ≥ 2𝑛.
19
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𝑂

L
W

F

F

Now use the following matrix factorization 𝐴−1−𝐵−1 = 𝐴−1 (𝐵 − 𝐴)𝐵−1 to control the second term in the right hand of inequality
17) with 𝐴 = �̂�∗

𝑛 and 𝐵 = 𝛴∗2
𝑛 . It is easy to see that 𝐵 − 𝐴 =

(

𝜌∗ − �̂�∗𝑛
)

𝐼𝑝, then we obtain

𝛥𝑛 = 𝑇 𝑟(𝛥𝑛) = 𝑇 𝑟
(

𝑛�̄�⊤
𝑛
(

�̂�∗−1
𝑛 − 𝑆∗−1

𝑛
)

�̄�𝑛
)

= 𝑛
(

𝜌∗ − �̂�∗𝑛
)

𝑇 𝑟
(

�̄�⊤
𝑛 �̂�

∗−1
𝑛 𝑆∗−1

𝑛 �̄�𝑛
)

.

ecall that 𝑆∗
𝑛 = 𝑆𝑛 + 𝜌∗𝐼𝑝 = 𝑂𝑛𝛬𝑛𝑂⊤

𝑛 + 𝜌∗𝐼𝑝 = 𝑂𝑛
(

𝛬𝑛 + 𝜌∗𝐼𝑝
)

𝑂′
𝑛, then using the same rotation matrix 𝑂𝑛, we obtain �̂�∗−1

𝑛 𝑆∗−1
𝑛 =

𝑛𝐷𝑂′
𝑛, with 𝐷 = diag

(

1
(𝜆1+𝜌∗)(𝜆1+�̂�∗𝑛)

,… , 1
(𝜆𝑛+𝜌∗)(𝜆𝑛+�̂�∗𝑛)

, 1
𝜌∗ �̂�∗𝑛

,… , 1
𝜌∗ �̂�∗𝑛

)

where diag is a diagonal matrix. It follows that

𝛥𝑛 = 𝑛
(

𝜌∗ − �̂�∗𝑛
)

𝑇 𝑟
(

�̄�⊤
𝑛 𝑂𝑛𝐷

1
2 𝐷

1
2 𝑂′

𝑛�̄�𝑛

)

=
(

𝜌∗ − �̂�∗𝑛
)

𝑇 𝑟
(

(

𝐷
1
2 𝑛

1
2 𝑂′

𝑛�̄�𝑛

)′ (
𝐷

1
2 𝑛

1
2 𝑂′

𝑛�̄�𝑛

)

)

=
(

𝜌∗ − �̂�∗𝑛
) ‖

‖

‖

‖

𝐷
1
2 𝑛

1
2 𝑌𝑛

‖

‖

‖

‖

2

2
.

Since, for any 𝑥 in R𝑝, ‖𝐷
1
2 𝑥‖22 ≤

1
𝜌∗ �̂�∗𝑛

‖𝑥‖22, and because we have ‖𝑥‖22 = 𝑝‖𝑥‖2, we get

|

|

𝛥𝑛
|

|

≤
|

|

𝜌∗ − �̂�∗𝑛||
𝜌∗�̂�∗𝑛

‖

‖

‖

‖

𝑛
1
2 𝑌𝑛

‖

‖

‖

‖

2

2
≤
|

|

|

|

|

1
𝜌∗

− 1
�̂�∗𝑛

|

|

|

|

|

𝑝
‖

‖

‖

‖

𝑛
1
2 𝑌𝑛

‖

‖

‖

‖

2
.

emma 7 gives a control of the first term on the right-hand side of this inequality so that it is sufficient to control the second term.
rite

‖

‖

‖

‖

𝑛
1
2 𝑌𝑛

‖

‖

‖

‖

2
= 1

𝑝𝑛

𝑝
∑

𝑗=1

( 𝑛
∑

𝑖=1
𝑌𝑖,𝑗

)2

=

I1
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

1
𝑝𝑛

𝑝
∑

𝑗=1

𝑛
∑

𝑖=1
𝑌 2
𝑖,𝑗 +

I2
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

1
𝑝𝑛

𝑝
∑

𝑗=1

𝑛
∑

𝑖=1

𝑛
∑

𝑖′=1
𝑖′≠𝑖

𝑌𝑖,𝑗𝑌𝑖′ ,𝑗

Since E
(

I1
)

= E
(

1
𝑝𝑛

∑𝑝
𝑗=1

∑𝑛
𝑖=1 𝑌

2
𝑖,𝑗

)

= 𝜎2, use Bienaymé-Tchebychev inequality and the independence of the 𝑌𝑖’s to get for 𝜖 > 0,

P

(

1
𝑝𝑛

𝑝
∑

𝑗=1

𝑛
∑

𝑖=1
𝑌 2
𝑖,𝑗 − 𝜎2 > 𝜖

2

)

≤ P

(

|

|

|

|

|

|

1
𝑝𝑛

𝑝
∑

𝑗=1

𝑛
∑

𝑖=1
𝑌 2
𝑖,𝑗 − 𝜎2

|

|

|

|

|

|

> 𝜖
2

)

≤ 4
𝜖2

Var

(

1
𝑝𝑛

𝑝
∑

𝑗=1

𝑛
∑

𝑖=1
𝑌 2
𝑖,𝑗

)

≤ 4
𝜖2

1
𝑛𝑝2

E
⎛

⎜

⎜

⎝

( 𝑝
∑

𝑗=1
𝑌 2
1,𝑗

)2
⎞

⎟

⎟

⎠

. (18)

Then, by Assumption 𝐴2, we have E
(

1
𝑝
∑𝑝

𝑗=1 𝑌
4
1,𝑗

)

≤
√

𝐾2. Then, by Cauchy-Schwartz inequality, we obtain

1
𝑛𝑝2

E
⎛

⎜

⎜

⎝

( 𝑝
∑

𝑗=1
𝑌 2
1,𝑗

)2
⎞

⎟

⎟

⎠

≤ 1
𝑛𝑝

E

(

1
𝑝

𝑝
∑

𝑗=1
𝑌 4
1,𝑗

)

+ 1
𝑛𝑝2

𝑝
∑

𝑗=1

𝑝
∑

𝑘=1
𝑘≠𝑗

E
(

𝑌 2
1,𝑗𝑌

2
1,𝑘

)

≤ 1
𝑛𝑝

√

𝐾2 +
1
𝑛𝑝2

𝑝
∑

𝑗=1

𝑝
∑

𝑘=1
𝑘≠𝑗

√

E
(

𝑌 4
1,𝑗

)

√

E
(

𝑌 4
1,𝑘

)

≤ 1
𝑛𝑝

√

𝐾2 +
1
𝑛

(

1
𝑝

𝑝
∑

𝑗=1

√

E
(

𝑌 4
1,𝑗

)

)2

≤ 1
𝑛𝑝

√

𝐾2 +
1
𝑛
E

(

1
𝑝

𝑝
∑

𝑗=1
𝑌 4
1,𝑗

)

≤ 1
𝑛
√

𝐾2

(

1
𝑝
+ 1

)

. (19)

inally, combining inequalities (18), (19), we get the following control for I1, for 𝜂 > 0

P
(

I1 − E(I1) >
𝜂
2

)

≤ 4
𝜂2

1
𝑛
√

𝐾2

(

1
𝑝
+ 1

)

. (20)

Now, we focus on I2. Using the independence between the observations 𝑌𝑖’s, we have

E
(

I2
)

= E

(

1
𝑝𝑛

∑𝑝
𝑗=1

∑𝑛
𝑖=1

∑𝑛
𝑖′=1
𝑖′≠𝑖

𝑌𝑖,𝑗𝑌𝑖′ ,𝑗

)

= 0. By Bienaymé-Tchebychev inequality, we have, for 𝜂 > 0

P
(

I2 >
𝜂
2

)

≤ 4
𝜂2

E
⎡

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎜

⎝

1
𝑝

𝑝
∑

𝑗=1

1
𝑛

𝑛
∑

𝑖=1

𝑛
∑

𝑖′=1
𝑖′≠𝑖

𝑌𝑖,𝑗𝑌𝑖′ ,𝑗

⎞

⎟

⎟

⎟

⎠

2
⎤

⎥

⎥

⎥

⎦

. (21)

urthermore, since 1
𝑛 = (𝑛−1)2

4

(

2
𝑛(𝑛−1)

)2
, we can express the expectation above as the expectation of a U-statistic

E
⎡

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎜

⎝

1
𝑝

𝑝
∑

𝑗=1

1
𝑛

𝑛
∑

𝑖=1

𝑛
∑

𝑖′=1
𝑖′≠𝑖

𝑌𝑖,𝑗𝑌𝑖′ ,𝑗

⎞

⎟

⎟

⎟

⎠

2
⎤

⎥

⎥

⎥

⎦

=
(𝑛 − 1)2

4
E
⎡

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎜

⎝

2
𝑛(𝑛 − 1)

𝑛
∑

𝑖=1

𝑛
∑

𝑖′=1
𝑖′≠𝑖

1
𝑝

𝑝
∑

𝑗=1
𝑌𝑖,𝑗𝑌𝑖′ ,𝑗

⎞

⎟

⎟

⎟

⎠

2
⎤

⎥

⎥

⎥

⎦

.

More precisely, this is a U-statistic of degree 2 with kernel 𝑤
(

𝑌𝑖, 𝑌𝑖′
)

= 1
𝑝
∑𝑝

𝑗=1 𝑌𝑖,𝑗𝑌𝑖′ ,𝑗 , with E
[

𝑤
(

𝑌𝑖, 𝑌𝑖′
)]

= 0 and degenerated

gradients E
[

𝑤
(

𝑌𝑖, 𝑌𝑖′
)

|

|

|

𝑌𝑖
]

= 0 and E
[

𝑤
(

𝑌𝑖, 𝑌𝑖′
)

|

|

|

𝑌𝑖′
]

= 0. Using the expression of the variance of this U-statistic as given in Lee
(2019) [21], it follows that

E
⎡

⎢

⎢

⎢

⎛

⎜

⎜

⎜

1
𝑝

𝑝
∑

𝑗=1

1
𝑛

𝑛
∑

𝑖=1

𝑛
∑

𝑖′=1
𝑌𝑖,𝑗𝑌𝑖′ ,𝑗

⎞

⎟

⎟

⎟

2
⎤

⎥

⎥

⎥

=
(𝑛 − 1)2

4
1

𝑛(𝑛−1)
2

(

𝑛 − 2
0

)

Var
(

𝑤
(

𝑌𝑖, 𝑌𝑖′
))

= 𝑛 − 1
2𝑛

E
⎡

⎢

⎢

⎣

(

1
𝑝

𝑝
∑

𝑗=1
𝑌1,𝑗𝑌2,𝑗

)2
⎤

⎥

⎥

⎦

. (22)
20

⎣⎝ 𝑖′≠𝑖 ⎠ ⎦



Journal of Multivariate Analysis 203 (2024) 105342E.M. Issouani et al.

a

w

Now, we have by independence E
[

(

1
𝑝
∑𝑝

𝑗=1 𝑌1,𝑗𝑌2,𝑗
)2

]

= E
[

1
𝑝2

∑𝑝
𝑗=1

∑𝑝
𝑘=1 𝑌1,𝑗𝑌2,𝑗𝑌1,𝑘𝑌2,𝑘

]

= 1
𝑝2

∑𝑝
𝑗=1

∑𝑝
𝑘=1

[

E
(

𝑌1,𝑗𝑌1,𝑘
)]2. Recall

that E
[

𝑌1,𝑗𝑌1,𝑘
]

= 0 if 𝑗 ≠ 𝑘. By using Hölder inequalities repetitively and by Assumption 𝐴2, we have 1
𝑝
∑𝑝

𝑗=1

[

E
(

𝑌 2
1,𝑗

)]2
≤

(

1
𝑝
∑𝑝

𝑗=1 E
(

𝑌 8
1,𝑗

))
1
2 ≤ 𝐾

1
2
2 , yielding

E
⎡

⎢

⎢

⎣

(

1
𝑝

𝑝
∑

𝑗=1
𝑌1,𝑗𝑌2,𝑗

)2
⎤

⎥

⎥

⎦

≤ 1
𝑝
√

𝐾2. (23)

Finally, combining Eqs. (21), (22) and (23), we obtain a control for I2 as follows

P
(

I2 >
𝜂
2

)

= P
⎛

⎜

⎜

⎜

⎝

1
𝑝𝑛

𝑝
∑

𝑗=1

𝑛
∑

𝑖=1

𝑛
∑

𝑖′=1
𝑖′≠𝑖

𝑌𝑖,𝑗𝑌𝑖′ ,𝑗 >
𝜂
2

⎞

⎟

⎟

⎟

⎠

≤ 1
𝜂2

2(𝑛 − 1)
𝑝𝑛

√

𝐾2. (24)

Finally, Assumption 𝐴1 implies

P
(

|

|

𝛥𝑛
|

|

> 𝜖𝑛
)

= P

(

𝑝
|

|

|

|

|

1
�̂�∗𝑛

− 1
𝜌∗

|

|

|

|

|

‖

‖

‖

𝑛1∕2𝑌𝑛
‖

‖

‖

2
> 𝜖𝑛

)

≤ P

(

‖

‖

‖

‖

𝑛
1
2 𝑌𝑛

‖

‖

‖

‖

2 |
|

|

|

|

1
�̂�∗𝑛

− 1
𝜌∗

|

|

|

|

|

> 𝜖
𝐾1

)

≤ P

(

(

‖

‖

‖

‖

𝑛
1
2 𝑌𝑛

‖

‖

‖

‖

2
− 𝜎2

)

|

|

|

|

|

1
�̂�∗𝑛

− 1
𝜌∗

|

|

|

|

|

> 𝜖
2𝐾1

)

+ P

(

|

|

|

|

|

1
�̂�∗𝑛

− 1
𝜌∗

|

|

|

|

|

> 𝜖
2𝜎2𝐾1

)

.

Using the fact that P(𝐴𝐵 > 𝜖) ≤ P(𝐴 >
√

𝜖) + P(𝐵 >
√

𝜖), and the definition of the function 𝑔𝑛 in Lemma 7, we have

∀𝜖 > 0, P
(

|

|

𝛥𝑛
|

|

> 𝜖𝑛
)

≤ P
(

‖

‖

‖

‖

𝑛
1
2 𝑌𝑛

‖

‖

‖

‖

2
− 𝜎2 >

√

𝜖
2𝐾1

)

+ 𝑔𝑛

(
√

𝜖
2𝐾1

)

+ 𝑔𝑛

(

𝜖
2𝜎2𝐾1

)

≤ P
(

I1 − 𝜎2 > 1
2

√

𝜖
2𝐾1

)

+ P
(

I2 >
1
2

√

𝜖
2𝐾1

)

+ 𝑔𝑛

(
√

𝜖
2𝐾1

)

+ 𝑔𝑛

(

𝜖
2𝜎2𝐾1

)

.

Therefore, by inequalities (20) and (24), considering 𝜂 =
√

𝜖
2𝐾1

, we get for any 𝜖 > 0,

P
(

|

|

𝛥𝑛
|

|

> 𝜖𝑛
)

≤ 4
(

√

𝜖
2𝐾1

)2
×

[
√

𝐾2

𝑛

(

1
𝑝
+ 1

)

+ 1
2
𝑛 − 1
𝑛

√

𝐾2

𝑝

]

+ 𝑔𝑛

(
√

𝜖
2𝐾1

)

+ 𝑔𝑛

(

𝜖
2𝜎2𝐾1

)

≤
4𝐾1

√

𝐾2

𝜖𝑛

(

2 + 1
𝑝
+𝐾1

)

+ 𝑔𝑛

(
√

𝜖
2𝐾1

)

+ 𝑔𝑛

(

𝜖
2𝜎2𝐾1

)

. (25)

We now complete the proof of the theorem by handling the term (II) in inequality (16). By Lemma 7, we get for any 𝜖 > 0,

P
(

|

|

�̂�𝑛 − 𝑎∗|
|

> 𝜖
)

= P

(

|

|

|

|

|

1
�̂�∗𝑛

− 1
𝜌∗

|

|

|

|

|

> 𝜖
𝐾3

)

= 𝑔𝑛

(

𝜖
𝐾3

)

. (26)

With inequalities (16), (17), (25), and (26), and using the expression of 𝐺 to bound 𝑔𝑛 given in Lemma 7, we obtain for 𝜖 > 0,
nd 𝑢 ≥ 2𝑛,

P
(

𝑛�̄�⊤
𝑛 �̂�

∗−1
𝑛 �̄�𝑛 ≥ 𝑢

(

1 + �̂�∗𝑛 + 2𝜖
))

≤ P
(
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𝑛 𝑆

∗−1
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(
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+
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√
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𝜖𝑛

(

2 + 1
𝑝
+𝐾1

)

+ 𝑔𝑛

(
√

𝜖
2𝐾1

)

+ 𝑔𝑛

(

𝜖
2𝜎2𝐾1

)

+ 𝑔𝑛

(

𝜖
𝐾3

)

≤ 2𝑒3
9

( 𝑢 − 𝑛
2

)
𝑛
2 𝑒−

𝑢−𝑛
2

𝛤
(

𝑛
2 + 1

) + 1
𝑛
𝐶 (𝜖)
𝜖

,

here 𝐶(𝜖) is independent of 𝑛 such that

∀𝜖 > 0, 𝐶 (𝜖) = 4𝐾1
√

𝐾2

(

2 + 1
𝑝
+𝐾1

)

+ 2𝐾1𝐺
(
√

𝜖
2𝐾1

)

+
4𝐾2

1𝜎
4

𝜖
𝐺
(

𝜖
2𝜎2𝐾1

)

+
𝐾2

3
𝜖

𝐺
(

𝜖
𝐾3

)

. □

Appendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jmva.2024.105342.
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