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Abstract

A full-scale finite element model is presented for monolithic fluid-structure interaction (FSI) simula-

tions of thin-walled piezoelectric fluid energy harvesters (PFEH). Unlike widely used beam/plate-based

models, our model employs a solid finite element discretization to precise represent the complex PFEH

designs involving microstructured transducers and non-uniform cantilevers. These features, plus the

local FSI effects, are often ignored by simplified models. We applied the Galerkin method to for-

mulate the weak form of the mixed equation system, integrating the flow dynamics, the geometrically

nonlinear cantilever, the piezoelectric components, the electrode, and the output circuit within a closed-

circuit electro-mechanical coupled system. The coupling of the multiple domains is achieved through

boundary-fitted discretization within a monolithic scheme, using shifted-Crank–Nicolson temporal inte-

gration. This work explored implementing piezoelectric FSI systems within the FEniCS-based TurtleFSI

library, and experimented techniques such as employing penalty functions for achieving electrode com-

ponents with uniform electric potentials. We investigated various advanced PFEH features, including

the base plate design, the arrangement and microstructure of the piezoelectric components, and their

influence on the system’s dynamic and energy output behavior. The results confirmed the model’s

effectiveness and potential to assist the design and optimization of PFEH systems.

Keywords: Fluid-structure interaction; Monolithic coupling; Thin-walled piezoelectric energy

harvester; Geometric nonlinearity.

1 Introduction

In the domains of the Internet of Things (IoT) [1] and renewable energy [2], piezoelectric fluid energy

harvesters (PFEH) [3, 4, 5] are increasingly recognized as viable alternatives to conventional batteries

for powering low-power electronic devices [6]. These devices offer substantial application value and

development potential due to their ability to harness complex fluid-structure interactions (FSI) [7].
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Such interactions initiate vibrations in the base plate, subsequently causing piezoelectric patches to

deform and generate electrical energy through the direct piezoelectric effect [8, 9]. The efficiency of

PFEH systems greatly depends on the design of the base plate and piezoelectric patches, particularly

their shape and microstructure. Therefore, high-fidelity numerical simulations that enable full-scale

modeling of PFEH components and their interaction with fluid dynamics are essential for optimizing

the design of these advanced systems.

Simulating PFEH systems presents significant challenges, particularly in accurately predicting fluid

dynamic loads. This process necessitates the simultaneous consideration of structural deformation and

its resultant feedback on the fluid field [10]. Currently, coupling methods for fluid-structure interaction

(FSI) are primarily categorized into monolithic [11] and partitioned methods [12]. Partitioned methods

handle different physical fields separately, transferring data between them via an FSI interface using

interpolation algorithms [13]. This approach benefits from software modularity, allowing independent

numerical schemes for each subsystem [14]. The growing cost-effectiveness of numerical simulations has

recently popularized partitioned methods for FSI [15]. These methods are further divided into strong

and weak coupling types [16]; strong coupling is achieved by incorporating iterative algorithms at the

FSI interface, enhancing equilibrium conditions at each timestep.

Monolithic methods solve nonlinear equations in both the fluid and solid domains simultaneously,

effectively meeting strong coupling and boundary equilibrium conditions. Known for their robustness

and stability [17], these methods are particularly apt for scenarios where solid and fluid densities are

similar, leading to strong coupling effects, such as in blood flow within vessels [11, 18] and vibrations of

slender, thin-walled structures in dense liquids [19]. However, monolithic methods require substantial

computational resources, which may limit their suitability for large-scale applications. Additionally,

matching interfaces in fluid-structure coupling is critical. The Arbitrary Lagrangian-Eulerian (ALE)

method [20] and the Immersed Boundary Method (IBM) [21] are two prominent approaches for man-

aging interface boundaries in complex flows. ALE, a boundary-fitted method, is straightforward to

implement and effective for high Reynolds number scenarios, enabling precise tracking of moving FSI

interfaces. However, it may struggle with large structural torsions or translations and complex fluid

domain topologies. Conversely, IBM excels in handling intricate geometrical structures and significant

deformations without necessitating fluid mesh movement, although it can be challenging to precisely

define coupling interfaces, potentially reducing accuracy in strong FSI scenarios. When computational

resources allow, it is advantageous to integrate a monolithic coupling algorithm with a boundary-fitted

approach like ALE to enhance the accuracy of simulation results [22].

In the simulation of piezoelectric fluid energy harvesters (PFEH), adopting a continuum model for

solid modeling is crucial to effectively design the shape, internal structure, and layout of the base plate

and piezoelectric patch. Recent research on fluid-structure-piezoelectric coupling simulation methods

often employs non-volumetric models such as beam [22, 23, 24] or shell models [25]. These models fa-

cilitate the modeling of thin structures with fewer mesh elements, significantly reducing computational

time. However, they may introduce discontinuities in the pressure field at the moving FSI interface,

adding complexity to simulations. Techniques like the level-set method [20] and fluid domain splitting

method [22] have been developed to address these challenges. Nonetheless, non-volumetric finite ele-

ments struggle to accurately represent the influence of the solid’s geometry and internal structure on the

flow field, and the reciprocal effects of these interactions. As interest grows in the composite structure

design [26] of energy harvesters and the microstructure design of piezoelectric patches [27, 28], the use

2



of solid continuum models becomes increasingly vital. While recent advancements in the monolithic

simulation of PFEH using solid continuum models have typically focused on small deformations [29], the

unique thin-walled and slender characteristics of PFEH demand the consideration of geometric nonlin-

earities. This would more accurately capture the nonlinear vibrational behaviors observed in dynamic

flow fields [30] and simplify the representation of anisotropic materials. A comprehensive numerical

method that incorporates geometric nonlinearity within solid modeling remains an area ripe for further

exploration. Such an approach promises to enhance the reliability and efficiency of PFEH structures,

optimizing their energy harvesting capabilities.

In this context, we propose a comprehensive fluid-structure-piezoelectric coupling algorithm within

the FEniCS finite element solution framework [31]. This algorithm is designed to simultaneously ad-

dress structural deformation, fluid flow, and electrical output. We employ a solid continuum model for

structural modeling that incorporates geometric nonlinearities. The piezoelectric material is described

using a constitutive model that extends the solid equations to include the influence of external circuits.

To ensure uniform potential across the electrode surfaces, a penalty function method is utilized. The

fluid dynamics are modeled using the Navier-Stokes (NS) equations, integrated with the ALE method

to accurately represent the FSI boundary. Fluid mesh motions are managed through a biharmonic

model to maintain mesh quality during deformation. The governing equations for these physical fields

are combined into a unified system, discretized spatially and temporally using the Galerkin finite ele-

ment method and a shifted Crank-Nicolson scheme. Solutions are computed at each time step through

Newton iteration, ensuring accuracy and stability across the simulation. To demonstrate the necessity

and effectiveness of employing a solid model, we have developed a series of test cases. These cases vary

the shapes, positions, and internal structures of the base plate and piezoelectric patch, illustrating the

method’s potential to significantly enhance the design and performance of PFEH systems. This ap-

proach not only highlights the capabilities of our modeling strategy but also underscores its application

value across diverse PFEH configurations.

This paper is structured to systematically present the theory, numerical implementation, validations,

and the results achieved using the proposed monolithic coupling method. Section 2 delineates the

governing equations for all fields involved in PFEH, emphasizing the modeling of the solid domain as

a volumetric continuum. Section 3 introduces the monolithic solution scheme for the coupled system,

detailing the techniques used for modeling the electrodes and output circuits within the piezoelectric

solid domain. Section 4 validates this coupling scheme by comparing it with a FSI benchmark case

that includes geometric nonlinearities and a piezoelectric structure case using output circuits from

commercial software. In Section 5, the methodology is applied to study a thin-walled PFEH positioned

behind a rigid cylinder within a fluid flow environment. This section discusses the effects of varying base

plate sections and designs of the piezoelectric patch through two groups of numerical cases. Finally,

Section 6 discusses the contributions and limitations of the current work, providing a critical assessment

of the approach and suggesting avenues for future research.
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2 Governing equations of fluid-structure-piezoelectric

coupled system

In this section, we outline the basic notations used in the equations of the coupled system, which involves

the fluid dynamics (presented in both Euler and ALE-transformed coordinate systems), the structure

kinematics (covering both pure elastic and piezoelectric solid materials in the Lagrangian coordinates),

and the coupling conditions that integrate these domains.

2.1 Basic notations

This study explores the conversion of ambient flow kinetic energy into electrical energy through the

flow-induced vibrations of piezoelectric patches mounted to a cantilevered base structure. Initially,

the fluid’s energy is transformed into cyclic strain within the piezoelectric material, which, due to the

piezoelectric effect, generates electrical energy that an external circuit then captures. This process

can be illustrated by the model shown in Figure 1, depicting a classic unimorph piezoelectric energy

harvester (PEH) driven by fluid flows. The PEH configuration includes an elastic base plate mounted

on a rigid cylinder, a piezoelectric patch covered by electrodes on both its upper and lower surfaces,

and an electrical circuit composed of a simple resistor element. As fluid flows past the host cylinder,

vortex shedding initiates flow-induced vibrations in the base plate, which in turn causes the piezoelectric

materials to deform. The domain of this integrated fluid-structure-piezoelectric interaction problem,

denoted by Ω ⊂ R2, is analyzed over the time interval T .

The domain Ω is assumed to be time-independent and comprises three time-dependent subdomains

in its current configuration: Ωf (t) for the fluid domain, Ωss(t) for the elastic solid domain, and Ωsp(t)

for the piezoelectric solid domain. The structural components of the energy harvester, involving the

elastic and piezoelectric solids, interact with the fluid flow via the fluid-structure interface, denoted

by ΓFSI(t) = ∂Ωf (t) ∩ ∂Ωs(t), where ∂Ωs = ∂Ωss ∪ ∂Ωsp represents the combined boundary of the

structural domains. The initial configuration of these domains, or their configuration at any subsequent

reference point in time, is represented by Ω̂f , Ω̂ss, and Ω̂sp, with their interface denoted as Γ̂FSI. The

external boundary of the entire domain is given by ∂Ω̂ = Γ̂ = Γ̂D∪ Γ̂N, where Γ̂D and Γ̂N correspond to

the Dirichlet and Neumann boundaries, respectively. In the following sections, we will detail the field

equations and coupling conditions that govern the dynamics of this multiphysics system.

Figure 1: A unimorph flow-driven PEH: in its reference configuration (a), and the
current configuration (b).
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2.2 Equations of fluid dynamics

In solving fluid flow problems on fixed meshes, the Eulerian description is frequently used for reasons of

practicality, especially in handling large fluid distortions. However, this description becomes challeng-

ing when it comes to accurately tracking moving interfaces involving different media due to its fixed

observation point. An alternative, the Lagrangian description, overcomes this by moving the fluid mesh

nodes with the material particles, making it adept at tracking the interfaces between different media,

but struggles with the treatment of large distortions of complex vortex structures. To bridge the gap

between these two approaches, we adopt the Arbitrary Lagrangian-Eulerian (ALE) reference configu-

ration. This intermediate framework expresses the fluid equations in artificial coordinates, offering an

effective way to model fluid-structure interactions. In the following, we begin the detailed discussion

with the Eulerian Navier-Stokes equations and then extend to the ALE formulation of these equations.

Navier-Stokes equations in the Eulerian framework:

The dynamics of an incompressible, viscous fluid is most intuitively described using Eulerian coor-

dinates, for which the observer focuses on specific points in the space through which fluid particles flow

over time. In this framework, the spatial domain occupied by the fluid at any given moment is denoted

by Ωf . The velocity and pressure fields within this domain are represented by vf (x, t) and pf (x, t),

respectively, where x indicates a point within the fluid’s current domain, as illustrated in Figure 1 (b).

We utilize the Navier-Stokes equations to describe the fluid motion, which gives

ρf
∂vf

∂t

∣∣∣∣
x

+ ρfvf · ∇vf = ∇ · σf , in Ωf , t ∈ T, (1)

∇ · vf = 0, in Ωf , t ∈ T, (2)

where ρf denotes the fluid density. For enhanced clarity, Eq. (1) and Eq. (2) describe the momentum

and mass conversation in the context of incompressible, viscous Newtonian fluids. Within Eq. (1), the

left-hand side comprises both the time derivative and the convection terms. On the other hand, the

right-hand side involves the divergence of the fluid stress tensor, which characterizes the internal forces

arising from viscosity and pressure. The constitutive relation for a Newtonian fluid, which defines the

stress tensor, is expressed as follows:

σf = σfp + σfv = −pI+ 2µfεf . (3)

This equation implies that the total internal stress tensor σf in a homogeneous fluid comprises the

isotropic pressure component σfp and the viscous shear stress tensor σfv. In this relation, I is the

identity matrix, signifying that the pressure acts equally in all directions, and µf is the fluid’s dynamic

viscosity, a measure of its resistance to flow. The rate-of-strain tensor εf , capturing the deformation

rates within the fluid, is derived from the fluid’s velocity field as:

εf =
1

2

(
∇vf + (∇vf )

T
)
. (4)

Here, the operator ∇ = ∂/∂x indicates spatial derivatives with respect to the position vector x, placing

the observer in the context of the Eulerian description within the dynamic fluid domain Ωf . To fully

define the fluid’s behavior, Eq. (1) and (2) are accompanied by appropriate boundary conditions.
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Among these, the velocity is prescribed on the Dirichlet boundary Γf,D within the fluid domain Ωf :

vf = gf , on Γf,D ⊂ ∂Ωf . (5)

The imposed velocity is defined by the function gf : Γf,D × T → R2. This type of Dirichlet condition

is typically applied at the inflow velocity boundary and at the boundaries where the no-slip condition

is assumed, such as solid walls in contact with the fluid. For the external stresses acting on the fluid,

Neumann boundary conditions are introduced as follows:

σf · nf = hf , on Γf,N ⊂ ∂Ωf , (6)

where Γf,N represents the Neumann boundaries within the fluid domain Ωf , hf denotes the prescribed

stress vector, and nf is the outward normal vector at the fluid boundary. The Neumann boundary

condition is commonly applied at the outflow boundary. It is often referred to as a ”do-nothing”

condition, implying the condition of natural flow exit or of constant pressure, allowing the fluid to exit

the domain without additionally imposed stresses.

Navier-Stokes equations in ALE framework:

Applying the Navier-Stokes equations (Eqs. (1) and (2)) directly in the context of FSI problems,

such as for PEH modeling, poses significant challenges due to the evolving fluid and solid domains.

Unlike traditional fluid dynamics simulations where the fluid domain Ωf is static, using fixed points

x to observe fluid variables vf and pf , modeling PEHs with FSI requires considering a fluid domain

that moves with the solid domain. As a modeling strategy, we choose to consider fixed x in regions

distant from the fluid-structure boundary, unaffected by its movement. Then, for the regions under the

influence of fluid-structure interactions, we employ the Arbitrary Lagrangian Eulerian (ALE) approach

to model the fluid-structure dynamics. Within this framework, an auxiliary displacement field, denoted

as ûA, is introduced to facilitate the transition of the fluid equations between the current and the

reference configurations:

ûA(x̂, t) = x− x̂ = Â(x̂, t)− x̂ for x̂ ∈ Ω̂f . (7)

In this equation, we use the operator Â to map the current position of the fluid domain Ωf relative to

its reference state Ω̂f . Unlike the solid domain’s displacement field, the auxiliary displacement field ûA

is determined without solving the fluid dynamics equations. Further details on this will be presented

in section 2.3.

In the ALE formulation of the Navier-Stokes equations for the moving fluid domain Ωf , it is

important to relate the material time derivative
dvf

dt to the partial time derivative
∂vf

∂t

∣∣∣
x
within an

Eulerian framework. This relationship is expressed as:
dvf

dt =
∂vf

∂t

∣∣∣
x
+ vf · (∇vf ), which combines the

local temporal changes and the convective transport effects of the fluid flow. Extending this concept

to the ALE framework, we define an ALE time derivative,
∂vf

∂t

∣∣∣
x̂
, incorporating the mesh’s movement

into the fluid’s velocity field:
∂vf

∂t

∣∣∣∣
x̂

=
∂vf

∂t

∣∣∣∣
x

+ vA · (∇vf ) (8)

where vA refers to the Lagrangian velocity associated with the mesh motion in the fluid domain Ωf . It

is generally different from vf which reflects the fluid’s physical velocity, and is related to the auxiliary
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displacement field by:

vA =
∂Â
∂t

∣∣∣∣∣
x̂

◦ Â−1 , (9)

where Â−1 allows mapping the deformation velocity of Ωf from the reference configuration to the

current configuration. Integrating Eqs. (8,9) into the Navier-Stokes equations (Eqs. (1,2)), we arrive

at the modified momentum conservation in the moving fluid domain Ωf :

ρf
∂vf

∂t

∣∣∣∣
x̂

+ ρf (vf − vA) · ∇vf = ∇ · σf , in Ωf , (10)

along with the incompressibility condition:

∇ · vf = 0, in Ωf , (11)

Comparing with the standard momentum conservation described in Eq. (1), an additional convective

term related to the mesh motion, and as a function of vA, emerges in Eq. (10). The value of vA varies

depending on the chosen framework for the motion description. In a Eulerian framework, vA = 0. Then

in a Lagrangian description, vA equals the physical fluid velocity vf : the mesh moves synchronously

with the fluid. The ALE framework allows a flexible transition between these Eulerian and Lagrangian

descriptions. The mesh motion may either track the fluid, remain fixed, or be set arbitrarily between

these two states. While the ALE approach effectively incorporates fluid mesh motion, it describes the

fluid dynamics within the current configuration of Ωf . This description complicates the integration with

structural equations, which are typically defined relative to a reference configuration. In this context,

Ω̂f signifies the spatial fluid domain in its reference state. In the reference configuration, the fluid

velocity v̂f at the position x̂ corresponds to the Eulerian fluid velocity vf at the current position x,

and similarly for the pressure fields. We now proceed to adapt these equations to the fixed, stress-free

reference region as illustrated in Figure 1 (a):

ρf ĴA
∂v̂f

∂t

∣∣∣∣
x̂

+ ρf ĴAF̂
−1
A (v̂f − v̂A) · ∇̂v̂f = ∇̂ ·

(
ĴAσ̂f F̂

−T
A

)
, in Ω̂f , (12)

∇̂ ·
(
ĴAF̂

−1
A v̂f

)
= 0, in Ω̂f , (13)

where the deformation gradient F̂A is defined as ∇̂ûA + I, and ĴA = det(F̂A) is its determinant.The

differentiation operator ∇̂ = ∂/∂x̂ refers here to the derivatives with respect to the spatial position x̂.

In the reference configuration, the fluid mesh motion is described by the velocity given by:

v̂A =
∂Â
∂t

∣∣∣∣∣
x̂

=
∂ (ûA + x̂)

∂t
=

∂ûA

∂t
. (14)

Since x̂ is the fixed position on the fluid reference configuration, independent of time t, then the

transformed fluid stress tensor is given by:

σ̂f = σ̂fp + σ̂fv = −p̂fI+ ρfµf

(
(∇v̂f ) F̂

−1
A + F̂−T

A (∇v̂f )
T
)

. (15)

The governing equations Eq. (14) and (15) should be complemented by boundary conditions, analogous
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to those detailed in Eq. (5) and (6), as

v̂f = ĝf , on Γ̂f,D ⊂ ∂Ω̂f , (16)

(
JAσ̂fF

−T
A

)
· n̂f = ĥf , on Γ̂f,N ⊂ ∂Ω̂f (17)

where Γ̂f,D and Γ̂f,N denote the Dirichlet and Neumann boundaries of the reference fluid domain Ω̂f ,

respectively. The normal vector on these boundaries, n̂f , is oriented outward from Ω̂f towards adjacent

subdomains.

2.3 Fluid mesh motion using a biharmonic model

Accurately modeling the fluid mesh movement is important for FSI problems within the ALE framework.

This requires properly defining the deformation of the fluid mesh in response to the structural boundary

motion that interacts with the fluid media. To address this, the auxiliary displacement field ûA,

introduced earlier in Section 2.2, is utilized to extend the structural deformations into the fluid domain.

The auxiliary displacement field represents the motion of the fluid mesh without incorporating inertial

effects. In this study, the biharmonic equation [32] is employed to govern the mesh movement. This

choice is informed by comparative studies with other mesh movement models, such as harmonic [33, 34]

and linear-elastic [35, 36] models. The biharmonic model provides greater flexibility in accommodating

diverse boundary and interface conditions, ensuring that the fluid mesh deforms smoothly in sync

with large structural deformations [37, 38]. In the reference configuration, Ω̂f , this model is uses an

intermediate variable η̂A, defined as follows:

η̂A = −αu∆̂ûA, −αu∆̂η̂A = 0, in Ω̂f , (18)

where αu is an artificial material parameter, typically determined empirically, that regulates the mesh

motion. Following the recommendations from [38], it is convenient to adopt a small positive value for

αu, which leads to optimal performance. Additionally, the mesh model requires the implementation

of suitable boundary conditions. To obtain clearer expressions, we express the auxiliary displacement

field ûA and the intermediate variable η̂A in the form of their components as η̂A,1 = −αu∆̂ûA,1 and

η̂A,3 = −αu∆̂ûA,3, according to x̂1 and x̂3 directions, respectively, as illustrated in Figure 1(a). This

setup denotes a 2-dimensional problem. Using this notation, the first set of boundary conditions with

ûA fixed in both directions x̂1 and x̂3, can be expressed as

ûA,k =
∂ûA,k

∂n̂f
= 0 on ∂Ω̂f\Γ̂FSI, for k = 1, 3. (19)

The first set of boundary conditions acts as clamped edges for a thin plate structure deforming within

the fluid domain. For the second type of boundary condition, it is specified to further refine the control

over the mesh movement:

ûA,1 =
∂ûA,1

∂n̂f
= 0 and η̂A,1 =

∂η̂A,1

∂n̂f
= 0 on Γ̂in ∪ Γ̂out

ûA,3 =
∂ûA,3

∂n̂f
= 0 and η̂A,3 =

∂η̂A,3

∂n̂f
= 0 on Γ̂sides

. (20)
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By enforcing zero displacement and its derivative at the boundaries, the second set of boundary condi-

tions restricts the fluid mesh motion perpendicular to the fluid domain’s outer boundaries, while allowing

deformations along the tangential directions. This specification is effective in minimizing distortions of

the fluid cells, leading to enhanced mesh stability and smoother mesh deformation under dynamic FSI

conditions. We note that this set of boundary conditions are particularly suited to scenarios where the

reference fluid domain Ω̂f is rectangular, such as the depicted fluid domain in Figure 1.

2.4 Equations of motion of the elastic structure

Unlike fluid modeling, structure problems are commonly formulated using Lagrangian coordinates. We

use Ω̂ss to represent the spatial domain occupied by the purely elastic solid in the reference configuration.

The displacement field in Cartesian coordinates, denoted as ûss, is defined as the difference between

the positions in the current configuration and the reference configuration, expressed as ûss(x̂, t) =

x − x̂. Neglecting body forces, the vibration of Ω̂ss can be characterized by ûss, which satisfies the

elastodynamic equation:

ρss
∂2ûss

∂t2
− ∇̂ · Π̂ss = 0, in Ω̂ss. (21)

This equation describes the dynamic equilibrium of the elastic structure under large deformations

between the inertial and elastic forces, and represents the conservation of momentum. In this equation,

ρss is the density of the elastic solid, Π̂ss denotes the First Piola-Kirchhoff stress tensor in the reference

configuration, which is often given as the function of Second Piola-Kirchhoff stress tensor:

Π̂ss = F̂ssΣ̂ss , (22)

where the deformation gradient F̂ss describes both the local rotation and the deformation of the mate-

rial:

F̂ss = I+ ∇̂ûss . (23)

We consider linear elastic material for the solid model, which in terms of the second Piola-Kirchhoff

stress tensor Σ̂ss and the Green-Lagrange strain tensor Ŝss can be expressed as:

Σ̂ss = Css : Ŝss , (24)

where the fourth-order elasticity tensor Css is given in matrix expressions in 2-dimensional Cartesian

coordinates in Appendix A. The Green-Lagrange strain tensor Ŝss, is defined by:

Ŝss =
1

2

(
F̂T

ssF̂ss − I
)
=

1

2

(
∇̂ûss + (∇̂ûss)

T + (∇̂ûss)
T∇̂ûss

)
. (25)

This expression includes the quadratic term associated with geometrical non-linearities. Equilibrium of

the solid problem (Eq. 21) is complemented by Dirichlet boundary conditions

ûss = ĝss , on Γ̂ss,D ⊂ ∂Ω̂ss , (26)

and Neumann boundary conditions

Π̂ss · n̂ss = F̂ssΣ̂ss · n̂ss = ĥss, on Γ̂ss,N ⊂ ∂Ω̂ss , (27)
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applied on the Dirichlet and Neumann boundaries Γ̂ss,D and Γ̂ss,N , respectively. Both ĝss and ĥss are

prescribed vector functions. n̂ss denotes the outward normal vector on the solid boundaries.

Figure 2: Piezoelectric Energy harvester model scheme.

2.5 Equations of the piezoelectric solid structure

The PFEH system involves piezoelectric patches affixed to the base plate, as depicted in Figure 2.

Elastodynamics of the piezoelectric component, occupying the domain Ω̂sp in the reference configuration,

is provided here. We use ûsp and φ̂sp to denote respectively the displacement field and the electric

potential field of Ω̂sp, in the Cartesian coordinates. The dynamics of Ω̂sp is described in terms of both

ûsp and φ̂sp via, respectively, the momentum conservation for the mechanical field and the Gauss’s

equation for the electric field, as

ρsp
∂2ûsp

∂t2
− ∇̂ · Π̂sp = 0, in Ω̂sp , (28)

∇̂ · D̂sp = 0, in Ω̂sp , (29)

where ρsp represents the density of the piezoelectric solid. Unlike the purely elastic solid by Eq. (21),

the first Piola-Kirchhoff stress tensor of Ω̂sp in the reference configuration, Π̂sp, involves piezoelectric

effect and results from both ûsp and φ̂sp. D̂sp denotes the electric displacement. The condition that the

divergence of D̂sp equals zero indicates that the total flux of electric displacement entering and exiting

the domain Ω̂sp is in equilibrium, showing the absence of macroscopic charges within the piezoelectric

medium. We use linear piezoelectric constitutive relations, which express Π̂sp and D̂sp as follows:

Π̂sp = F̂spΣ̂sp = F̂sp(Csp : Ŝsp + esp · Êsp), (30)

D̂sp = esp : Ŝsp + ϵsp · Êsp . (31)

The behavior of coupled piezoelectric materials is governed by a set of distinct material properties: the

classical fourth-order elastic tensor, Csp, characterizes material elasticity; the second-order tensor, ϵsp,

describes dielectric permittivity; and the third-order piezoelectric coupling tensor, esp, indicates the

electro-mechanical conversion rate. Matrix expressions of these tensors in Cartesian coordinates can be

found in Appendix B. The deformation gradient F̂sp is derived from the displacement field ûsp within the

domain Ω̂sp using F̂sp = I+∇̂ûsp, identical to purely elastic materials. However, due to the piezoelectric

effects, the second Piola-Kirchhoff stress tensor is not only function of the Green-Lagrange strain tensor
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but also of the electric field Êsp, as indicated in Eq. (24). Similarly, the electric displacement D̂sp is

dependent on both the electric field and the Green-Lagrange strain. Considering the large deformation,

the Green-Lagrange strain Ŝsp and electric field Êsp are obtained from the displacement field ûsp, and

the potential field φ̂sp, as:

Ŝsp =
1

2

(
∇̂ûsp + (∇̂ûsp)

T + (∇̂ûsp)
T∇̂ûsp

)
, (32)

Êsp = −∇̂φ̂sp . (33)

The elastodynamics problem of the piezoelectric solid incorporates boundary conditions analogous to

those applied to the elastic base plate, as described in Eq. (26) and Eq. (27). In this context, the

boundary conditions are expressed for both the displacement field ûsp and the potential field φ̂sp. For

Dirichlet boundary conditions, this typically involves:

ûsp = ĝsp , on Γ̂sp,uD ⊂ ∂Ω̂sp (34)

φ̂sp = l̂sp , on Γ̂sp,φD ⊂ ∂Ω̂sp (35)

where Γ̂sp,uD and Γ̂sp,φD are the Dirichlet boundaries for Ω̂sp, where displacement and electric potential

conditions are applied, respectively. ĝss and l̂sp are the prescribed displacement and potential vector

functions. Notably, Γ̂sp,φD specifically corresponds to the electrode surfaces, where the electric potential

is maintained uniform. Following this, Neumann boundary conditions can also be implemented:

+Π̂sp · n̂sp = ĥsp, on Γ̂sp,uN ⊂ ∂Ω̂sp , (36)

−D̂sp · n̂sp = q̂sp, on Γ̂sp,φD ⊂ ∂Ω̂sp , (37)

where Γ̂sp,uN and Γ̂sp,φD are the Neumann boundaries, on which prescribed vectors ĥsp and q̂sp are

applied to impose stress and electric displacement conditions, respectively. Then, n̂sp denotes the

normal vector at the boundaries of Ω̂sp, pointing outward towards adjacent subdomains. On the lateral

surfaces of Ω̂sp, specifically Γ̂AC and Γ̂BD as shown in Figure 2, surface charges are absent (q̂sp = 0) as

piezoelectric materials are insulators.

2.6 Coupling conditions

The energy harvesting system presented in this study requires the consideration of three types of

coupling condition. These include fluid-structure interaction (FSI) conditions between the fluid and

solid domains (Ω̂f and Ω̂s), structure-structure interaction (SSI) conditions between the elastic plate

and the piezoelectric solid domains (Ω̂ss and Ω̂sp), and the electrode-external circuit coupling conditions

within the domain Ω̂sp.

Fluid-structure coupling conditions:

We examine the FSI coupling by considering the two involved solid domains, Ω̂ss and Ω̂sp, as a

single entity, referred to as Ω̂s. Despite their distinct material compositions, the base plate and the

piezoelectric component behave similarly when interacting with the surrounding fluid flow. The FSI

interface between Ω̂ss ∪ Ω̂sp and the surrounding fluid is denoted as Γ̂FSI, as indicated in Figure 2. At
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this interface, we ensure equilibrium by maintaining the continuity of displacement and velocity fields,

as well as the normal components of the stress tensor, therefore:

ûA = ûs, on Γ̂FSI (38)

v̂f = v̂A =
∂ûs

∂t
, on Γ̂FSI (39)(

JAσ̂fF
−T
A

)
· n̂FSI = Π̂s · n̂FSI, on Γ̂FSI (40)

where n̂FSI is the normal vector at the FSI interface. We apply the convention that n̂FSI points from

Ω̂f towards Ω̂s. Ensuring the continuity of displacement and velocity across both the fluid and solid

boundaries at the FSI interface guarantees that the fluid meshes deform synchronously with the solid

mesh, which prevents the occurrence of overlaps. Consequently, as indicated in Eq. (40), stresses from

the fluid and solid domains are transmitted in the direction normal to the FSI interface.

Structure-structure coupling conditions:

We define the SSI coupling conditions at the interface Γ̂SSI, as depicted in Figure 2. This interface

connects the elastic base plate domain Ω̂ss and the piezoelectric solid domain Ω̂sp. These conditions

are expressed to ensure the continuity of displacement and velocity across Γ̂SSI. We have

ûss = ûsp, on Γ̂SSI (41)

v̂ss = v̂sp, on Γ̂SSI (42)

Π̂ss · n̂SSI = Π̂sp · n̂SSI, on Γ̂SSI (43)

where n̂SSI represents the normal vector at the interface Γ̂SSI. By convention, n̂SSI points from the base

plate solid domain Ω̂ss towards the piezoelectric solid domain Ω̂sp. The continuity of displacement and

velocity across the interface ensures that the piezoelectric element deforms in synchronization with the

base plate. The forces acting at the interface, mutually between Ω̂ss and Ω̂sp, are in equilibrium.

Electrode-external circuit coupling conditions:

To harvest the electrical energy generated through the direct piezoelectric effect from the defor-

mation of the piezoelectric component Ω̂sp, it is necessary to integrate a closed external circuit to the

system. In this study, this circuit includes a resistor of resistance R, connected via electric wires to the

two electrodes of the piezoelectric component. These electrodes are attached to the upper and the lower

surfaces of the piezoelectric patch, denoted by Γ̂Electrode1 := Γ̂AB and Γ̂Electrode2 := Γ̂CD, respectively.

The integrated system setup is illustrated in Figure 2. The electrodes, which are extremely thin, allow

the accumulation of free electric charges and ensure uniform potential distribution across their surfaces

during the deformation of the piezoelectric component. In this resistive circuit, Ohm’s law establishes

the relationship between the electric current flowing through the conductor between points, and the

voltage across it, expressed as:

φ̂sp = RI . (44)

The potential difference developed across the two electrodes is equivalent to the potential across the re-

sistor. Consequently, the electric current passing through the upper electrode, based on the conservation
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of charge, is described by:

I = −∂Q

∂t
, (45)

where I denotes the current flowing through the circuit, and Q the total electric charges accumulated

on the electrode-covered surfaces. This formulation represents the principle of charge conservation, that

in a closed circuit, the current corresponds to the rate at which electric charge changes over time.

3 Monolithic solution scheme

This section will focus on the resolution of the fluid-structure-piezoelectric coupling problem using a

monolithic solution approach. Employing the Galerkin finite element method in the reference configura-

tion, the objective is to analyze the dynamics and energy harvesting capabilities of the coupled system

using FEniCS. Temporal discretization employs finite difference schemes, in particular the One-Step-θ

method. Given the inclusion of a closed circuit in the system, special emphasis will be placed on effec-

tively addressing the electric energy consumption of the circuit and the modeling of electrodes within

the FEniCS platform.

3.1 Weak forms for single fields

We present the governing equations of each subdomain composing the FSI system in the form of their

weak formulation. These formulations are important for the numerical implementation of PDE systems

and their boundary conditions via the finite element method, which we will use for numerical resolution.

Some notations will be used, such as ( , )Ω̂ for scalar product in the domain Ω̂, and < , >Γ̂ for

scalar product on the boundary Γ̂. We will then present the weak forms for the different domains as

follows:

Fluid domain: Focusing on the equilibrium of the fluid domain Ω̂f during the time interval [0, T ], the

dynamic behavior is described by its ALE form NS equations (Eqs. (12) and (13)) under the influence

of the boundary conditions given by Eq. (40). Using the Galerkin method, we solve the unknowns v̂f

and p̂f . Let ψ̂v̂
f and ψ̂p̂

f be the test functions that we use to multiply with Eqs. (12) and (13). We

then proceed with the integration over the respective domain using Green’s formula, which leads to the

weak form of the elastodynamic governing equation for the fluid domain in its reference configuration,

with the account for FSI effets, as expressed in Eq. (46):

+
(
ρf ĴA

∂v̂f

∂t , ψ̂v̂
f

)
Ω̂f

+
(
ρf ĴAF̂

−1
A (v̂f − v̂A) · ∇v̂f , ψ̂

v̂
f

)
Ω̂f

+
(
ĴAσ̂f F̂

−T
A , ∇̂ψ̂v̂

f

)
Ω̂f

−
(
ĴAσ̂f F̂

−T
A · n̂FSI, ∇̂ψ̂v̂

f

)
Γ̂FSI

= 0 ∀ψ̂v̂
f ,

+
(
∇ ·

(
ĴAF̂

−1
A v̂f

)
, ψ̂p̂

f

)
Ω̂f

= 0 ∀ψ̂p̂
f ,

(46)

where v̂A = ∂ûA

∂t represents the auxiliary velocity associated with the fluid mesh motion, which should

be distinguished from v̂f . Integration by parts is applied to Eq. (46 − 1) to obtain relaxed continuity

requirement for v̂f , an operation not repeated in Eq. (46 − 2). Similarly, weak formulations for the

mesh extension problem using biharmonic model are obtained by integrating Eq. (18) multiplied by
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test functions ψ̂η̂A and ψ̂û
A over the fluid domain Ω̂f ,

+
(
η̂A, ψ̂

η̂
A

)
Ω̂f

−
(
αu∇̂ûA, ∇̂ψ̂η̂A

)
Ω̂f

= 0 ∀ψ̂η̂A,

+
(
αu∇̂η̂A, ∇̂ψ̂û

A

)
Ω̂f

= 0 ∀ψ̂û
A.

(47)

The introduction of these weak formulations will enable us to effectively implement the fluid dynamics

and mesh deformation problems while ensuring numerical stability.

Elastic solid domain: Correspondingly, the dynamic behavior of the pure elastic solid domain (the

base plate, Ω̂ss) is governed by the equation of momentum conservation (Eq. (21)) under the influence

of FSI conditions defined in Eq. (40), and SSI conditions defined in Eq. (43), associated with the

interfaces Γ̂FSI and Γ̂SSI, respectively. Adopting a similar approach as described in the previous section,

we solve v̂ss and ûss, and let ψ̂v̂
ss and ψ̂

û
ss be the test functions. Subsequently, we introduce the integral

expression of the elastodynamics governing equation for the elastic solid domain Ω̂ss, involving FSI and

SSI conditions, as stated in Eq. (48):

+
(
ρss

∂v̂ss

∂t , ψ̂v̂
ss

)
Ω̂ss

+
(
Π̂ss, ∇̂ψ̂v̂

ss

)
Ω̂ss

+
〈
Π̂ss · n̂FSI, ψ̂

v̂
ss

〉
Γ̂FSI

−
〈
Π̂ss · n̂SSI, ψ̂

v̂
ss

〉
Γ̂SSI

= 0 ∀ψ̂v̂
ss,

+
(
ρss

(
∂ûss

∂t − v̂ss

)
, ψ̂û

ss

)
Ω̂ss

= 0 ∀ψ̂û
ss

.

(48)

In Eq. (48-1), the third term has an opposite sign compared to Eq. (46-1). This is due to the

orientation of the normal vector n̂FSI, which is defined to be opposite to that of n̂ss as given in Eq.

(40) from Section 2.6. In addition, to ensure consistency across the treatment of both solid and fluid

problems, particularly in maintaining the same first order of time, which simplifies subsequent time

discretization, a supplementary solid velocity variable v̂ss is introduced, with relationships expressed in

Eq. (48-2).

Piezoelectric solid domain: With similar method as described for Eq. (48), we develop the weak

formulations for the piezoelectric solid domain Ω̂sp based on the momentum conservation equations (Eq.

(28) and Eq. (29)). The problem is complemented by FSI and SSI boundary conditions (Eqs. (40),(43)),

the electrode conditions associated with the homogenization of potential field on the electrode surfaces,

and the resistor based circuit relations (Eqs. (37), (44) and (45)). We solve v̂sp, ûsp, ψ̂sp and φ̂sp,

using test functions ψ̂v̂
sp, ψ̂

û
sp, ψ̂

φ̂
sp and ψ̂ϕ̂sp. The weak formulation is expressed as follows:

+
(
ρsp

∂v̂sp

∂t , ψ̂v̂
sp

)
Ω̂sp

+
(
Π̂sp, ∇̂ψ̂v̂

sp

)
Ω̂sp

+
〈
Π̂sp · n̂FSI, ψ̂

v̂
sp

〉
Γ̂FSI

+
〈
Π̂sp · n̂SSI, ψ̂

v̂
sp

〉
Γ̂SSI

= 0 ∀ψ̂v̂
sp

+
(
ρsp

(
∂ûsp

∂t − v̂sp

)
, ψ̂û

sp

)
Ω̂sp

= 0 ∀ψ̂û
sp

−
(
D̂sp, ∇̂ψ̂ϕ̂sp

)
Ω̂sp

+

〈
β∇̂φ̂sp, D̂sp

∣∣∣
ψ̂v̂

sp,ψ̂
ϕ̂
sp

〉
Γ̂Electrode2

−
〈
D̂sp · n̂sp, ψ̂

ϕ̂
sp

〉
Γ̂Electrode2

= 0 ∀ψ̂v̂
sp, ψ̂

ϕ̂
sp

+
((

∂φ̂sp

∂t − ϕ̂sp

)
, ψ̂φ̂sp

)
Ω̂sp

= 0 ∀ψ̂φ̂sp .

(49)

Considering the definition of the normals n̂FSI and n̂SSI, the signs of the third and fourth terms in Eq.

(49-1) are reversed. In addition to the solid velocity v̂sp provided in this part, we also introduce the
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potential rate ϕ̂sp, which is the time derivative of the potential φ̂sp. This addition ensures consistency

in the physical interpretation of the terms in Eq. (49-3) with those in Eq. (49-1), specifically in terms

of virtual power.

Some remarks are necessary regarding Eq. (49-3), particularly in how electrodes are integrated

into the resistor-based electric circuit. The primary function of the electrodes is to ensure a uniform

distribution of electric potential across the piezoelectric solid surface, on which the induced potential

presents typically non-uniform distribution. To achieve uniform evolution of the potential across the

electrode surfaces, we propose to employ a penalty technique to the second term in Eq. (48-3). This

term, D̂sp

∣∣∣
ψ̂v̂

sp,ψ̂
ϕ̂
sp

recasts the variables of electrical displacement from ûsp and φ̂sp into the test functions

ψ̂v̂
sp and ψ̂ϕ̂sp. By setting the constant coefficient β to a high value, such as 107, we significantly amplify

the rate of electric field energy, causing the potential gradient ∇̂φ̂sp to approach zero, ensuring nearly

uniform potential across the electrode surface. This approach allows modeling the electrode behavior

without introducing additional physical entities. Moreover, concerning the third term in Eq. (49-3),

we formulate a specific expression for D̂sp · n̂sp considering the resistor-based circuit. Let us recall the

Neumann boundary condition in Eq. (37) and apply it across the electrode surface Γ̂Electrode2:

−
〈
D̂sp · n̂sp, ψ̂

ϕ̂
sp

〉
Γ̂Electrode2

=
〈
q̂sp, ψ̂

ϕ̂
sp

〉
Γ̂Electrode2

, (50)

where q̂sp represents the electric charge density, which is calculated from the total electric charge Q

collected on the electrode surface, using the relationship q̂sp = Q/A, where A denotes the electrode

surface area. From Eqs. (44) and (45), we derive that ∂Q
∂t = −φ̂sp/R. Over the time interval T , the

total electric charge is given by:

Q =

∫ T

0

−φ̂sp/R dt . (51)

If we consider (n + 1) time steps t1, t2, . . . , tn, tn+1 with a constant time step interval ∆t = tn+1 − tn,

where the results up to the n-th time step are known, and the (n + 1)-th time step is currently being

calculated, Eq. (51) can be simplified to:

Qn+1 = −∆t

R
φ̂n+1

sp +Qn, (52)

whereQn represents the electric charge accumulated over n time steps, calculated asQn =
∑n

i=1 −
∆t
R φ̂

i
sp.

This approach requires the potential to be integrable and continuous over the period T , so that it re-

mains bounded within the interval to allow accurate integration, typically necessary for computing

accumulated quantities over time. With Eqs. (50), (51) and (52), the exact formulation for the circuit

term in Eq. (49-3) is thus expressed as:

−
〈
D̂sp · n̂sp, ψ̂

ϕ̂
sp

〉
Γ̂Electrode2

=

〈
− ∆t

RA
φ̂n+1

sp +
Qn

A
, ψ̂ϕ̂sp

〉
Γ̂Electrode2

. (53)

Incorporating Eq. (53) integrates the resistor-based closed circuit into the PFEH system. This inclusion

allows for the quantification of electrical energy harvested from the kinetic energy of fluid flow. Concur-

rently, alterations in the electric field within the piezoelectric solid, as a result of the energy-consuming

resistor, will affect the structural stiffness of the PFEH system, thus its dynamics. This mutual ef-

fect leads to complex, fully coupled, multi-physical interactions, which are important to consider when

evaluating the system’s overall functionality.
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3.2 Weak forms for whole coupled PFEH system

After developing the weak formulations for the fluid-structure-piezoelectric coupled system within their

respective domains, we now transition to unified formulations using the classic monolithic FSI frame-

work. This method involves treating the fluid and structural domains as a single, surface-coupled

physical entity. Within this unified framework, the velocity field v̂ and the displacement field û are

defined continuously across all the domains in their reference configurations. It is important to note

that in the fluid domain, the displacement field is not directly associated with the velocity field. The

relationships between variables in the unified and individual domains are expressed as follows:

v̂ =


v̂f in Ω̂f

v̂ss in Ω̂ss

v̂sp in Ω̂sp

. (54)

û =


ûA in Ω̂f

ûss in Ω̂ss

ûsp in Ω̂sp

. (55)

In the domain Ω̂ and considering the time interval T , we express the variational formulation of the

coupled system in a simplied form, with the objective to solve Û = {v̂, û, η̂A, p̂, φ̂, ϕ̂} using the test

functions Ψ̂ = {ψ̂v̂, ψ̂û, ψ̂η̂A, ψ̂
p̂, ψ̂φ̂, ψ̂ϕ̂}, as follows:

∫ T

0

Â(Û)(Ψ̂)dt =

∫ T

0

b̂(Ψ̂)dt ∀Ψ̂ . (56)

Disregarding the body forces, the right-hand side term b̂(Ψ̂) =
(
ρsf̂s, ψ̂

v̂
)
Ω̂s

equals zero. By combining

Eqs (46)–(53), we formulate the ”truly monolithic” weak form for the coupled problem across the entire

domain Ω̂ = Ω̂f ∪ Ω̂ss ∪ Ω̂sp, which leads to:

Â(Û)(Ψ̂) =

+
(
ρfJA

∂v̂
∂t , ψ̂

v̂
)
Ω̂f

+
(
ρfJAF

−1
A

(
v̂ − ∂û

∂t

)
· ∇v̂, ψ̂v̂

)
Ω̂f

+
(
JAσ̂fF

−T
A , ∇̂ψ̂v̂

)
Ω̂f

−
(
JAσ̂fF

−T
A · n̂FSI, ∇̂ψ̂v̂

)
Γ̂FSI

+
(
∇ ·

(
ĴAF̂

−1
A v̂

)
, ψ̂p̂

)
Ω̂f

+
(
η̂A, ψ̂

η̂
A

)
Ω̂f

−
(
αu∇̂û, ∇̂ψ̂η̂A

)
Ω̂f

+
(
αu∇̂η̂A, ∇̂ψ̂û

)
Ω̂f

+
(
ρss

∂v̂
∂t , ψ̂

v̂
)
Ω̂ss

+
(
Π̂ss, ∇̂ψ̂v̂

)
Ω̂ss

+
〈
Π̂ss · n̂FSI, ψ̂

v̂
〉
Γ̂FSI

−
〈
Π̂ss · n̂SSI, ψ̂

v̂
〉
Γ̂SSI

+
(
ρss

(
∂û
∂t − v̂

)
, ψ̂û

)
Ω̂ss

+
(
ρsp

∂v̂
∂t , ψ̂

v̂
)
Ω̂sp

+
(
Π̂sp, ∇̂ψ̂v̂

)
Ω̂sp

+
〈
Π̂sp · n̂FSI, ψ̂

v̂
〉
Γ̂FSI

+
〈
Π̂sp · n̂SSI, ψ̂

v̂
〉
Γ̂SSI

+
(
ρsp

(
∂û
∂t − v̂

)
, ψ̂û

)
Ω̂sp

−
(
D̂sp,−∇̂ψ̂ϕ̂

)
Ω̂sp

+

〈
−β∇̂φ̂, D̂sp

∣∣∣
ψ̂v̂,ψ̂ϕ̂

〉
Γ̂electrode

+
〈
− ∆t

RA φ̂+ Qn

A , ψ̂ϕ̂
〉
Γ̂electrode

+
((

∂φ̂
∂t − ϕ̂

)
, ψ̂φ̂

)
Ω̂sp

= 0 ∀ψ̂v̂, ψ̂û, ψ̂η̂A, ψ̂
p̂, ψ̂φ̂, ψ̂ϕ̂

(57)

Eq. (57) requires solving six different variables, which include, the global velocity v̂ and displacement

û across Ω̂, the intermediate mesh variable η̂A within Ω̂f , fluid pressure p̂ in Ω̂f , and both electric
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potential φ̂ and electric potential rate ϕ̂ in Ω̂sp. It is important to note that, while the domains form

a unified entity, they are distinctively identified for each component, as illustrated in Figure 3 (a) and

(b). At each interface, specifically on the FSI and SSI boundaries, mesh nodes are fully shared, ensuring

satisfaction of continuity conditions. Consequently, integral terms associated with the FSI and SSI

boundaries are omitted from Eq. (57) in the following.

Figure 3: Monolithic computational mesh: (a) illustration of the continuous spa-
tial domains (b) the discretized domain representation (c) interface elements (d) Qc

2, P
dc
1

isoparametric finite element.

3.3 Time discretization method

Following the presentation of truly monolithic weak formulations in Section 3.2, the subsequent step

involves discretizing these formulations within finite-dimensional subspaces. This leads to semi-discrete

equations ready for numerical resolution through an appropriate time discretization scheme. In this

study, we utilize the implicit One-Step-θ method, which offers flexibility to treat both stationary and

time-dependent solutions depending on the chosen θ value. For a generic variable a, the One-Step-θ

method for the (n+ 1)th time step is formulated as:

[
∂a

∂t
+ f(a)

]n+1

= 0 → an+1 − an

∆t
+ θ[f(a)]n+1 + (1− θ)[f(a)]n = 0 (58)

Three values of θ are commonly employed according to specific problem-solving requirements. For

stationary solutions, setting θ = 1 and ∆t → +∞ aligns with the Euler scheme. This method is

unconditionally stable but offers only first-order time accuracy. For time-dependent solutions, the

Crank-Nicolson scheme, with θ = 1/2, provides second-order time accuracy but may encounter in-

stabilities with challenging initial and boundary data. A variant, the Shifted Crank-Nicolson scheme

(θ = 1/2 + ∆t), ensures global stability but at the expense of second-order accuracy, which is the

approach adopted in this study.
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The implementation of the Shifted Crank-Nicolson scheme begins by defining Â(Û)(Ψ̂) and group-

ing these into four categories based on terms in Eq. (57): time equation terms ÂT (Û)(Ψ̂), implicit

terms ÂI(Û)(Ψ̂) (always kept implicit, such as fluid incompressibility), pressure terms ÂP (Û)(Ψ̂),

circuit terms ÂC(Û)(Ψ̂), and all remaining terms ÂE(Û)(Ψ̂) (including stress terms, convection, etc.),

which leads to:

ÂT (Û)(Ψ̂) = +

(
ρfJA

∂v̂

∂t
, ψ̂v̂

)
Ω̂f

−
(
ρfJAF

−1
A

∂û

∂t
· ∇v̂, ψ̂v̂

)
Ω̂f

+

(
ρss

∂v̂

∂t
, ψ̂v̂

)
Ω̂ss

+

(
ρss

∂û

∂t
, ψ̂û

)
Ω̂ss

+

(
ρsp

∂v̂

∂t
, ψ̂v̂

)
Ω̂sp

+

(
ρsp

∂û

∂t
, ψ̂û

)
Ω̂sp

+

(
∂φ̂

∂t
, ψ̂φ̂

)
Ω̂sp

,

(59)

ÂI(Û)(Ψ̂) = +
(
∇ ·

(
ĴAF̂

−1
A v̂

)
, ψ̂p̂

)
Ω̂f

+
(
η̂A, ψ̂

η̂
A

)
Ω̂f

−
(
αu∇̂û, ∇̂ψ̂η̂A

)
Ω̂f

+
(
αu∇̂η̂A, ∇̂ψ̂û

)
Ω̂f

,

(60)

ÂP (Û)(Ψ̂) = +
(
JAσ̂fpF

−T
A , ∇̂ψ̂v̂

)
Ω̂f

, (61)

ÂC(Û)(Ψ̂) = +

〈
− ∆t

RA
φ̂+

Qn

A
, ψ̂ϕ̂

〉
Γ̂Electrode2

, (62)

ÂE(Û)(Ψ̂) = +
(
ρfJAF

−1
A v̂ · ∇v̂, ψ̂v̂

)
Ω̂f

+
(
JAσ̂fvF

−T
A , ∇̂ψ̂v̂

)
Ω̂f

+
(
Π̂ss, ∇̂ψ̂v̂

)
Ω̂ss

−
(
ρssv̂, ψ̂

û
)
Ω̂ss

+
(
Π̂sp, ∇̂ψ̂v̂

)
Ω̂sp

−
(
ρspv̂, ψ̂

û
)
Ω̂sp

−
(
D̂sp,−∇̂ψ̂ϕ̂

)
Ω̂sp

+

〈
−β∇̂φ̂, D̂sp

∣∣∣
ψ̂v̂,ψ̂ϕ̂

〉
Γ̂Electrode2

−
(
ϕ̂, ψ̂φ̂

)
Ω̂sp

, (63)

in which the reduced tensors σ̂fp and σ̂fv are expressed as: σ̂fp = −p̂fI, σ̂fv = +ρfµf

(
(∇v̂) F̂−1

A + F̂−T
A (∇v̂)

T
)
.

Specifically, the time derivative terms in ÂT (Û) can be treated by a backward difference quotient. For

the time step tn+1, we will compute v̂ := v̂n+1, û := ûn+1, φ̂ := φ̂n+1 through:

ÂT

(
Û
)
(Ψ̂) ≈ ÂT

(
Ûn+1,k

)
(Ψ̂)

= +
(
ρf Ĵ

n+1,θ
A

v̂−v̂n

∆t , ψ̂v̂
)
Ω̂f

−
(
ρf ĴAF̂

−1
A

û−ûn

∆t · ∇̂v̂, ψ̂v̂
)
Ω̂f

+
(
ρss

v̂−v̂n

∆t , ψ̂v̂
)
Ω̂ss

+
(
ρss

û−ûn

∆t , ψ̂û
)
Ω̂ss

+
(
ρsp

v̂−v̂n

∆t , ψ̂v̂
)
Ω̂sp

+
(
ρsp

û−ûn

∆t , ψ̂û
)
Ω̂sp

+
(
φ̂−φ̂n

∆t , ψ̂φ̂
)
Ω̂sp

,

(64)

where the Ĵn+1,θ
A is based on the interpolation expression: Ĵn+1,θ

A = θĴn+1
A + (1 − θ)Ĵn

A. With the

former time step given by v̂n := v̂(tn), ûn := û(tn), φ̂n := φ̂(tn), we will obtain the solution Ûn+1 =

{v̂n+1, ûn+1, η̂n+1
A , p̂n+1, φ̂n+1, ϕ̂n+1}, such that:
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ÂT

(
Ûn+1,k

)
(Ψ̂) + θÂE

(
Ûn+1

)
(Ψ̂) + ÂP

(
Ûn+1

)
(Ψ̂) + ÂC

(
Ûn+1

)
(Ψ̂) + ÂI

(
Ûn+1

)
(Ψ̂)

= −(1− θ)ÂE

(
Ûn

)
(Ψ̂) + θb̂n+1(Ψ̂) + (1− θ)b̂n(Ψ̂)

(65)

With Eq. (65), we have completed the time discretization process. The remaining terms to be resolved

are on the left-hand side of the equation, representing the unknowns to be solved. The right-hand

side contains the already calculated quantities from the previous time step, represented by Ûn =

v̂n, ûn, η̂n
A, p̂

n, φ̂n, ϕ̂n.

3.4 Spatial discretization method

Following time discretization, the next step involves spatial discretization of the equations using the

finite element Galerkin method. This method will be applied within the continuous spatial domains

designated as Ω̂ = Ω̂f ∪ Ω̂ss ∪ Ω̂sp. Each of these domains, Ω̂f , Ω̂ss, and Ω̂sp, represents a distinct

subdomain. To numerically solve these equations, the continuous spatial domain is approximated by a

discrete domain Ω̂h, divided into open cells with polygonal boundaries. The set of trilaterals covering

Ω̂h is denoted as T̂h. Each regular trilateral in T̂h represents an element Ω̂e
h in the discretized domain,

as depicted in Figure 3 (c) − (d). The assumption of regularity ensures that any two trilaterals in T̂h
are either disjoint or share only a common vertex or edge.

It is important to choose appropriate finite element spaces within the trilaterals T̂h. The chosen

finite element spaces should conform to the monolithic approach, which requires consistent usage of finite

elements throughout the fluid and solid regions composing the system. Given the incompressibility of

all materials involved, we have selected a specific pair of finite element spaces, Qc
2, P

dc
1 , typically utilized

for problems with incompressibility constraints [38, 39]. This choice not only ensures stability but also

maintains consistency in addressing incompressibility across the system, leading to effective and coherent

numerical resolution. The reference trilaterals for this configuration are denoted by T̂
2

= [0, 1]2. The

spaces U ,V,W,X ,Y,P over the interval [tn, tn+1] are thus approximated by the Qc
2, P

dc
1 pair as follows:

Uh =

{
ûh ∈

[
C
(
Ω̂h

)]2
, ûh|T̂ ∈

[
Qc

2(T̂)
]2

∀T̂ ∈ Th, ûh = 0 on Γ̂D

}
Vh =

{
v̂h ∈

[
C
(
Ω̂h

)]2
, v̂h|T̂ ∈

[
Qc

2(T̂)
]2

∀T̂ ∈ Th, v̂h = 0 on Γ̂D

}
Wh =

{
η̂h ∈

[
C
(
Ω̂h

)]2
, η̂h|T̂ ∈

[
Qc

2(T̂)
]2

∀T̂ ∈ Th, η̂h = 0 on Γ̂D

}
Xh =

{
φ̂h ∈ C

(
Ω̂h

)
, φ̂h|T̂ ∈ Qc

2(T̂) ∀T̂ ∈ Th, φ̂h = 0 on Γ̂D

}
Yh =

{
ϕ̂h ∈ C

(
Ω̂h

)
, ϕ̂h

∣∣∣
T̂
∈ Qc

2(T̂) ∀T̂ ∈ Th, ϕ̂h = 0 on Γ̂D

}
Ph =

{
p̂h ∈ L2

(
Ω̂h

)
, p̂h|T̂ ∈ P dc

1 (T̂) ∀T̂ ∈ Th
}

(66)

In this set of finite element spaces, ûh, v̂h, η̂h are vector fields where, in a 2-dimensional problem setup,

each node possesses two degrees of freedom. Instead, for the scalar fields such as φ̂h, ϕ̂h and p̂h, each
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node is assigned only one degree of freedom. In this study, to achieve consistent high precision for the

electrical variables, which include the potential and potential rate fields, compared to the mechanical

variables, which include the displacement and velocity fields, we continue to use the Qc
2 element for the

discretization of both the potential and potential rate fields.

3.5 Solution algorithm

After completing the space discretization with the Galerkin method and time discretization with the

shifted Crank-Nicolson scheme, we arrive at a nonlinear algebraic set of equations. These equations

are constructed using the basis of finite element spaces Uh,Vh,Wh,Xh,Yh,Ph, and their corresponding

test function spaces ψ̂v̂, ψ̂û, ψ̂η̂A, ψ̂
p̂, ψ̂φ̂, ψ̂ϕ̂. For each time step, our aim is to find the solution vector:

Ûn+1 = {v̂n+1
h , ûn+1

h , η̂n+1
h , p̂n+1

h , φ̂n+1
h , ϕ̂n+1

h } ∈ Uh × Vh ×Wh ×Xh × Yh × Ph, as defined by:

F̂FF
(
Û
)
= 0 . (67)

This equation F̂FF represents the system described in Eq. (65), which incorporates nonlinearities from

the fluid’s convective term and the solid’s geometric equations. To address the resolution of the system,

we employ the Newton method, which offers an iterative algorithm combining simplicity and broad

applicability. Notably, quadratic convergence can be achieved when the initial guess is sufficiently close

to the solution. One Newton iteration for solving the system of nonlinear algebraic equations can be

represented as:

Ûn+1 = Ûn − δÛ . (68)

Steps for implementing one iteration according to the Newton method:

• Initial guess: Start with an initial guess for Ûn.

• Evaluate residual and gradients: Calculate the residuum R̂RR
n

= F̂FF(Ûn) and its gradient

matrix ÂAA = ∂F̂FF
∂Û

(Ûn).

• Newton correction: Determine the Newton correction step with δÛ = (ÂAA)−1R̂RR
n
.

• Update solution: Update the solution Ûn+1 = Ûn −
[
∂F̂FF
∂Û

(Ûn)
]−1

F̂FF(Ûn).

• Stopping criteria: Check for convergence by examining the magnitude of the Newton correc-

tion. Terminate the iteration if changes are within acceptable limits or a predefined maximum

number of iterations is reached.

With all discretization methods and solution strategies implemented on the FEniCS platform, we are

ready to conduct validations and simulations using the developed fluid-structure-piezoelectric coupled

model for PFEH.

4 Validations

In this section, we validate the nonlinear monolithic solution scheme developed in Section 3 through a

two-part analysis. The first part addresses fluid-structure interaction cases with geometric nonlineari-

ties. We employ the well-established 2D benchmark problems, specifically FSI3, as proposed by Turek
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and Hron [19]. In the second part, we move our focus to piezoelectric structures coupled with an output

circuit to take into account the direct piezoelectric effect. Here, we simulate a purely piezoelectric solid

structure subjected to harmonic external loads. The electrical output is compared with results obtained

from the commercial finite element software, COMSOL [40].

All simulations were performed using the open-source environment, FEniCS [31] and its extension,

TurtleFSI [41]. We implemented the governing equations of the piezoelectric fluid energy harvesting

system, as described in the previous sections, within FEniCS, which then solves the equations based

on the finite element method. TurtleFSI is a FEniCS extension designed for general fluid-structure

interaction problems. In this work, TurtleFSI has been extended to accommodate more complex cou-

pled problems, such as the integration of fluid-structure-piezoelectric coupling with an external electric

circuit, as depicted in Figure 4.

Figure 4: The relations between different components of the coupling system

Figure 5: Geometry and boundary conditions of benchmark case FSI3

4.1 Validation of the FSI system

Previously, TurtleFSI has been used predominantly for general fluid-structure interaction problems but

has not been applied to piezoelectric systems in scenarios involving flow-induced vibrations. The aim of

this case study is to evaluate its compatibility with typical flow-induced vibration system architectures

for energy harvesting. These systems usually consist of a slender vibrating structure connected to a
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Table 1: Material parameters from FSI3

Domain Ω̂ss Ω̂f

Parameter ρss c11 c12 ρf µf v

(kg/m3) (MPa) (MPa) (kg/m3) (kg/(m · s)) (m/s)

Value 1000 12 8 1000 1 2

Table 2: Case configurations from FSI3

Case name ∆t (s) Mesh name Mesh number

FSI3-(1) 0.1 Mesh-level2 7689

FSI3-(2) 0.02 Mesh-level2 7689

FSI3-(3) 0.01 Mesh-level2 7689

FSI3-(4) 0.001 Mesh-level2 7689

FSI3-(5) 0.01 Mesh-level1 4133

FSI3-(6) 0.01 Mesh-level3 15646

FSI3-(7) 0.01 Mesh-level4 29395

bluff-body-based vortex generator under steady or unsteady fluid flow conditions. Before implementing

integrated electromechanical coupling, it is important to validate the associate modeling techniques,

ranging from model parameter settings to finite element discretization, against established benchmarks

in the literature. In this regard, we utilize the FSI3 benchmark, which focuses on the flow-induced

vibrations of a slender elastic structure involving large deformations, located downstream of a rigid

circular cylinder within a channel flow. The geometry of the physical problem is depicted in Figure

5. Point A (0.6, 0.2), situated at the center of the structure’s free end, is used as the control point for

data extraction. The origin of the axes is positioned at the bottom-left corner node of the fluid domain.

This intentionally asymmetrical setup is intended to prevent any reliance on computational precision

for triggering potential oscillations.

The detailed physical parameters for both the fluid and solid domains are provided in Table 1. The

solid domain utilizes a Saint-Venant Kirchhoff material, known for its elastic properties, to form a solid

plate positioned behind a cylinder with sharp corners. Concurrently, the fluid domain is characterized

by a viscous flow with a Reynolds number of Re = 200, calculated based on the cylinder’s diameter

and the average inflow velocity. This configuration leads to unsteady vortex shedding in the wake of

the cylinder, resulting in dynamic fluid-structure interaction scenarios.

Concerning the boundary conditions, a parabolic inflow velocity profile is implemented at the inlet,

defined as:

v̂1 =


1.5v x̂3(0.41−x̂3)

(0.41/2)2
1−cos(0.5πt)

2 , if t < 2

1.5v x̂3(0.41−x̂3)

(0.41/2)2
, otherwise

, (69)

where v is the mean inflow velocity, set at 2m/s for this benchmark. No-slip conditions are applied on

the top and bottom channel walls as well as on the rigid circular surface. At the outlet, a zero normal

stress boundary condition is enforced.

Validation cases are conducted across varying time steps and mesh densities, as outlined in Table

2. Cases FSI3-(1) through FSI3-(4) utilize a consistent mesh (Mesh-level2) but with decreasing time

steps from 0.1 to 0.001 s. Cases FSI3-(5) through FSI3-(7) examine increasing mesh densities across the
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entire computational domain, illustrated in Figure 6.

Dependence on the time step and mesh refinement levels is compared in in Table 3 and 4, as well

as in Figure 7. We focus on parameters which include displacements in directions x̂1 and x̂3, denoted

as û1 and û3 respectively, that we measure at point A (0.6, 0.2). Aerodynamic drag and lift coefficients,

Cd and Cl, for the entire bluff-body are also examined. The results are confronted against benchmark

cases based on various strongly coupling methods provided in the review by Turek et al. [42], which

utilize the identical time step ∆t = 0.01 s across different methods.

According to Table 3 and Figure 7(a), a time step of 0.1 s is excessively large since it results in no

vibrations. Nonetheless, the solver remains stable, showing the robustness of the shifted Crank-Nicolson

scheme. Then, reducing the time step to 0.01 s and smaller leads to consistent, self-sustained, periodic

oscillations. The minor differences observed in the results comparing the time steps 0.01 s and 0.001 s

indicate that a ×10 increase in the number of time steps, thus in computational cost, does not propor-

tionately enhance the accuracy. Meanwhile, from Table 4 and Figure 7(b), an increase in mesh density

shows only a marginal impact on the outcomes, with results remaining nearly consistent above Mesh-

level1. A slight time delay is observed in Mesh-level1 compared to denser meshes. Among the seven

cases, Case FSI3-(3) with a time step of 0.01 s and Mesh-level2 offers an optimal balance between com-

putational expense and accuracy, aligning well with data from the reference groups. In conclusion, the

TurtleFSI environment and the presented modeling setup have demonstrated their compatibility with

the modeling of flow-induced vibration systems, typically employed in energy harvesting applications.

Figure 6: Four meshes densities of benchmark case FSI3

4.2 Validation of Piezoelectric Coupling

Following the evaluation of the FSI behavior for the flow-induced vibrator model, this section moves

attention to the modeling of piezoelectric components. Representing electromechanical coupling ac-

curately is essential for developing an integrated electromechanical system with FSI. To validate our

model, we compare results with those obtained from the commercial software COMSOL. Our focus is

on analyzing both the vibration and electrical output of a structure composed entirely of piezoelectric

material, which is connected to a resistor-based circuit. The model uses a 2-dimensional plane strain

approach, and features x̂3-polarization as illustrated in Figure 8. The piezoelectric structure is clamped

along the lower surface. Both the upper and lower surfaces of the piezoelectric structure coincide with
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Table 3: Validation for time independence

∆t û1 of PointA û3 of PointA Cd Cl

(s) (m) (m)

FSI3-(1) 0.1 -0.0006±0.0000 0.0116±0.0001 2.283±0.000 1.429±0.002

FSI3-(2) 0.02 -0.0026±0.0027 0.0021±0.0348 2.351±0.263 0.002±0.906

FSI3-(3) 0.01 -0.0024±0.0023 0.0013±0.0320 2.266±0.091 0.010±0.625

FSI3-(4) 0.001 -0.0025±0.0024 0.0014±0.0351 2.273±0.101 0.014±0.629

ref-Turek -0.0029±0.0027 0.0015±0.0349 2.293±0.136 0.010±0.767

ref-Schafer -0.0027±0.0025 0.0015±0.0344 2.286±0.113 0.011±0.749

ref-Rannacher -0.0028±0.0027 0.0012±0.0346 2.262±0.131 0.012±0.764

ref-Wall -0.0020±0.0019 0.0014±0.0290 2.170±0.088 0.013±0.881

Table 4: Validation for mesh independence

Mesh û1 of PointA û3 of PointA Cd Cl

(m) (m)

FSI3-(5) Mesh-level1 -0.0024±0.0023 0.0016±0.0319 2.230±0.076 0.010+-0.632

FSI3-(3) Mesh-level2 -0.0024±0.0023 0.0013±0.0320 2.266±0.091 0.010±0.625

FSI3-(6) Mesh-level3 -0.0024±0.0022 0.0013±0.0320 2.290±0.094 0.012±0.656

FSI3-(7) Mesh-level4 -0.0024±0.0022 0.0014±0.0320 2.292±0.095 0.019±0.660

ref-Turek -0.0029±0.0027 0.0015±0.0349 2.293±0.136 0.010±0.767

ref-Schafer -0.0027±0.0025 0.0015±0.0344 2.286±0.113 0.011±0.749

ref-Rannacher -0.0028±0.0027 0.0012±0.0346 2.262±0.131 0.012±0.764

ref-Wall -0.0020±0.0019 0.0014±0.0290 2.170±0.088 0.013±0.881

the respective electrodes Γ̂electrode2 and Γ̂electrode1. The lower electrode surface Γ̂electrode1 is connected

to the ground. A resistor-based output circuit with resistance R is connected via wires between the two

electrodes.

To study the vibration properties, an uniformly distributed harmonic pressure load, P (t) = P0 sin(2πt
Nperiod

T ),

is exerted on the upper surface of the piezoelectric structure, where P0 is the amplitude and Nperiod is

the number of load cycles during the time interval [0, T ]. The material properties of the piezoelectric

structure, composed of PZT5A, are detailed in Table 5. The dimensions of the structure in the plane

strain configuration are L × h in x̂1 and x̂3 directions. Under the plane strain assumption, the struc-

ture’s thickness w in the x̂2-direction is considered to be a unit thickness of 1m. Point B (L/2, h) is

located at the center of the structure’s upper surface and serves for result data extraction.

Eight cases are outlined in Table 6, categorized into two size groups: Size 1 and Size 2. For

Size 1, with dimensions L = 0.01m and h = 0.001m, six scenarios (Piezo-(1) to Piezo-(6)) vary

the number of load cycles (2, 4, or 8) and resistance (104 Ω or 1012 Ω). Size 2 cases, namely Piezo-

(7) and Piezo-(8), feature larger dimensions (L = 0.05m, h = 0.01m) with a pressure amplitude of

550MPa, differing in resistance to simulate circuit pass and open conditions. These cases are designed to

comprehensively validate piezoelectric simulations under a range of conditions, including different sizes,

pressures, numbers of periods, and resistances. Triangular mesh elements discretize the piezoelectric

solid domain Ω̂sp for both sizes, as shown in Figure 9. A consistent time interval T = 4 s and time step

∆t = 0.01, s are used across all cases for uniform comparison.

The displacement in the x̂3-direction, û3, the output potential, φ̂, and charge density, Q/A, at

point B are depicted in Figures 10, 11, and 12. The simulation results from our model align closely with

those obtained in COMSOL for each case, considering variations in structure sizes, load amplitudes,
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Figure 7: Displacement results of PointA in x̂3 direction with (a) different time steps
and (b) mesh densities.

Table 5: Material parameters for the piezoelectric structure
(PZT5A)

Domain Ω̂sp

Parameters
ρsp c11 c13 c33 c44 e15 e31 e33 ϵ11 ϵ33

(kg/m3) (GPa) (GPa) (GPa) (GPa) (C ·m−2) (C ·m−2) (C ·m−2) (C ·V−1) (C ·V−1)

Value 7750 120.35 75.09 110.87 21.05 12.29 -5.35 15.78 8.14× 10−9 7.32× 10−9

load cycle numbers, and circuit resistances. Due to the simplicity of the piezoelectric structure and the

harmonic nature of the external load, interconnections among the three physical quantities mentioned

are observed in Figures 10-12. Notably, when comparing û3 and φ̂ at Point B, for a closed circuit

(R = 104 Ω), the temporal variation of the output potential φ̂ exhibits a quarter-phase lag relative to

the displacement û3; however, in an open circuit (R = 1012 Ω), the output potential φ̂ is in phase with

û3. This phase behavior can be attributed to the differing conditions in closed versus open circuits,

where the high resistance in an open circuit impedes the flow of charge, affecting the accumulation

patterns of charge density on the electrode surface differently, as illustrated in Figure 12. In Figure 11

(a)-(f), the peak value of the output potential φ̂ increases with the number of load cycles in a closed

circuit condition, attributed to a faster rate of displacement change which enhances the rate of charge

accumulation, as seen in Figure 12, leading to an increase in current. However, under open circuit

conditions, this phenomenon is not observed, as the accumulated charge from structure deformation is

retained only on the upper electrode, without forming an effective electric current. Additionally, by

comparing φ̂ and Q/A at point B, it is evident that the output potential φ̂ is directly proportional to

the negative of the time derivative of Q/A. This relationship is supported by Eqs. (44-45): φ̂ = −∂Q
∂t R.

Hence, when the potential φ̂ reaches a maximum, the charge density Q/A is at its minimum, and vice

versa. In addition, the contours of the potential field for case Piezo-(1) at time t = 1.00 s are presented

in Figure 13.
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Figure 8: Geometry and boundary conditions of piezoelectric structure case: (a) 3D
view (b) 2D view.

Figure 9: Meshes of piezoelectric structure cases with two sizes: (a) Size 1 (b) Size 2.

Table 6: Case configurations for piezo validation

Case name Size (m) P0 (MPa) Nperiod R (Ω)

Piezo-(1)

Size 1:
L = 0.01, h = 0.001 4

2 104

Piezo-(2) 1012

Piezo-(3) 4 104

Piezo-(4) 1012

Piezo-(5) 8 104

Piezo-(6) 1012

Piezo-(7) Size 2:
L = 0.05, h = 0.01 550 4 104

Piezo-(8) 1012
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Figure 10: Displacement of Point B in x̂3-direction: (a) Pizeo-(1), (b) Pizeo-(2), (c)
Pizeo-(3), (d) Pizeo-(4), (e) Pizeo-(5), (f) Pizeo-(6), (g) Pizeo-(7), (h) Pizeo-(8)
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Figure 11: Potential output on electrode 2: (a) Pizeo-(1), (b) Pizeo-(2), (c) Pizeo-(3),
(d) Pizeo-(4), (e) Pizeo-(5), (f) Pizeo-(6), (g) Pizeo-(7), (h) Pizeo-(8)

28



Figure 12: Electric charge density on electrode 2: (a) Pizeo-(1), (b) Pizeo-(2), (c)
Pizeo-(3), (d) Pizeo-(4), (e) Pizeo-(5), (f) Pizeo-(6), (g) Pizeo-(7), (h) Pizeo-(8)

Figure 13: Potential distributions on the top surface of Case Piezo-(1) at t = 1.00 s
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5 Integrated fluid-structure-piezoelectric interactions

After independently validating the implemented model for its ability to simulate FSI behavior in flow-

induced vibrator systems and its effectiveness in modeling electromechanical coupling in piezoelectric

components, this section presents several numerical cases that investigate the efficacy of the devel-

oped monolithic coupling in the integrated fluid-structure-piezoelectric coupled system with geometric

nonlinearities. The model represents a PFEH system comprising a slender structure embedded with

piezoelectric components, attached to a rigid bluff-body cylinder for vibration energy harvesting in fluid

flow environments. To begin with, we evaluate the impact of varying the cross-sectional shapes of the

base plate on vibration behavior and the consequent influence on electric energy output. Subsequently,

we explore the effects of the locations and architectures of the piezoelectric components embedded in

the base plate. For example, we consider piezoelectric components with inclusions, reflecting the trend

towards increasingly employed architectured piezoelectric components. These cases demonstrate the

advantages of full-scale finite element modeling in the design of PFEH systems, where simplified beam

and plate-based models are inadequate.

5.1 Basic configuration for the reference case

All cases in Section 5 are based on a standard 2D scenario involving monolithic fluid-structure-piezoelectric

coupling, as illustrated in Figure 14. We perform transient dynamic simulations to analyze energy out-

put in a PFEH system immersed in uniform viscous fluid flow, denoted as Ω̂f . This PFEH system

features a slender base structure, Ω̂ss, to which a piezoelectric patch, Ω̂sp, is attached on the upper sur-

face. The system also includes a resistor-based output electric circuit. The base structure is connected

at its left end to a rigid cylinder, which functions as a vortex generator.

Material properties for the PFEH system components are listed in Table 7. The dimensions of the

fluid domain, the base plate, and the piezoelectric patch are specified as 1.6 × 0.6m, 0.6 × 0.001m,

and 0.3× 0.002m in the x̂1 and x̂3 directions, respectively. The diameter of the rigid cylinder is 0.1m.

Electrodes are positioned at the upper and lower surfaces of the piezoelectric patch, with Γ̂Electrode1

connected to the ground. A wire linking the two electrodes introduces a resistor with a resistance

value of 5 × 104 Ω. Control points for result extraction are assigned to Point A, located at the center

of the right end of the base plate, and Point B, at the center of the lower surface of the piezoelectric

patch Γ̂Electrode1. The fluid domain’s inflow boundary is characterized by a uniform velocity, v̂1 = v,

set at 2m/s. Symmetry boundary conditions are applied to the top and bottom sides, while a zero

normal stress condition is enforced at the outflow. The surface of the circular bluff-body adheres to

a no-slip boundary condition. To discretize the monolithic fluid-structure coupled system, triangular

finite elements are used throughout the domains, as illustrated in Figure 15. The mesh is constructed

as a unified structure, with distinct markers identifying different domains. This setup ensures that

interfaces between domains share the same nodes, facilitating accurate simulations. The total number

of elements in this reference case is 30198. With this foundational case established, we can proceed to

the following sections by modifying the base plate’s cross-sectional shape and altering the piezoelectric

locations and inclusions.
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Figure 14: The fluid-structure-piezoelectric coupled system: geometry and boundary
conditions.

Figure 15: The fluid-structure-piezoelectric coupled system: computational mesh.

Table 7: Material composition of the coupled system

Domains Ω̂f (Glycerine) Ω̂ss (Aluminum alloy) Ω̂sp (PZT5A)

Parameters
ρf µf v ρss c11 c12

(kg/m3) (kg/(m · s)) (m/s) (kg/m3) GPa GPa

Values 1260 1.42 2 2800 112 60.5 Listed in Table 5
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5.2 Effects of base plate design on energy efficiency

Geometry design of the base plate, for example, its cross-sectional shape, is critical in determining its

vibration characteristics, which in turn affects the electric energy output of the piezoelectric energy

harvesting system. This influence operates through a two-fold mechanism: Firstly, the shape of the

base plate determines its stiffness; Secondly, the specific geometry of the base plate modifies the local

fluid flow conditions, which in turn shapes the structure’s vibration. This highlights the importance of

employing full-scale finite element models, as proposed in the current study, for their detailed account

of the specific geometry of the structure and the interaction with the local fluid flow. Such detailed

modeling is crucial, as simplified models based on beams or plates often fall short in capturing these

complex dynamics.

Since the piezoelectric patch is affixed to the upper surface of the base plate, we have varied the

plate’s cross-sectional shape by altering the lower surface. To explore this dynamic, we modified the

lower surface of the base plate, from a straight line in the standard configuration (Section 5.1) to a

sinusoidal shape. This new shape is defined by the function Amplitude·sin
(
2π (x̂1 − 0.25)

Nperiod

L

)
+0.2,

as illustrated in Figure 16. To assess the impact of Amplitude and Nperiod, a series of simulation cases

have been established, as outlined in Table 8. Cases FSEI-(2), (3), and (6) feature amplitudes of

3/10hss, 4/10hss, and 5/10hss, respectively. Additionally, Cases FSEI-(4) through (6) examine Nperiod

values ranging from 2 to 6.

Figure 16: The sinus shape design for the base plate: (a) reference case (b) sinus based
plate case

The numerical simulation results depicting vibration and energy output under various sinus shapes

for the base plate are presented in Figures 17–22 and Table 9.

Case FSEI-(1) establishes a standard reference scenario for comparison with other cases that involve

modifications to the base plate geometry. Figure 17 shows vorticity contours (using the Q criterion) that

illustrate the generation and development of vortices within a single oscillation cycle of displacement (û3

at Point A) in Case FSEI-(1). This visualization allows better understanding the interaction between

Table 8: Sinus shape configurations for the base plate

Case name sin-Amplitude sin-Nperiod

FSEI-(1) / /
FSEI-(2) 3/10hss 6
FSEI-(3) 4/10hss 6
FSEI-(4) 5/10hss 2
FSEI-(5) 5/10hss 4
FSEI-(6) 5/10hss 6
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the plate and dynamic flow, where the response appears as a traveling wave with increasing amplitude

from the leading edge to the trailing edge. As the tail reaches maximum displacement, strong vorticity

is shed, forming discrete vortices in the wake as the tail sweeps back through the zero displacement

point. This symmetrical process results in cyclic variation in electrical energy output.

Influence of the sinus shape amplitude has been explored. In Figure 18, the transient history of

displacement at Point A, the full-body lift coefficient, output potential, and power of the piezoelectric

patch are observed with varying sinus amplitudes. These physical quantities exhibit synchronized

variations, and as the sinus amplitude increases, they take longer to achieve periodic cycle fluctuations,

indicating a decrease in oscillation frequencies f , as outlined in Table 9. This decrease is attributable to

the sinus shape of the plate cross-section causing a shift in the overall mass distribution of the base plate

towards the free end, therefore reducing the resonant frequency of the structure [43]. The phase plots

in 20 (a)-(c), (f) show that phases spiral to a typical limit cycle trajectory (LCO) under all conditions.

Although an increase in sinus amplitude enhances the base plate vibration amplitude, this is primarily

observed in the front half of the base plate and not in the second half that controls the deformation of

the piezoelectric patch.

To evaluate the energy harvesting efficiency of the fluid-structure-piezoelectric coupled system, we

employ the classical definition used for wind turbines. This definition calculates efficiency as the ratio

of the mean power output to the mean kinetic energy flux passing through the section occupied by

the device within the flow [44]. This leads to the expression: efficiency = AveragedPower
0.5ρv3(2û3,max)

. Observations

indicate a decrease in averaged output powers and an increase in û3,max with rising sinusoidal shape

amplitudes, suggesting a reduction in energy harvesting efficiency, as detailed in Table 9.

We next consider the influence of the sinus shape period number, Nperiod. Figure 19 displays

the transient history of displacement at Point A, the full-body lift coefficient, potential, and power

of the piezoelectric patch with varying Nperiod. The transient responses with a smaller Nperiod = 2

coincide with those of the reference case ref-FSEI(1). However, results for larger Nperiod = 4, 6 show a

closer resemblance due to the steeper cross-sectional shape gradient of the base plate induced by a larger

Nperiod, although the effects of the shape do not continue to intensify beyond this point. Comparatively,

the sinus shape period number enhances power output more effectively than the sinus shape amplitude.

However, larger Nperiod values are not necessarily advantageous; when Nperiod = 4 (case FSEI-(5)), the

peak power reaches a maximum of 1.72 W, which is 2.42 times that of case ref-FSEI-(1)), as depicted

in Figure 22. In this instance, the vortex formation is significantly stronger in case FSEI-(5) compared

to the other cases at the same response state. Despite reaching this peak, case FSEI-(5) cannot sustain

high power levels for an extended period; thus, case FSEI-(4) achieves the highest average power.

Furthermore, case FSEI-(4) also shows the smallest free-end displacement, as illustrated in Figure 21.

Consequently, by the established metrics, FSEI-(4) maintains the highest system efficiency, as indicated

in Table 9

Despite the weak base plate thickness 0.001m, cases FSEI-(1) to (6) demonstrate that modifications

to the base plate geometry significantly influence the vibration response and the energy output efficiency.

33



Table 9: Statistic data for cases with different sin shapes.

Case name f (Hz) û3,max/L Averaged Power (W) Efficiency (%)

ref-FSEI-(1) 2.00 0.167 0.225 0.0223
FSEI-(2) 1.96 0.185 0.191 0.0171
FSEI-(3) 1.92 0.207 0.170 0.0136
FSEI-(4) 2.13 0.140 0.234 0.0276
FSEI-(5) 1.89 0.217 0.183 0.0139
FSEI-(6) 1.89 0.217 0.139 0.0106

Figure 17: Vortex shedding development within a single oscillation period for case
FSEI-(1)

Figure 18: Time history of (a) displacement û3 of Point A in x̂3 direction, (b) lift

force coefficient of the full structure body (including the rigid part), (c) the potential ψ̂ of
Point B, (d) the power of the output circuit (including cases FSEI-(1), FSEI-(2), FSEI-(3),
FSEI-(6))
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Figure 19: Time history of (a) displacement û3 of Point A in x̂3 direction, (b) lift

force coefficient of the full structure body (including the rigid part), (c) the potential ψ̂ of
Point B, (d) the power of the output circuit (including cases FSEI-(1), FSEI-(4), FSEI-(5),
FSEI-(6))

Figure 20: The phase plane trajectories for cases FSEI-(1) to (6)
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Figure 21: Full-body response of the base plate over a complete oscillation cycle for
cases FSEI-(1) to (6)

Figure 22: Vorticity of cases with different sin shape Nperiod at the same state when
the free end of the base plate reaches its biggest displacement: (a) FSEI-(1), (b) FSEI-(4),
(c) FSEI-(5), (d) FSEI-(6)
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5.3 Effects of piezoelectric patch implementation: location and

architecture

In addition to the base plate geometry, the design and implementation technique of the piezoelectric

patch are important in shaping the energy output behavior of PFEH systems. Recent emergence of

architected piezoelectric sensors, particularly those using composite materials, further amplifies this

point. These sensors employ structured material designs to enhance performance and functionality,

posing modeling challenges for simplified beam or plate models which typically consider homogenized

behaviors. However, factors such as patch thickness, which is often non-negligible, and placement

location lead to complex fluid-structure interactions. These interactions are inadequately represented

by geometrically simplified models but can be accurately captured by full-scale models like the one

used in this study. This section explores various scenarios involving composite piezoelectric components

implemented at different locations within the system. We aim to assess their impact on energy output

efficiency, taking into account the associated FSI effects. This exploration motivates the current test

cases using full-scale models to optimize PFEH systems.

In this section, we use case FSEI-(1) as the reference to explore the effects of varying the position

of the piezoelectric patch along the base plate. The patch is moved from the free end towards the fixed

end of the base plate, as shown in Figure 23(b). The distance from the right edge of the piezoelectric

patch to the free end of the base plate, denoted as δL, is systematically varied with values of 0/8L,

1/8L, 2/8L, and 3/8L. Additionally, to illustrate the capability of our model to capture the internal

structural design of the piezoelectric component, we present a demonstration case depicted in Figure

23(c). In this case, an inclusion made of aluminium alloy, the same material used in Ω̂ss, representing

half the volume of Ω̂sp, has been implemented . Details of the studied cases are listed in Table 10.

Figure 23: Schematic diagram of position change and internal inclusion of piezoelectric
patch: (a) reference case (b) with different locations (c) with a inclusion

The numerical simulation results illustrating the vibration and energy output with varying piezo-

electric patch locations and inclusions are presented in Figures 24-28 and Table 11.

Table 10: Piezoelectric patch configurations

Case name ∆L/L with inclusion in Ω̂sp

FSEI-(1) 0 no
FSEI-(7) 1/8 no
FSEI-(8) 2/8 no
FSEI-(9) 3/8 no
FSEI-(10) 0 yes
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Table 11: Statistics of the cases with different piezoelectric patch
designs.

Case name f (Hz) û3,max/L Averaged Power (W) Efficiency (%)

ref-FSEI-(1) 2.00 0.167 0.225 0.0223
FSEI-(7) 2.33 0.108 0.444 0.0678
FSEI-(8) 2.50 0.038 0.204 0.0882
FSEI-(9) 3.70 0.038 0.032 0.0133
FSEI-(10) 2.17 0.142 0.104 0.0121

The time-domain results shown in Figure 24 clearly demonstrate that the location of the piezoelec-

tric patch has significant impact on both the dynamic response and electrical energy output, exerting a

greater influence than the shape modifications to the base plate discussed in Section 5.2. As the piezo-

electric patch is moved towards the fixed end of the base plate, the displacement amplitude at the free

end decreases, while the vibration frequency increases. Of the four tested locations, the instantaneous

potential amplitude is highest at ∆L = 1/8L, where the instantaneous power is 2.14 times that of case

FSEI-(1). The statistical analysis from Table 11 indicates that while the coupling system produces the

highest average output power at ∆L = 1/8L, the maximum energy conversion efficiency is observed at

∆L = 2/8L. This increased efficiency is attributed to the relatively smaller displacement amplitude at

the free end for case FSEI-(8) at ∆L = 2/8L, which compensates for the decrease in average power.

The phase plane trajectories depicted in Figure 26 reveal that shifting the location of the piezoelec-

tric patch does not prevent the coupled system from eventually stabilizing into a limit cycle oscillation

state after a certain period. However, as ∆L increases, the range of the phase plot diminishes. Ad-

ditionally, the full-body response shown in Figure 27 exhibits a noticeable reduction in the vibration

range of the entire plate structure with increasing ∆L. This reduction can be attributed to two factors:

the transfer of mass from the free end to the fixed end, and an increase in structural stiffness near the

fixed end, which collectively hinder the plate’s ability to generate larger oscillations. Furthermore, the

vorticity plots in Figure 28 display a significant decrease in vorticity intensity as the plate becomes more

rigid and less prone to significant vibrations. This reduction directly affects the intensity of vortices

attached to the plate. These observations are crucial for optimizing the placement of the piezoelectric

element to enhance the electrical energy output efficiency of the system.

In case FSEI-(10), where the piezoelectric component contains an inclusion of aluminium alloy, the

mass near the free end of the plate is reduced due to the lower density of aluminium alloy compared to

the piezoelectric material. This modification leads to a decrease in the amplitude of displacement and

an increase in the vibration frequency near the free end, as illustrated in Figure 25. Consequently, with

implementation of the aluminium inclusion, the electricity output of the coupled system is reduced.

The instantaneous power is lower than that of the reference case, and the averaged power has decreased

by nearly 53% compared to the reference case, as shown in Table 11.

It is important to emphasize that the current scenario does not aim to propose a specific and

effective design for piezoelectric structures. Rather, it highlights the potential of our model, particularly

in accommodating the design of PFEH systems that involve structured components and requirements

for complex fluid-structure interactions.
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Figure 24: Time history of (a) displacement û3 of Point A in x̂3 direction, (b) lift

force coefficient of the full structure body (including the rigid part), (c) the potential ψ̂ of
Point B, (d) the power output (including cases FSEI-(1), FSEI-(7), FSEI-(8), FSEI-(9))

Figure 25: Time history of (a) displacement û3 of Point A in x̂3 direction, (b) lift

force coefficient of the full structure body (including the rigid part), (c) the potential ψ̂
of Point B, (d) the power output (including cases FSEI-(1), FSEI-(10))
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Figure 26: The phase plane trajectories for cases FSEI-(1) and FSEI-(7) to (9)

Figure 27: Full-body response of the base plate over a complete oscillation cycle for
cases FSEI-(1) and FSEI-(7) to (9)
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Figure 28: Vorticity of cases with different sin shape Nperiod at the same state when
the free end of the base plate reaches its biggest displacement: (a) FSEI-(1), (b) FSEI-(4),
(c) FSEI-(5), (d) FSEI-(6)
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6 Conclusion

This study introduces a full-scale finite element model featuring geometric nonlinearities and based on a

monolithic coupling approach for the design and simulation of thin-walled piezoelectric fluid energy har-

vesters (PFEH). Operating within steady or transient fluid environments, these systems require complex

fluid-structure-piezoelectric interactions. The proposed model, implemented within the FEniCS envi-

ronment and extending its TurtleFSI library, addresses several challenges including the incorporation

of piezoelectric materials, the integration of output electric circuits, and the management of electro-

mechanical boundary conditions. For the last point, penalty functions have been used to achieve uniform

electric potentials at electrode surfaces. The development process has been rigorously validated against

literature benchmarks and commercial software outputs, confirming the effectiveness of our approach.

To demonstrate the utility of the model in PFEH design, we explored geometric variations in the

base plate and the piezoelectric patch through a series of test cases. The results reveal that even minor

modifications, such as changing the cross-sectional shape of the base plate or adjusting the location and

internal composition of the piezoelectric patch, significantly influence the system’s vibrational behavior

and subsequently the energy harvesting efficiency. Furthermore, the current emergence of architected

piezoelectric sensors, especially those using composite materials, has added complexities that underline

the necessity of our modeling approach. These observations highlight the role of precise, full-scale finite

element modeling in capturing complex fluid-structure interactions, a task that simplified beam or plate

models struggle with.

However, it is important to recognize the limitations of this methodology. The extensive mesh

requirements for accurate fluid and structure interaction simulation pose significant computational

demands, especially in large-scale applications with complex geometries. Moreover, the monolithic

solution scheme may face challenges at high Reynolds numbers, indicating the potential need to integrate

turbulence models to enhance its applicability. Looking forward, future work will aim to extend this

modeling approach to 3-dimensional problems. Such an expansion is important for the more detailed

design of piezoelectric structures and their microstructures. Moving to a 3-dimensional framework will

not only broaden the model’s applicability but also enable a deeper exploration of the intricate dynamics

inherent in advanced piezoelectric energy systems.
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Appendix A

The linear elasticity matrix for the base plate material Ω̂ss, based on the plane strain assumption in

two-dimensional problems employed in this study, is expressed in the following form:

[Css] =


c11 c12 0

c12 c11 0

0 0 c11−c12
2

 , (70)
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where the parameters c11 and c12 are specific to the material selected for the base plate.

Appendix B

The linear elasticity matrix for the piezoelectric material Ω̂sp, based on the plane strain assumption in

two-dimensional problems used in this study, is expressed in the following form:

[Csp] =


c11 c13 0

c13 c33 0

0 0 c44

 , (71)

where the piezoelectric materials are typically transversely isotropic, meaning the terms in [Csp] differ

from those in [Css].

Additionally, the piezoelectric coupling matrix and the dielectric permittivity matrix are expressed

as follows:

[esp] =


0 e31

0 e33

e15 0

 , (72)

[ϵsp] =

[
ϵ11 0

0 ϵ33

]
, (73)

The parameters within these matrices are specific to the piezoelectric material selected for the piezo-

electric patch.
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Fluid-Structure Interaction: A Comparison of Different Discretization and Solution Approaches,

page 413–424. Springer Berlin Heidelberg, July 2010.

[43] H. Li, C. Tian, and Z. D. Deng. Energy harvesting from low frequency applications using piezo-

electric materials. Applied Physics Reviews, 1(4):041301, December 2014.

[44] S. Michelin and O. Doaré. Energy harvesting efficiency of piezoelectric flags in axial flows. Journal

of Fluid Mechanics, 714:489–504, January 2013.

46


