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ABSTRACT

This paper seeks to improve the state-of-the-art in delay-network-
based analysis-synthesis of measured room impulse responses
(RIRs). We propose an informed method incorporating improved
energy decay estimation and synthesis with an optimized feedback
delay network. The performance of the presented method is com-
pared against an end-to-end deep-learning approach. A formal lis-
tening test was conducted where participants assessed the similar-
ity of reverberated material across seven distinct RIRs and three
different sound sources. The results reveal that the performance of
these methods is influenced by both the excitation sounds and the
reverberation conditions. Nonetheless, the proposed method con-
sistently demonstrates higher similarity ratings compared to the
end-to-end approach across most conditions. However, achieving
an indistinguishable synthesis of measured RIRs remains a persis-
tent challenge, underscoring the complexity of this problem. Over-
all, this work helps improve the sound quality of analysis-based
artificial reverberation.

1. INTRODUCTION

Artificial reverberation is commonly used to synthesize the acous-
tics of physical spaces [1]. A typical approach is to measure a room
impulse response (RIR) and analyze it to obtain parameters used to
specify a reverberator [2]. This analysis-synthesis technique offers
several benefits over direct convolution, such as minimizing data
storage and computational costs while offering parametric tuning
capabilities [1]. However, it relies on the accuracy of both the un-
derlying analysis and synthesis methods.

Early artificial reverberators, based on interconnected delay
lines, required subjective parameter tuning to obtain satisfactory
results [3, 4]. In the early 1990s, a generalized model for feedback
delay networks (FDNs) introduced the use of reverberation time
T60 as a design parameter [5]. Attenuation filters were inserted
in the feedback paths of the FDN, with their coefficients informed
by the frequency-dependent T60 of the measured RIRs [2]. More-
over, to keep the frequency-response envelope unaffected by the
attenuation filters, a tone-correction filter was placed in series [2].

Although the T60 may be analyzed from a measured RIR,
other delay network parameters, such as delay-line lengths and
the mixing matrix, cannot be easily estimated using an analytic

∗ Also at: Media Lab, Department of Art and Media, Aalto University,
FI-02150 Espoo, Finland
Copyright: © 2024 Gloria Dal Santo et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, adaptation, and reproduction in any medium,

provided the original author and source are credited.

approach and may benefit from an optimization process to best
match the reverberator output to a measured RIR. In [6], a genetic
algorithm is used to optimize the mixing matrix in a delay network
based on [7]. In [8] and more recently in [9], a genetic algorithm is
used to optimize the delay lengths as well as the input and output
gains of an FDN, whereas the decay of the system relies on a tra-
ditional analysis-synthesis approach. In [10], the gains and delay
lengths are estimated using perceptual room descriptors. In [11],
an autoregressive model is used to match the early reflections of a
measured RIR, and a mel-spectrum analysis is used as a loss func-
tion during an optimization phase to tune the parameters of two
plugin implementations of delay-based reverberators.

While most of these optimization methods rely on traditional
reverberator methods, recent advancements, such as the use of vel-
vet noise to reproduce RIRs [12] and to improve modal density
in lower-order FDNs [13], may prove beneficial. Other improve-
ments in FDN-based reverberators include a method to find the
optimal mixing matrix to achieve a colorless prototype [14, 15]
and a two-stage filter design to improve the accuracy of attenua-
tion filters in the feedback path [16].

Another aspect to consider is the analysis method used to es-
timate the T60 from a measured RIR. If performed incorrectly, the
estimation of the RIR energy decay can be hindered by background
noise and multi-slope decay [17]. As such, Bayesian analysis
proved suitable to model more complex behaviors in RIRs [18].
More recently, a machine-learning (ML) approach showed similar
results [19]. Finally, following advancements in differentiable au-
dio signal processing, a complete end-to-end ML approach, match-
ing an artificial reverberator to an RIR, was proposed [20], em-
ploying both a delay-based and a velvet-noise reverberator [12].

This paper proposes to use recently developed methods to es-
timate and reproduce a target energy decay in conjunction with an
optimized FDN-based reverberator for RIR synthesis. This design
is evaluated perceptually in a formal listening test, wherein it is
compared to an end-to-end deep-learning approach based on [20].

The paper is organized as follows. Section 2 provides back-
ground regarding RIR synthesis with FDNs and recent methods
for FDN parameter estimation. Section 3 introduces the proposed
method for the analysis-synthesis of RIRs. The evaluation and re-
sults are described in Sections 4 and 5, followed by a discussion on
the outcomes in Section 6. Section 7 offers concluding remarks.

2. BACKGROUND

This section describes the relevant background on FDNs, along
with the techniques utilized to achieve control over T60 and the
echo density. This is followed by an overview of recent approaches
to FDN parameter estimation.
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2.1. Feedback delay network

An FDN is a recursive system consisting of delay lines, a set of
gains, and a feedback matrix through which the delay-line outputs
are coupled with the delay-line inputs. The transfer function of a
single-input, single-output FDN can be written as

H(z) =
Y (z)

X(z)
= T (z)c⊤

[
Dm(z)−1 −A(z)

]−1
b+ d , (1)

where A(z) is a filter feedback matrix (FFM) consisting of N×N
mixing matrices and filtering stages, where N is the number of de-
lay lines, Dm(z) is the N ×N delay matrix, vectors b and c are
N × 1 column vectors of input and output gains, respectively, the
scalar coefficient d is the direct gain, T (z) is the tone-correction
filter, and the operator (·)⊤ denotes the matrix transpose. The vec-
tor m = [m1, . . . ,mN ] defines the delay lengths in samples. The
corresponding delay matrix Dm(z) is the diagonal matrix with
entries [z−m1 , . . . , z−mN ]. The sum of the delays is the order of
the system, i.e., M =

∑N
i=1 mi [21].

2.2. Problem statement

This paper explores recent advancements in designing an artifi-
cial reverberator using the FDN structure for synthesizing RIRs.
Given a target RIR h̃(t), our aim is to find a mapping f to FDN
parameters θ = {m,A(z), T (z), c, b, d}, i.e. θ = f(h̃(t)), such
that for an FDN-based artificial reverberator with transfer function
Hθ(z) its impulse response hθ(t) is perceptually similar to h̃(t).
Throughout this paper, we refer to this task as RIR2FDN.

In this study, f is optimized with respect to a metric L so that

min
f

L(hf(h̃)(t), h̃(t)). (2)

While, in principle, all parameters can be derived from the tar-
get RIR, some parameters can be pre-determined using heuris-
tic criteria. For instance, both methods in this work use a set of
pre-selected delays m. Perceptual similarity is further evaluated
through formal listening tests.

2.3. Energy decay control in FDNs

Designing an FDN often starts by creating a lossless prototype
with an energy-preserving feedback loop [22, 23]. This can be
achieved by using an orthogonal feedback matrix, since it meets
the condition for losslessness [24]. The advantage of initially de-
signing a lossless FDN lies in the straightforward implementation
of frequency-dependent decay that equally influences all system
poles. This is realized by introducing an attenuation filter associ-
ated with each delay line in the feedback loop [5]. Such a filter is
designed to approximate a frequency-dependent T60 by achieving
a target gain-per-sample γ(ω) [23, 25]

γ(ω) = 10
− 3

fsT60(ω) , (3)

where ω denotes the normalized frequency in radian per second
and fs is the sampling frequency in Hz.

The magnitude response in (3) is adjusted to compensate for
the delay mi introduced by the delay line:

|Γi(e
ȷω)| = γ(ω)mi , (4)

where Γi is the response of the attenuation filter relative to the
ith delay line, ȷ =

√
−1, and mi is the delay length, with i =

1, ..., N . Attenuation filters can be placed in the feedback matrix,
i.e., A(z) = UΓ(z), where U is the orthogonal mixing matrix,
and Γ(z) is the diagonal attenuation matrix whose diagonal entries
are the delay-line-specific attenuation filters Γi(z).

2.4. Scattering feedback matrix

A main challenge in designing FDNs is to generate a sufficient
echo density in the RIR while maintaining computational efficiency
[26]. To accelerate the echo density growth over time and repro-
duce a scattering-like effect, the mixing matrix U can be gener-
alized to a filter matrix [27], where each entry is a finite impulse
response (FIR) filter. The FFM is

A(z) = U(z)Γ(z). (5)

To satisfy the losslessness condition, U(z) can be realized as a
paraunitary FIR filter [27] using the following factorization:

U(z) = DmK (z)UK · · ·U2Dm1(z)U1Dm0(z), (6)

where U1, . . . ,UK are N × N orthogonal matrices and
m0, . . . ,mK are vectors of N integer delays [27]. In this ar-
rangement, the FFM incorporates K + 1 delays and K mixing
stages into the feedback loop. To compensate for the delay intro-
duced by U(z), we approximate the average delay as half of the
maximum filter order of U(z) and add it to mi to compute (4).

2.5. Artificial reverberator parameter estimation network

In [20], Lee et al. presented a deep-learning approach to the
RIR2FDN task where an artificial reverberator parameter estima-
tion network (ARP-net) is used as the mapping θ = f(h̃(t)) to
determine the FDN parameters from a target RIR h̃(t) in an end-
to-end manner. The ARP-net employs an encoder to convert audio
spectrograms into a latent vector followed by ARP-groupwise lay-
ers for FDN parameter projection. The FDN for which the ARP-
net estimates the parameters is depicted in Fig. 1. The blocks high-
lighted in blue represent the components whose parameters are be-
ing estimated. The structure consists of constant input and output
gain vectors b and c, respectively, a Householder feedback ma-
trix U , attenuation filters with common response Γ(z), a common
tone-correction filter T (z), and a cascade of four Schroeder allpass
(SAP) filter sections in each feedback path, denoted as Q(z). The
serial SAPs provide a faster echo density build-up that otherwise
would be impractical to achieve in small FDNs.

To synthesize the energy decay of the reference RIR, a com-
mon absorption filter Γ(z) was utilized [20]. It was defined as
an eight-stage parametric equalizer using the state-variable filter
(SVF) parameters and consists of one low-shelving, six peaking,
and one high-shelving filter. The ARP-net was trained to estimate
the resonance and cutoff frequencies, and the gain of each band in
the filter [20]. The ability to change the cutoff frequency at each
RIR can increase the generalization of the network. The tone-
correction filter T (z) is designed as a series of eight SVF filters
each with learnable cutoff frequency, resonance, and mixing coef-
ficients [20]. The ARP-net minimizes a multi-scale spectral loss
[28] using the ℓ1 distance between the magnitudes of the short-
time Fourier transforms of hθ(t) and h̃(t) at five FFT sizes.

The structure in Fig. 1 deviates from the general FDN structure
outlined in the previous sections because the attenuation filter does
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Figure 1: Structure of the FDN [20] used in the comparison in this
study. The blocks highlighted in blue represent components whose
parameters are estimated by the ARP-net.

not fulfill (4), causing varying decay rates for each feedback path.
Despite this, we still denote it as an FDN throughout the paper.

2.6. Colorless FDN optimization

Motivated by the finding that coloration is minimally affected by
the choice of the frequency-dependent attenuation [29], the au-
thors presented an optimization technique for tuning homogeneous
FDNs, i.e., FDNs where modes decay at the same rate, to achieve
a flatter magnitude response [14]. Similarly to the ARP-net, fre-
quency sampling was used to approximate the recursive structure
of the FDN to that of an FIR and implement it in a differentiable
manner. The feedback matrix, input, and output gains of a dif-
ferentiable FDN were optimized using stochastic gradient descent.
This optimization narrows the distribution of modal excitation, re-
ducing the prominence of the loudest modes [29]. Listening tests
confirmed its effectiveness in attenuating coloration artifacts, par-
ticularly in small FDN configurations with as few as 4 delay lines
[14]. We improved the training speed and naturalness of the syn-
thesized sound of the RIRs by including attenuation filters in the
FDN structure and optimized the scattering feedback matrix to im-
prove temporal density [15]. Moreover, the authors present a pa-
rameterization that allows for the optimization of the Householder
feedback matrices, reducing computational costs both during train-
ing and operation [15].

3. PROPOSED METHOD

This section proposes an informed approach to the RIR2FDN task.
The target RIR is analyzed with a neural network to estimate its en-
ergy decay [19]. Subsequently, this information is synthesized us-
ing a recently proposed attenuation filter [16] within an optimized
lossless FDN [15]. The optimized FDN structure and the method
used for accurate energy decay analysis and synthesis are outlined.

3.1. Differentiable temporally dense FDN

We work upon the framework presented in [15] in which the gain
parameters and feedback matrix of an FDN are optimized through
the Adam optimizer [30] to minimize perceptual coloration of the
produced RIR by maximizing its spectral flatness. The structure
of the differentiable FDN (DiffFDN) is depicted in Fig. 2, where
the blocks highlighted in green represent components whose pa-
rameters are optimized for perceptual colorlessness. As opposed
to Fig. 1, to increase the echo density build-up, we use a scattering

Figure 2: Proposed DiffFDN structure [15]. The blocks high-
lighted in green are optimized for perceptual colorlessness. The
blue blocks have RIR-dependent coefficients.

feedback matrix U(z) with four stages, i.e., K = 4, as specified
in (6). For the orthogonal matrices, U1, . . . ,UK , K different op-
timized Householder matrices are used. The minimum number of
required delay elements to implement U(z) contributes to the ef-
fective delay lengths and thus to the system order. To accelerate
the echo build-up, we used the transposed configuration in which
the delay lines Dm(z) are in the feedback path, and the feedback
matrix A(z) is placed in the feedforward path. The transfer func-
tion of the system in Fig. 2 is

H(z) = T (z)c⊤
[
I −U(z)Γ(z)Dm(z)]−1U(z)Γ(z)b+D(z),

where I is the identity matrix and D(z) is an FIR filter used to
process the direct sound.

With this configuration, the input passes immediately through
U(z) where each channel undergoes mixing and convolution with
the FIR filters constituting U(z). This arrangement prevents tem-
poral gaps that are typical in systems where the feedback matrix is
in the feedback path, similarly to Fig. 1.

The colorless optimization aims to minimize the mean-squared
error between the magnitude response of the FDN and a target flat
magnitude response using a spectral loss Lspectral while disabling
the frequency-dependent filtering, i.e., T (eȷω) = 1,Γ(eȷω) = γI .
Additionally, the optimization encourages density in the time do-
main by penalizing sparseness in the coefficients of the orthogonal
matrices, using a sparsity loss term Lsparsity. The total loss function
is

L = Lspectral(H(eȷω)) + Lsparsity(U)

and the individual loss terms are

Lspectral(H(eȷω)) =

N∑
i=1

(|Hi(e
ȷω)| − 1)2 + (|H(eȷω)| − 1)2 ,

Lsparsity(U) =
1

K

K∑
k=1

N
√
N −

∑
i,j |U

ij
k |

N(
√
N − 1)

,

where U ij
k denotes the entry at coordinates i and j of the matrix

at the kth mixing stage, H(eȷω) is the multiple output FDN trans-
fer function, evaluated on the unit circle, and Hi(e

ȷω) that of the
FDN’s ith channel, i.e.,

Hi(e
ȷω) =

(
[I −U(eȷω)Γ(eȷω)Dm(eȷω)]−1U(eȷω)Γ(eȷω)b

)
i
.
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Figure 3: Magnitude response of a given target attenuation filter,
the implemented two-stage attenuation filter Γ1(z), and its first-
order pre-filter Γpre

1 (z) for the first feedback loop delay in Fig. 2.

3.2. Design of attenuation and tone-correction filters

In the DiffFDN, we devise an attenuation filter to satisfy (3). In
doing so, it is crucial to ensure accurate estimation of T60(ω). To
achieve this, we compute the target magnitude response as per (4),
leveraging estimates derived from DecayFitNet [19]. DecayFitNet
is a neural-network-based approach to estimate RIR decay param-
eters from energy decay curves, which are modeled as a combi-
nation of multiple exponential decays, each characterized by an
amplitude, decay time, and a noise term. Although the model of-
fers detection of up to three slopes, the FDN structure in Fig. 2 can
model only one slope, and hence we limited the parameter estima-
tion accordingly.

After estimating T60(ω), we design Γi(z) utilizing the two-
stage design [16] in which a pre-filter and a graphic equalizer
(GEQ) are cascaded to increase the accuracy of the T60 approx-
imation in each band. In the first stage, we use a first-order shelv-
ing filter, denoted as Γpre

i (z), to approximate the general shape of
the target magnitude response and to set the attenuation filter gains
at dc and at the Nyquist limit. The pre-filter also shifts the com-
mand gains for the GEQ, placing them toward the optimal range
of ±12 dB [16]. For the second-stage filter, the choice of the GEQ
allows replication of the details in the target magnitude response.
Thus, we use the one-third-octave GEQ proposed in [31], denoted
as ΓGEQ

i (z), in which the interaction between different band filters
is optimized using least-squares optimization with one iteration.
The transfer function of the attenuation filter then is

Γi(z) = Γpre
i (z)ΓGEQ

i (z) . (7)

Fig. 3 presents an example of Γi(z) and Γpre
i (z) for a target

magnitude response and a feedback loop delay of 25.8 ms, show-
ing an excellent match. The same GEQ structure, albeit with-
out the pre-filter, was used to implement the tone-correction fil-
ter T (z). The attenuation filters control the energy decay from
T60(ω) relative to the initial energy, while the tone-correction filter
is used to set the actual initial energy level from which the impulse
response begins to decay [2]. The desired magnitude response
of T (z) is derived from the amplitude of each decay component,
which is estimated by DecayFitNet. To ensure the correct initial
energy level across all bands, the amplitude values are normalized
by the cumulative energy of the corresponding exponential decay.

4. EVALUATION SETUP

To study the performance of the presented RIR2FDN methods,
we conducted a formal listening test on the perceptual similarity

with target (measured) RIRs. This section presents the compared
methodologies and their computational complexity.

4.1. Test configurations

The RIR2FDN task was evaluated using three different configura-
tions of the structures presented in Sec. 3, and by comparing them
to a reference RIR and anchor stimuli. The first two models were
based on the DiffFDN structure presented in Fig. 2, one optimized
to minimize coloration and a second initialized using random val-
ues. As such, the first model used the full DiffFDN optimization
procedure described in Sec. 2.6. In the second method, referred
to as RandFDN, the same reverberation structure was used, but the
optimization step was replaced with random gain values and a ran-
dom orthogonal feedback matrix with K = 4 scattering stages. In
both models, the number of delay lines in Dm is set to N = 6,
and the sampling frequency is fixed at fs = 48 kHz. Any delay in-
troduced by the filters in the feedback loop contributes to the sys-
tem order. In DiffFDN and RandFDN (Fig. 2), the lengths of the
delay-lines are m = [593, 743, 929, 1153, 1399, 1699]. The val-
ues in m are coprime numbers distributed logarithmically, aiming
to maximize the echo density [32] and avoid degenerative patterns.
The scattering matrix contributes to the effective delay lengths,
giving a system order of M = 8457.

For the RIR2FDN tasks, both the optimized DiffFDN and the
RandFDN structures were used as lossless prototypes, and the at-
tenuation and tone-correction parameters were tuned according to
the target RIRs. As described in 3.2, the filter designs were based
on energy decay estimation from the DecayFitNet [19].

The third method evaluated is the ARP-net structure [20] (Fig.
1), which synthesizes a target RIR by inferring from a trained net-
work without any additional parameter tuning. We replicated the
model based on the specifications in [20] and additional clarifi-
cations provided by the authors. The network has about 7.39M
parameters and was trained for the analysis-synthesis task using
a dataset of 50k RIRs generated using shoebox room simulations
based on the image-source method [33, 34]. Different conditions
were simulated by varying parameters such as room size, frequency-
dependent wall absorption coefficients, and source/microphone po-
sitions. In the ARP-net structure (Fig. 1), the effective delay lengths
need to be computed by considering both delays in Dm(z) and
those introduced by the SAP filters. In total the delays are [1205,
1291, 1399, 1437, 1547, 1583] giving a system order M = 8462.

The anchor was synthesized according to Fig. 2, with param-
eters designed to simulate various types of degradation resulting
from poor analysis-synthesis practices. To simulate errors in the
filter design, the target magnitude of the attenuation and tone cor-
rection was perturbed by a random variation of up to 25% of its
original value. The scattering matrix U(z) was designed to en-
hance sparseness and repetitiveness in the response. To further
degrade its response, we applied a bandpass filter with cut-off fre-
quencies 100 Hz and 1 kHz and 12-dB roll-off. For the reference
sound, direct convolution of the measured RIR was used.

To synthesize the direct sound, approximately 2ms from the
onset of the reference RIR were used to design the FIR filter D(z)
in Figs. 1 and 2. Its amplitude remained unchanged from the ref-
erence RIR, while the energy of the remaining synthetic RIR was
adjusted to match the root mean square of the corresponding sec-
tion of the reference RIR. Audio examples and configuration de-
tails are available online 1. The PyTorch implementations of the
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Table 1: Number of operations for the FDN structures used by the
DiffFDN and ARP-net. For the tested configuration, i.e. N = 6
delay lines and K = 4 mixing stages, the total operation count is
132, excluding the filters. With the inclusion of filters, the opera-
tion count rises to 2808 for DiffFDN and 790 for ARP-net.

FDN Type b, c Dm(z) U(z) Γ(z) T (z)

DiffFDN 2N 2N 2N(2K + 1) 384N 372
ARP-net 2N 2N 18N 94N 94

DiffFDN and ARP-net are offered in the dedicated repository 2.

4.2. Computational complexity

The computational complexity during operation of the DiffFDN
and ARP-net, when filters are excluded from the calculation, is the
same for their respective FDNs of equal size N = 6, and K = 4.
However, the filters used by the DiffFDN increase its computa-
tional complexity compared to the ARP-net. Table 1 shows the
number of multiply-and-add operations performed during opera-
tion. The operation count for RandFDN is not reported since it
shares the same structure and number of operations as DiffFDN.
While the delay line itself does not involve any multiplication or
addition operations, it requires write and read operations, each
counted as one. The necessary operations add up to 2N for the in-
put and output gains b and c, 2N for the main delay lines Dm(z),
and 2N for the Householder matrix multiplication. The scattering
matrix multiplication, involving K mixing stages and K + 1 de-
lays, requires 2N(2K + 1) operations. Each section in the SAP
filters requires 4N operations. The DiffFDN employs a one-third-
octave band GEQ for both the attenuation and the tone-correction
filters, alongside a shelving filter for modeling the global energy
decay. The shelving filter and each band of the GEQ are imple-
mented as biquads, necessitating 12 operations each. In total, the
DiffFDN employs 32 biquads for Γi(z) and 31 for T (z). The
equalizers used by the ARP-net for both Γ(z) and T (z) comprise
eight bands, resulting in 94 operations each.

5. SUBJECTIVE EVALUATION

We conducted a formal listening test to assess the perceptual sim-
ilarity of the RIR2FDN task presented in the previous section. In
the following, the RIRs selected for the test are presented, followed
by a description of the listening test setup and results.

5.1. Measured RIRs

We evaluated the models on the RIR2FDN task using seven RIRs
selected from the MIT RIR survey collection of real-world RIRs
[35]. These RIRs were recorded in real-world environments with a
1.5-m distance between the sound source and the receiver, utilizing
the same speaker and microphone across measurements.

The selected RIRs encompass various spaces, including a lobby,
dining room, hallway, meeting room, classroom, bathroom, and
bedroom. Of these, the hallway is the most reverberant, with a T60

value of 2.02 s. This value is calculated as the mean of the T60 val-
ues across the one-octave bands from 200 Hz to 2 kHz. The meet-

1http://research.spa.aalto.fi/publications/
papers/dafx24-rir2fdn/

2https://github.com/gdalsanto/rir2fdn

ing room has the shortest reverb (T60 = 0.24 s). The initial energy
level, corresponding to the energy at onset time, shows similar be-
havior across spaces, mostly due to the measurement loudspeaker
magnitude response.

5.2. Listening test procedure

The test was based on the principles of the Multiple Stimuli with
Hidden Reference and Anchor (MUSHRA) recommendation [36],
although it was not strictly adhered to. The test was performed us-
ing the web audio API-based experiment software webMUSHRA
developed by International Audio Laboratories Erlangen [37]. The
experiment was conducted in sound-insulated booths at the Aalto
Acoustics Lab, with participants wearing Sennheiser HD 650 head-
phones. The final items were presented to a group of 16 listeners
comprising 12 men and 4 women. The participants’ mean age was
28.6 years, with a standard deviation of 3.8, and none of them re-
ported any hearing impairments. All but two participants were ei-
ther students or employees of the Aalto University Acoustics Lab.
All participants had previous experience with listening tests.

On each page of the listening test, five reverberated sounds
were compared against a reference. We selected three anechoic
sounds with different time-frequency characteristics: a speech sig-
nal, a drum loop, and a saxophone sound. In total, 21 reverber-
ation conditions were assessed, seven for each sound source. On
each page, a hidden reference and an anchor were present, and
the subjects were instructed to rate them as 100 and 0, respec-
tively, upon detection. The other tested conditions, as detailed in
Sec. 4.1, included DiffFDN, RandFDN, and ARP-net. We adopted
an anchor design approach different from the standard MUSHRA
recommendation to ensure the differences were on the same scale.
Before the test, two training pages were presented to familiarize
the subjects with the sound samples. Adjustments to the over-
all loudness were allowed during the initial training page but re-
mained constant throughout the test. During the evaluation, par-
ticipants rated the overall similarity between the reference sound
and each presented item using a scale ranging from 0 to 100.

5.3. Results

For the following analysis, the results of two subjects were ex-
cluded. One subject was excluded for failing to detect the anchor,
and the other for failing to detect the reference, in more than 15%
of the tested reverb conditions. The outcomes of the listening test
are illustrated in Fig. 4, across sound sources, and in Fig. 5 across
RIRs. In each box, the median is represented by the central mark,
whereas the lower and upper edges indicate the 25th and 75th per-
centiles, respectively. The whiskers extend to encompass the most
extreme data points not identified as outliers, with any outliers
plotted separately. The shaded regions surrounding the medians
facilitate the comparison of sample medians across various box
charts. Non-overlapping shaded regions signify differing medians
between the compared box charts at the 5% significance level, as-
suming a normal distribution.

A Shapiro-Wilk test [38] confirmed that the data deviates from
the normal distribution, even when reference and anchor are ex-
cluded. Additionally, we used the Wilcoxon signed-rank test [39]
to assess the score distributions for each pair of conditions. To ad-
dress multiple comparisons (10 hypotheses per page), we applied
the Bonferroni method to adjust the alpha level, i.e., the threshold
of the p-value for statistical significance, to 0.005. The p-value
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Figure 4: Results of the listening test across sound sources: (a) saxophone, (b) speech, and (c) drum loop. The scores given to the saxophone
signal show no statistically significant difference. On the other hand, for the speech and drum loop, the subjects could distinguish between
DiffFDN and ARP-net, rating higher similarity with the reference in the former.

Figure 5: Results of the listening test across RIRs: (a) lobby, (b) dining room, (c) hallway, (d) meeting room, (e) classroom, (f) bathroom,
and (g) bedroom. The scores assigned to the items contain the most critical test signals, excluding the saxophone. The proposed DiffFDN
is rated consistently higher than both RandFDN and ARP-net, apart from (d). The T60 values are stated in the title of each pane.

represents the likelihood of obtaining the observed difference be-
tween the paired samples if there were no true differences between
the populations from which the samples were drawn. When the re-
sults are analyzed on isolated sound sources (Fig. 4), the p-values
indicate statistically significant differences among all pairs of re-
sults only when the drum loop is used as the source signal.

For speech signals, the scores given to DiffFDN and RandFDN
converge, leading to a p-value above the alpha level (p = 0.006).
The scores assigned to the three tested conditions for the saxo-
phone show no statistically significant differences (p = 0.022
for DiffFDN–RandFDN, p = 0.472 for DiffFDN–ARP-net, and
p = 0.068 for RandFDN–ARP-net). This suggests that the sax-
ophone is not a critical test signal for this task. Consequently,
scores assigned to the pages containing the saxophone as a sound
source have been excluded from Fig. 5, where the listening test re-
sults are shown across RIRs. When the results are analyzed within
each RIR, the DiffFDN and RandFDN conditions lead to a p-value
above the alpha level of all tested rooms. Only for the classroom,
the scores given to RandFDN and ARP-net show no statistically
significant difference (p = 0.073).

6. DISCUSSION

The selection of the source sound may impact the artificial re-
verberator’s performance, as shown in Fig. 4. Transient sounds,
similar to the drum loop, represent a broadband excitation, al-
lowing for a comprehensive assessment of the spectrum and fa-
cilitating the distinction between different RIRs. The low scores
received by the ARP-net in Fig. 4(c) suggest some challenges in

effectively suppressing the strong temporal repetitions inherent in
small FDNs, resulting in metallic-sounding RIRs. Conversely, a
harmonic sound with a smooth temporal envelope, such as that of
a saxophone, lacks a percussive part to trigger a broadband reverb
effect. In Fig. 4 (a), several outliers are observed in the results
for both reference and anchor conditions, confirming that, for har-
monic signals with a sparse spectrum, precise reverberation might
be less crucial. The speech signal in Fig. 4 (b) falls somewhere in
between, as it comprises both harmonic and noise-like elements.

Fig. 5 shows the listening test results across the different RIRs.
For cases (a), (b), and (c), the results are more separated when
compared to the remaining RIRs, probably due to the extended
release time that can be used to perceive and distinguish the re-
verberation characteristics. The classroom’s T60 is 0.38 s, which
is one-fourth of that of the hallway, and exhibits the least notice-
able difference in the scores assigned to DiffFDN, RandFDN, and
ARP-net. Except for the meeting room, the DiffFDN was consis-
tently rated higher than the other conditions.

To further investigate these results, Figs. 6 and 7 show the
T60(ω) and initial energy level synthesized by the DiffFDN and
ARP-net for the (a) lobby, (b) hallway, and (c) meeting room. The
values were computed using DecayFitNet on both the full synthe-
sized RIRs and reference RIRs. It is clear from Fig. 6 that none
of the methods achieved an accurate decay rate. The values are
outside the just noticeable difference (JND) of 5% [40], indicated
by the shade around the target T60(ω). Surprisingly, the attenua-
tion filter utilized by the ARP-net demonstrates the capability to
converge towards the global energy decay despite not conforming
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Figure 6: Reverberation times T60 of the reference and synthesized RIRs corresponding to (a) lobby, (b) hallway, and (c) meeting room.
The T60 values were estimated using DecayFitNet on one-third-octave bands and linearly interpolated. Reverberation times T60 of both
DiffFDN and ARP-net exhibit errors greater than the JND, as indicated by the shading around the target curve.

Figure 7: Initial energy level of the reference and synthesized RIRs corresponding to (a) lobby, (b) hallway, and (c) meeting room. The
values were calculated using the DecayFitNet on one-third-octave bands and linearly interpolated.

to (4). The initial energy levels also exhibit errors, except for the
mid-high frequencies of the hallway. The errors observed could
potentially be attributed to neglecting the background noise and
the multi-slope decay in the models. However, further studies are
necessary to understand the cause of this discrepancy, which per-
sists despite the use of accurate filters. This analysis, along with
the results of the listening test, suggests that perceptual differences
are only partially influenced by variations in coloration and T60.
Time artifacts can drastically affect the performance of the FDN.
The structure employed in both DiffFDN and RandFDN (Fig. 2)
appears to be more successful in concealing these artifacts.

The ARP-net, being a neural network, relies on its training
data. Since gathering a large number of measured RIRs is chal-
lenging and time-consuming, it prompts a transition to synthetic
datasets, although they may contain unnatural artifacts. In this
study, we tested the DiffFDN and the non-optimized FDN
(RandFDN) to assess colorless optimization benefits. The DiffFDN
outperformed RandFDN in most situations, indicating optimiza-
tion advantages. Although the median was lower in the RandFDN
scenario in all but one case, the confidence intervals overlapped.
This could be attributed to the presence of ARP-net, which pos-
sesses attributes different from those of DiffFDN and RandFDN.
The similarity between the scores of DiffFDN and RandFDN may
be due to both systems using attenuation and tone-correction filters
based on DecayFitNet estimations and sharing the same scattering
FDN core structure (Fig. 2).

7. CONCLUSIONS

This work presents advancements in artificial reverberator design
using the FDN structure for synthesizing measured RIRs. The ob-
jective is to establish a mapping between RIR and FDN parameters

optimized for perceptual similarity. We introduce an optimized
method for designing artificial reverberation utilizing a recently
developed differentiable FDN (DiffFDN) employing as few as six
delay lines. This method incorporates a neural-network-based en-
ergy decay estimator for accurate estimation of T60 and a recently
developed two-stage attenuation filter design.

Listening-test results demonstrate that the proposed method
surpasses the state-of-the-art end-to-end approach. Moreover, the
outcome of the listening test is highly dependent on the synthe-
sized RIR and the excitation signal. Further analysis indicates
that accurate reproduction remains a challenge. In this regard, this
study provides insight into where future efforts should be focused.
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