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Abstract
In this paper the wave finite element method is applied to compute the harmonic response of bladed disks
with distributed loads, e.g., for substructures (sectors) subjected to an engine order excitation. The proposed
approach consists in (i) expressing the displacements and forces at the interfaces between the substructures
in terms of wave modes, (ii) expressing the external forces in terms of wave modes and (iii) solving a
local/substructure equation for expressing wave amplitudes. To improve the efficiency of the WFE method,
a model reduction technique is proposed where the key idea is to express the displacement vectors at the
substructure interfaces with a small number of boundary modes. Numerical simulations are carried out on a
3D industrial structure where the efficiency and accuracy of the WFE approach are demonstrated.

1 Introduction

Bladed disks are common components in industrial gas turbine aero-engines or power generation turbines,
e.g., compressor or turbine bladed disks subjected to an engine order (EO) excitation resulting from aero-
dynamic wakes and potential effects. Predicting their dynamic behavior by means of accurate and efficient
numerical tools has become a key challenge which is motivated by the need of considering systems with
increasing complexity, i.e., for sectors/substructures with many internal and interface degrees of freedom
(DOFs). In this case, the standard finite element (FE) procedure requires high computational resources due
to the element assembly procedure and the resolution of large-sized matrices.

To address the modeling of bladed disks subjected to harmonic external forces, the wave finite element
(WFE) method can be used as an efficient alternative to the standard FE method. Within the WFE frame-
work, wave modes in periodic structures are determined by computing the eigenvalues and eigenvectors of
the transfer matrix of a substructure, see [1, 2, 3]. To assess the harmonic forced response of 1D-periodic
structures — i.e., structures consisting of the repetition of identical substructures along a straight or cir-
cumferential direction —, the WFE method involves expanding the displacement and force vectors at the
interfaces between the substructures on a wave mode basis (i.e., using the eigenvectors of the transfer ma-
trix). Concerning structures with cyclic symmetry like bladed disks, the reader is referred to [4, 5, 6]. Also,
the analysis of 1D-periodic structures with distributed external forces has been investigated in [7, 8] where
the external forces are expressed in terms of wave modes in the same way as the displacement and force
vectors at the substructure interfaces.

In the present paper, a WFE approach is proposed which combines previous works from the literature [5, 8].
The focus is on predicting the dynamic behavior of bladed disks subjected to distributed loads (engine order
excitation), e.g., circumferential forces applied at the tips of the blades as shown in Fig. 1. In a nutshell,
the proposed approach consists in (i) expressing the displacements and forces at the interfaces between the



substructures in terms of wave modes, (ii) expressing the external forces in terms of wave modes and (iii)
solving a local/substructure equation for expressing wave amplitudes.

For substructures with many internal and interface DOFs, the WFE method raises numerical challenges like
(i) the condensation of the internal DOFs of a substructure onto its interface DOFs and (ii) the computa-
tion of a large eigenproblem associated with the interface DOFs. To tackle these issues, model reduction
techniques are proposed in this paper. First, a reduction for the internal DOFs is performed using the Craig-
Bampton (CB) method [9]. Next, an interface reduction is considered where the displacement vectors at the
substructure interfaces are expressed with a small number of boundary modes [10, 11]. With this strategy,
the wave modes can be efficiently computed by solving a small eigenproblem. To control the accuracy of the
proposed model reduction techniques, an original error indicator that considers a force balance equation at
the substructure interfaces is proposed.

The proposed WFE approach focuses on the dynamic analysis of bladed disks like those encountered in
industrial applications where the substructures (sectors) contain many internal and interface DOFs. Also, it
focuses on the analysis of mistuned bladed disks, i.e., bladed disks containing a few perturbed substructures.

The rest of the paper is organized as follows. In Sec. 2, the strategies for modeling tuned (i.e., purely periodic)
and mistuned bladed disks subjected to harmonic external forces are presented. In Sec. 3, model reduction
techniques are discussed. Also, in this section, an error indicator is proposed to control the accuracy of the
model reduction strategy. In Sec. 4, numerical simulations are carried out on a 3D industrial structure where
the efficiency and accuracy of the WFE approach are discussed.

Figure 1: (Left) FE mesh of a bladed disk with external forces at the tips of the blades. (Right) FE mesh of a
substructure.

2 WFE method

2.1 Substructure modeling

Bladed disks are periodic structures with cyclic symmetry, i.e., structures made up of identical substructures
(say, N substructures) which are meshed in the same way in a cylindrical coordinate system with angular
period ∆θ = 2π/N . To make it more concrete, a simple periodic structures with 2D substructures is shown
in Fig. 2 where the tips of the substructures are subjected to tangential forces.

A substructure enclosed between two interfaces (N) and (1) is shown in Fig. 2. Here, the boundary DOFs,
corresponding with these interfaces, are denoted as Γ− and Γ+ (where the assumption is made that these
interfaces are meshed with the same number n of DOFs), while the other “internal” DOFs are denoted as
I. Let us denote by q and F the displacement and force vectors of this substructure, and by D the dynamic
stiffness matrix of the substructure (similar for all the substructures) expressed as D = −ω2M + iωC +
K with M, C and K the mass, damping and stiffness matrices (respectively), ω the frequency and i the



Figure 2: Schematics of (a) a periodic structure with cyclic symmetry and 2D substructures, (b) a substructure
enclosed between interfaces (N) and (1) and (c) a substructure enclosed between interfaces (k) and (k+1).

imaginary unit. Then, in the frequency domain, the dynamic equation of the substructure writes:

Dq = F ⇒

DΓ−Γ− DΓ−I DΓ−Γ+

DIΓ− DII DIΓ+

DΓ+Γ− DΓ+I DΓ+Γ+
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where F
(N)
Γ−

and F
(1)
Γ+

represent the vectors of coupling forces at the interfaces with the connected substruc-

tures, and F
(N)
I represents the vector of external forces. By condensing the internal DOFs of the substructure

onto the boundary/interface ones, Eq. (1) gives:
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After some simple algebra, Eq. (2) leads to:

u(1) = Su(N) + b(N). (5)

Here, u(1) and u(N) are state vectors expressed by:

u(1) =

[
q
(1)
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F
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]
=

[
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]
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]
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[
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F
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]
, (6)

In Eq. (5), S represents the transfer matrix of the substructure expressed by [5]:

S =

[
−(D∗

Γ−Γ+
)−1D∗

Γ−Γ− −(D∗
Γ−Γ+
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(D∗
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)−1

]
. (7)



Also, in Eq. (5), b(N) is a vector that results from the external forces expressed by:

b(N) = −
[

0

F
∗(N)
I |Γ+

]
+

[
D∗−1

Γ−Γ+
F
∗(N)
I |Γ−

D∗
Γ+Γ+

D∗−1
Γ−Γ+

F
∗(N)
I |Γ−

]
. (8)

Eq. (5) represents a relation between the state vectors u(N) and u(1), i.e., displacement and force vectors
between the interfaces (N) and (1). Similarly, for a substructure enclosed between two arbitrary interfaces
(k) and (k + 1) (see Fig. 2), the relation writes:

u(k+1) = Su(k) + b(k). (9)

2.2 Free wave propagation

Free waves that travel in forward- and backward-directions around a periodic structure can be assessed
from the eigensolutions of the transfer matrix S. Specifically the eigenvalues of S — namely, µj — are
wave parameters of the form µj = exp(−iβj∆θ) with βj the circumferential wave numbers; also, the
eigenvectors of S — namely, ϕj = [ϕT

qj ϕT
Fj ]

T — are wave shape vectors with displacement and force
components ϕqj and ϕFj .

It can be proven that the transfer matrix S of the substructures is symplectic [3], which means that paired
eigenvalues (µj , 1/µj) are obtained. This yields n forward-going “wave modes” (µj ,ϕj) with |µj | < 1,
and n backward-going “wave modes” (µ⋆

j ,ϕ
⋆
j ) with µ⋆

j = 1/µj and |µ⋆
j | > 1. For computational purposes,

the wave modes can be accurately computed via the S + S−1 transformation proposed in [12]. In matrix
notations, the wave parameters and wave shape vectors write:

µ = diagnj=1{µj} , µ⋆ = µ−1, (10)

Φ =

[
Φq

ΦF

]
with Φq = [ϕq1 · · ·ϕqn] and ΦF = [ϕF1 · · ·ϕFn], (11)

and

Φ⋆ =

[
Φ⋆

q

Φ⋆
F

]
with Φ⋆

q = [ϕ⋆
q1 · · ·ϕ⋆

qn] and Φ⋆
F = [ϕ⋆

F1 · · ·ϕ⋆
Fn], (12)

where Φq, Φ⋆
q, ΦF and Φ⋆

F are n×n matrices. Finally note that the wave modes possess orthogonality proper-
ties [3], i.e., ΦTJΦ = 0, Φ⋆TJΦ⋆ = 0, Φ⋆TJΦ = diagnj=1{ϕ⋆T

j Jϕj} and ΦTJΦ⋆ = diagnj=1{ϕT
j Jϕ

⋆
j}

where:

J =

[
0 In

−In 0

]
. (13)

2.3 Forced response

Within the WFE framework, a wave mode expansion for the state vectors u(k) (k = 1, . . . , N ) is considered
as follows [13]:

u(k) = ΦQ(k) +Φ⋆Q⋆(k), (14)

where Q(k) and Q⋆(k) are wave amplitude vectors. A wave mode expansion for the vectors b(k) (k =
1, . . . , N ) in Eq. (9) can also be proposed [7]:

b(k) = ΦQ
(k)
b +Φ⋆Q

⋆(k)
b , (15)

where Q
(k)
b and Q

⋆(k)
b represent additional wave amplitude vectors. Note that the vectors of external forces

F
∗(k)
I are known by assumption and, therefore, the vectors b(k) can be determined, see Eq. (8). Then, by

considering the orthogonality properties of the wave modes, the wave amplitude vectors Q(k)
b and Q

⋆(k)
b can



be expressed as [7]:

Q
(k)
b = (Φ⋆TJΦ)−1Φ⋆TJb(k) , Q

⋆(k)
b = (ΦTJΦ⋆)−1ΦTJb(k), (16)

where Φ⋆TJΦ and ΦTJΦ⋆ are diagonal matrices with the property that (ΦTJΦ⋆)T = ΦTJΦ⋆ = −Φ⋆TJΦ.
To determine the displacement and force vectors at the substructure interfaces, the wave amplitude vectors
Q(k) and Q⋆(k) in Eq. (14) must be computed. For this purpose, the following methodology is used:

(i) Express the wave amplitude vectors Q(k) and Q⋆(k) at any substructure interface (k) (k = 1, . . . , N )
from the wave amplitudes vectors Q = Q(1) and Q⋆ = Q⋆(N) at the left and right sides Γ+ and Γ−
(respectively) of the substructure enclosed between the interfaces (N) and (1), see Fig. 2.

(ii) Compute Q and Q⋆ by considering the dynamic equation of this substructure.

The main steps of the methodology are given here. First, introducing the wave expansions (14) and (15) into
Eq. (9) and using the orthogonality properties of the wave modes yields:

Q(k+1) = µQ(k) +Q
(k)
b . (17)

Eq. (17) provides a recurrence relation between two consecutive substructures. This yields:

Q(k) = µk−1Q+

k−1∑
p=1

µk−1−pQ
(p)
b for k = 2, . . . , N, (18)

where Q = Q(1) denotes the wave amplitude vector for the forward-going waves at the interface (1), see
Fig. 2. In the same way, the following recurrence relation can be obtained:

Q⋆(k+1) = µ⋆Q⋆(k) +Q
⋆(k)
b . (19)

This yields (see [7] for the proof):

Q⋆(k) = µN−kQ⋆ −
N−1∑
p=k

µ−k+1+pQ
⋆(p)
b for k = 1, . . . , N − 1. (20)

with Q⋆ = Q⋆(N) the wave amplitude vector for the backward-going waves at the interface (N), see Fig. 2.
Eqs. (18) and (20) mean that the wave amplitude vectors Q(k) and Q⋆(k), at any substructure interface (k),
can be expressed from the wave amplitude vectors Q and Q⋆ for the forward- and backward-going waves
at the left and right sides Γ+ and Γ− of the substructure enclosed between the interfaces (N) and (1). To
compute Q and Q⋆, the dynamic equation of this substructure is considered [5]. Hence, let us consider
Eq. (2), i.e.,

D∗

[
q
(N)
Γ−

q
(1)
Γ+

]
=

[
F
(N)
Γ−

F
(1)
Γ+

]
+

[
F
∗(N)
I |Γ−

F
∗(N)
I |Γ+

]
. (21)

By considering a wave mode expansion for the displacement and force vectors at the interfaces (N) and (1),
see Eq. (14) together with Eqs. (18) and (20), this yields:

q
(N)
Γ−

= ΦqQ
(N) +Φ⋆

qQ
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b

 , (23)



and
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)
= −ΦF
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F
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µpQ
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Then, Eq. (21) leads to:(
D∗
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q

Φq Φ⋆
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N−1
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−
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−ΦFµ
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(26)

=
(
D∗Ψqb −ΨFb
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µN−1−pQ
(p)
b

N−1∑
p=1

µpQ
⋆(p)
b

+
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I |Γ−

F
∗(N)
I |Γ+

]
,

where

Ψqb =

[
−Φq 0
0 Φ⋆

q

]
, ΨFb =

[
ΦF 0
0 Φ⋆

F

]
. (27)

Eq. (26) represents a matrix equation of the form AQ = G with Q = [QTQ⋆T ]T and A a 2n × 2n
matrix. Solving this equation yields the wave amplitudes vectors Q and Q⋆. The wave amplitude vectors
Q(k) and Q⋆(k) at any interface (k) (k = 1, . . . , N ) can be easily retrieved from Eqs. (18) and (20). Also,
the displacement and force vectors at the interface (k) can be retrieved Eq. (14). Finally, the displacement
vectors for the internal nodes of the substructures can be retrieved from Eq. (1), by considering a substructure
enclosed between two interfaces (k) and (k + 1):

q
(k)
I = D−1

II

(
F
(k)
I −DIΓ−q

(k)
Γ−

−DIΓ+q
(k+1)
Γ+

)
. (28)

2.4 Engine order excitation

Often in industrial situations, the external forces applied to the substructures result from an engine order
excitation, i.e.,

F
(k)
I = F

(N)
I e−ik 2πEO

N for k = 1, . . . , N − 1, (29)

with F
(N)
I the known vector of external forces applied to the substructure enclosed between the interfaces

(N) and (1), and EO the engine order (EO = 0, 1, 2, . . .). Within this framework, the wave amplitude
vectors for the external loads, Eq. (16), become Q

(k)
b = e−ik 2πEO

N Q
(N)
b and Q

⋆(k)
b = e−ik 2πEO

N Q
⋆(N)
b . Then,

the vector sums on the right-hand side of Eq. (26) simplify to:

N−1∑
p=1

µN−1−pQ
(p)
b =

N−1∑
p=1

µN−1−pe−ik 2πEO
N

Q
(N)
b ,

N−1∑
p=1

µpQ
⋆(p)
b =

N−1∑
p=1

µpe−ik 2πEO
N

Q
⋆(N)
b . (30)

2.5 Mistuned bladed disks

The WFE strategy to model bladed disks with one or two perturbed substructures (see Fig. 3) is detailed
hereafter. Note that the proposed strategy is general as it could be easily extended to include more perturbed
substructures. Perturbed substructures can result from parametric changes, e.g., modifications of the material
properties or variations of the substructure shape (mesh parameters). To carry out the modeling of mistuned
bladed disks, the following relations that concern the wave amplitude vectors for a substructure enclosed
between two interfaces (k1) and (k1 + 1) and a substructure enclosed between two interfaces (k2) and



(k2 + 1) with k2 > k1 are proposed:

Q⋆(k1+1) = µk2−k1−1Q⋆(k2) −
k2−1∑

p=k1+1

µ−k1+pQ
⋆(p)
b , (31)

Q(k2) = µk2−k1−1Q(k1+1) +

k2−1∑
p=k1+1

µk2−1−pQ
(p)
b . (32)

Eqs. (31) and (32) come from Eqs. (17) and (19) and constitute a general framework for expressing the wave
amplitude vectors at arbitrary interfaces (k1 + 1) and (k2).

Figure 3: Mistuned bladed disk (simple 2D case): (left) one perturbed substructure (blue color) enclosed
between two interfaces (P ) and (P + 1); (right) two perturbed substructures (blue color) enclosed between
two interfaces (P1) and (P1 + 1) and between two interfaces (P2) and (P2 + 1), respectively.

2.5.1 One perturbed substructure

A periodic structure with a perturbed substructure, whose condensed dynamic stiffness matrix is D∗
P ̸= D∗,

enclosed between two consecutive interfaces (P ) and (P + 1) is shown in Fig. (3). A wave-based modeling
can be proposed in a similar way as in Sec. 2.3. Indeed in this case, the strategy simply consists in expressing
the displacement and force vectors at the boundaries of the perturbed substructure as in Eqs. (22)-(25):

q
(P )
Γ−

= ΦqQ
(P ) +Φ⋆

qQ
⋆(P ) , q

(P+1)
Γ+

= ΦqQ
(P+1) +Φ⋆

qQ
⋆(P+1), (33)

F
(P )
Γ−

= −
(
ΦFQ

(P ) +Φ⋆
FQ

⋆(P )
)

, F
(P+1)
Γ+

= ΦFQ
(P+1) +Φ⋆

FQ
⋆(P+1). (34)

where Q(P ), Q⋆(P ), Q(P+1) and Q⋆(P+1) are wave amplitude vectors for the interfaces (P ) and (P + 1).
By considering Eqs. (31) and (32) with k1 = P and k2 = P +N (i.e., k2 = k1 modulo N ), and the dynamic
equation of the perturbed substructure, Eq. (26) with D∗ → D∗

P , one obtains:(
D∗

P

[
Φqµ

N−1 Φ⋆
q

Φq Φ⋆
qµ

N−1

]
−

[
−ΦFµ

N−1 −Φ⋆
F

ΦF Φ⋆
Fµ

N−1

])[
Q(P+1)

Q⋆(P )

]
(35)

=
(
D∗

PΨqb −ΨFb

)

N+P−1∑
p=P+1

µN+P−1−pQ
(p)
b

N+P−1∑
p=P+1

µ−P+pQ
⋆(p)
b

+

[
F
∗(P )
I |Γ−

F
∗(P )
I |Γ+

]
.

Solving Eq. (35) yields the wave amplitude vectors Q(P+1) and Q⋆(P ). The determination of the wave
amplitude vectors Q(k) and Q⋆(k) at any interface (k) follows from Eqs. (31) and (32).



2.5.2 Two perturbed substructures

A periodic structure with two perturbed substructures with condensed dynamic stiffness matrices D∗
P1

̸=
D∗ and D∗

P2
̸= D∗ enclosed, respectively, between two interfaces (P1) and (P1 + 1) and between two

interfaces (P2) and (P2 + 1) is shown in Fig. 2. In the case of consecutive perturbed substructures (i.e.,
when P2 = P1 + 1), the analysis is straightforward and quite similar to the previous case. In short, this
consists in expressing the dynamic equation of the assembly made of these substructures, and expressing
wave amplitude vectors at the boundaries Γ− and Γ+ in the same way as in the previous example, see
Eq. (35). For non-consecutive perturbed substructures, the strategy consists in expressing the displacement
and force vectors at the boundaries of the perturbed substructures in wave shape bases in the same way as in
Eqs. (33)-(34). Then, by considering the dynamic equations of the perturbed substructures and Eqs. (31) and
(32), the following wave-based matrix equations can be derived:(

D∗
P1

[
Φqµ

N+P1−P2−1 Φ⋆
q 0 0

0 0 Φq Φ⋆
qµ
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]
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])
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=
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p=P2+1

µN+P1−1−pQ
(p)
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b

+

[
F
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F
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]
,

and (
D∗

P2

[
0 0 Φqµ
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q

Φq Φ⋆
qµ
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]
(37)

−
[
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])
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=
(
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b

+

[
F
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I |Γ−

F
∗(P2)
I |Γ+

]
.

Eqs. (36) and (37) can be combined so as to express a matrix equation of the form AQ = G, where A
represents a 4n × 4n matrix that results from stacking the terms inside the brackets on the left-hand side of
Eqs. (36) and (37), and Q is a vector with components Q(P2+1), Q⋆(P1), Q(P1+1), Q⋆(P2).

3 Model reduction

In industrial situations, 3D substructures are usually involved whose FE models are likely to contain many
internal and interface DOFs. In this case, model reduction techniques are required to improve the efficiency
of the WFE method. First, to quickly compute the condensed dynamic stiffness matrix of the substructures
D∗ as well as the vector F∗(N)

I in Eq. (2), a CB reduction of the number of internal DOFs is proposed [9].
For instance, the CB strategy to compute D∗ consists in:

1. Partitioning a substructure into boundary DOFs (B), including the interface and excitation DOFs, and
internal DOFs (I) which are free from excitation.



2. Approximating the displacement vector for the internal DOFs using static modes (matrix Xst) and a
reduced number MI of fixed interface modes (matrix X̃), i.e., qI ≈ XstqB + X̃α̃ where α̃ denotes
the vector of generalized coordinates for the fixed interface modes.

3. Expressing the transformation matrix T̃ of the substructure in terms of static modes and fixed interface
modes, and expressing the reduced substructure matrices as M̃ = T̃TMT̃, C̃ = T̃TCT̃ and K̃ =

T̃TKT̃.

4. Condensing the DOFs associated with the fixed interface modes onto the boundary DOFs, i.e., D∗ =

D̃BB − D̃BαD̃
−1
ααD̃αB.

5. Condensing the excitation DOFs onto the interface DOFs (in the same way as in the previous step).
The resulting condensed DSM will be also denoted by D∗.

Next, to speed up the computation of the wave modes, an interface reduction is proposed (see hereafter).

3.1 Interface reduction

Let M̃ΓΓ and K̃ΓΓ denote the block components of the reduced mass and stiffness matrices of a substructure
M̃ and K̃ (CB reduction) which are associated with the interface DOFs (Γ− and Γ+). Then define the
boundary modes of the substructure as the eigenvectors χj of the matrix pencil (K̃ΓΓ, M̃ΓΓ). A reduced
matrix of boundary modes can be expressed as X̃Γ = [χ1 · · ·χmΓ ] with mΓ ≪ 2n a number of low-order
modes (i.e., associated with mΓ smallest eigenvalues λj). The boundary modes involve the DOFs on Γ− and
Γ+ and, therefore, the matrix X̃Γ has to be expressed as:

X̃Γ =

[
X̃Γ−

X̃Γ+

]
. (38)

A common reduced matrix of boundary modes for Γ− and Γ+ can be obtained from a singular value decom-
position of [X̃Γ− X̃Γ+ ], i.e. [11]:

[X̃Γ− X̃Γ+ ] = UΓΣΓV
T
Γ , (39)

with ΣΓ the matrix of singular values, and UΓ and VΓ the related orthogonal matrices of left and right
singular vectors (respectively). Especially the matrix UΓ contains m = 2mΓ orthogonal column vectors
with the property that they span the same space as the column vectors contained in X̃Γ− and X̃Γ+ . Therefore
the following approximation for the interface DOFs can be proposed:

qΓ− ≈ q̃Γ− = UΓ α̃Γ− , qΓ+ ≈ q̃Γ+ = UΓ α̃Γ+ , (40)

where α̃Γ− and α̃Γ+ are m× 1 vectors of generalized coordinates. Then, the following reduced condensed
dynamic stiffness matrix of a substructure can be proposed:

D̃∗ =

[
D̃∗

Γ−Γ−
D̃∗

Γ−Γ+

D̃∗
Γ+Γ−

D̃∗
Γ+Γ+

]
=

[
UΓ 0
0 UΓ

]T [D∗
Γ−Γ−

D∗
Γ−Γ+

D∗
Γ+Γ−

D∗
Γ+Γ+

] [
UΓ 0
0 UΓ

]
. (41)

Also, since the matrix UΓ is orthogonal, it can be proven that the force vectors FΓ− and FΓ+ can be approx-
imated as:

FΓ− ≈ F̃Γ− = UΓ β̃Γ− , FΓ+ ≈ F̃Γ+ = UΓ β̃Γ+ , (42)

with β̃Γ− and β̃Γ+ m×1 vectors of generalized coordinates. With this reduction technique, a transfer matrix
S̃ of small size 2m× 2m with m ≪ n can be established like in Eq. (7). Then the computation of the wave
modes can be drastically sped up.



3.2 Error indicator

To assess the error induced by the model reduction technique, a force balance at the interfaces between the
substructures can be considered. For instance, let us consider the substructure enclosed between the inter-
faces (N) and (1) as shown in Fig. 2, and let us assume for the sake of simplicity that this substructure as well
as the two adjacent ones connected on Γ− and Γ+ are unperturbed, i.e., that these three substructures share
the same condensed dynamic stiffness matrix D∗. From Eq. (2), the boundary forces for the substructure
enclosed between the interfaces (N) and (1) are expressed as:

F̃Γ =

[
F̃

(N)

Γ−

F̃
(1)

Γ+

]
= D∗

[
q̃
(N)
Γ−

q̃
(1)
Γ+

]
− F

∗(N)
I , (43)

where D∗ denotes the 2n × 2n unreduced condensed dynamic stiffness matrix which results from Eq. (3)
and the CB method. Here, q̃(N)

Γ−
and q̃

(1)
Γ+

are the displacement vectors that result from model reduction, i.e.,
these vectors are expressed as:

q̃
(N)
Γ−

= UΓ α̃
(N)
Γ−

= UΓ

(
Φ̃qQ̃

(N) + Φ̃⋆
qQ̃

⋆(N)
)

, q̃
(1)
Γ+

= UΓ α̃
(1)
Γ+

= UΓ

(
Φ̃qQ̃

(1) + Φ̃⋆
qQ̃

⋆(1)
)
. (44)

In Eq. (43), F̃
(N)

Γ− and F̃
(1)

Γ+
denote the interface forces which are computed from the dynamic equilibrium

equation of the substructure when the displacement vectors are approximated as in Eq. (44). It should be
pointed out that these force vectors are likely to differ from the reduced force vectors F̃ that would result
from considering a wave expansion like in Eq. (14). On the other hand, the interfaces forces for the adjacent
substructures can be expressed as:[

F̂
(N−1)

Γ−

F̂
(N)

Γ+

]
= D∗

[
q̃
(N−1)
Γ−

q̃
(N)
Γ+

]
− F

∗(N−1)
I ,

[
F̂

(1)

Γ−

F̂
(2)

Γ+

]
= D∗

[
q̃
(1)
Γ−

q̃
(2)
Γ+

]
− F

∗(1)
I , (45)

with q̃
(N)
Γ+

= q̃
(N)
Γ−

, q̃(1)
Γ−

= q̃
(1)
Γ+

, q̃(N−1)
Γ−

= UΓ α̃
(N−1)
Γ−

and q̃
(2)
Γ+

= UΓ α̃
(2)
Γ+

. In Eq. (45), the vectors
of coupling forces between the substructure enclosed between the interfaces (N) and (1) and the adjacent

substructures are F̂
(N)

Γ+
and F̂

(1)

Γ− . In this sense, the following vector of interface forces can be defined:

F̂Γ =

[
F̂

(N)

Γ+

F̂
(1)

Γ−

]
. (46)

By comparing the vectors of interface forces F̂Γ and F̃Γ obtained from Eqs. (46) and (43) in the sense of
a force balance — i.e., F̂Γ + F̃Γ —, an error indicator can be formulated. Here, F̂Γ + F̃Γ represents the
residual force vector that arises from model reduction. The related error in displacement can be expressed as
(D∗)−1(F̂Γ + F̃Γ). Then the following error indicator can be proposed:

E =
∥(D∗)−1(F̂Γ + F̃Γ)∥2

∥(D∗)−1F̃Γ∥2
. (47)

4 Numerical results

The dynamic behavior of an industrial bladed disk with N = 24 sectors (3D substructures) is investigated
where, in the present case, the tips of the blades are subjected to an engine order excitation with engine
order EO = 3 (point forces of magnitudes 1 N × e−ik 2πEO

N in the circumferential direction). The relevant
characteristics of the structure are: inner and outer radii of the disk Rdisk

i = 50 mm and Rdisk
e = 212 mm

(respectively), radius of the tips of the blades Rtip = 280 mm, density ρ = 7800 kg/m3, Young’s modulus



E = 200 GPa and Poisson’s ratio ν = 0.25. The inner surface of the disk is assumed to be clamped. The
FE meshes of (i) the whole structure and (ii) a substructure are shown in Fig. 4. The FE models are built
from 20-node quadratic hexahedrons, leading to 192, 096 DOFs for the whole structure and 8730 DOFs
for the substructures including n = 726 DOFs on each interface Γ− or Γ+. Rayleigh-type damping is
assumed where the damping matrices of the structure and the substructures are given by C = aM+bK with
a = 10−2 s−1 and b = 10−8 s.

Figure 4: (Left) Bladed disk with 3D substructures (N = 24 substructures) subjected to an engine order
excitation F

(k)
I = 1 N × e−ik 2πEO

N ; output point represents the absolute value of the tangential acceleration
at the tip of the substructure enclosed between the interfaces (N) and (1). (Right) FE mesh of a substructure
(inner boundary is clamped).

The dynamic behavior of the tuned disk (periodic structure) is predicted for frequency f = ω/2π up to
5000 Hz (frequency step ∆f = 0.5 Hz). Also, the dynamic behavior of mistuned disks is discussed, where
the following cases are considered:

1. A structure with a perturbed substructure referred to as mistuned bladed disk 1. In this case, the
Young’s modulus and, therefore, the stiffness matrix of the (only) blade of the substructure enclosed
between the interfaces (15) and (16) are changed as Eblade

P = Eblade(1 + 0.015) and Kblade
P =

Kblade(1 + 0.015).

2. A structure with two perturbed substructures referred to as mistuned bladed disk 2. In this case,
the Young’s moduli (resp. stiffness matrices) of the blades of the substructures enclosed between the
interfaces (2) and (3) and between the interfaces (15) and (16) are changed as Eblade

P1
= E(1−0.025)

and Eblade
P2

= E(1 + 0.015) (resp. Kblade
P1

= Kblade(1− 0.025) and Kblade
P2

= Kblade(1 + 0.015)),
respectively.

For each (tuned or mistuned) case, the computed output response represents the absolute value of the tan-
gential acceleration ω2|qtipθ | of the tip of the blade of the substructure enclosed between the interfaces (N)
and (1), see Fig. 4.

At first, the structure dynamics are assessed using a “reference” FE-based mode projection technique in
the framework of which the displacement vector of a bladed disk is described using 359 vibration modes
and 24 additional residual flexibility vectors to account for the excitation sources [14]. In this context,
a reduced model of the whole structure is considered which is classically obtained by projecting, in the
Galerkin sense, the mass, stiffness and damping matrices onto the space spanned by the vibration modes
and the residual flexibility vectors. A sensitivity analysis can help select the number of vibration modes
needed to obtain accurate dynamic responses on [0 , 5000] Hz. Here, the selected modes are those for which
the eigenfrequencies are below three times the maximum frequency of interest (i.e., below 15, 000 Hz).
The mode projection technique leads to a structure model of small size which can be easily computed. The
counterpart with this approach is the requirement to compute the vibration modes of a whole structure (offline
task), and the fact that this step has to be repeated for each structure change considered (mistuning). This
makes this technique less efficient compared to the WFE method.



Numerical simulations are carried out using MATLAB and in-house implementations of the proposed ap-
proaches. The reference response functions of the tuned and mistuned bladed disks are shown in Fig. 5.
The response function of the tuned bladed disk reveals smooth behavior with a few resonance peaks over
the frequency band analyzed. On the other hand, the response functions of the mistuned structures show
many resonance peaks and, overall, complex response signals. For instance, the deformed shape of the tuned
bladed disk for the resonance peak at 3020 Hz, and the deformed shapes of the mistuned bladed disks 1 and 2
for resonance peaks close to 3020 Hz (i.e., at 3027 Hz and 3012.5 Hz, respectively) are shown in Fig. 6. It is
first noticed that the displacement field of the tuned structure is in agreement with the engine order excitation
(EO = 3). Concerning the mistuned bladed disk 1, the perturbed substructure reveals high vibration levels
compared to the neighbored substructures. In this sense, local resonant behavior occurs. As for the mistuned
bladed disk 2, the energy localization effect is even more pronounced in the vicinity of the first perturbed
substructure. In this case, the perturbed substructure as well as the two adjacent “safe” ones strongly vibrate.

Figure 5: Response functions: (a) tuned bladed disk, (b) mistuned bladed disk 1 and (c) mistuned bladed
disk 2: (black continuous line) reference; (red dashed line) WFE/reduction with m = 120.

Figure 6: Deformed shapes: (a) tuned bladed disk at 3020 Hz, (b) mistuned bladed disk 1 at 3027 Hz and (c)
mistuned bladed disk 2 at 3012.5 Hz. Perturbed blades are highlighted in green color (mistuned case).

Also the response functions of the tuned and mistuned bladed disks can be computed using the WFE method



and the reduction technique, see Secs. 2 and 3. First, a reduction of the number of internal DOFs of the
substructures is performed, i.e., using MI = 50 fixed interface modes (see Sec. 3). Next, a reduction of the
number of interface DOFs is performed, i.e., using m interface DOFs rather than n = 726 where m < n.

For instance, the error indicator E , Eq. (47), can be assessed for m = 20, m = 40, m = 60, m = 80,
m = 100 and m = 120 for the tuned and mistuned bladed disks. Especially, for each m, the maximum value
of E over a coarse frequency grid with frequency step ∆f = 50 Hz (up to 5000 Hz) can be assessed as shown
in Fig. 7 where it is seen that the error can be strongly and quickly reduced for increasing m. For instance,
E < 10% for m ≥ 60 and E < 5% for m ≥ 100. In order to compute accurate solutions, i.e., to accurately
capture the local dynamics of the substructures at high frequencies, the choice is made here to express the
response functions with m = 120, see Fig. 5. Here, the results issued from the proposed approach appear
to be in good agreement with the reference ones over the whole frequency band of interest. Clearly this
demonstrates the potential of the approach to handle the modeling and dynamic analysis of mistuned bladed
disks.

In terms of efficiency, the computation of the dynamic responses of the mistuned bladed disk 1 requires
roughly the same amount of time as the tuned structure. The analysis of the mistuned bladed disk 2 requires
about 10 − 20% additional times, which remains small. Although not done here, it seems that the analysis
of bladed disks with more than two perturbed substructures could be efficiently done with the proposed
approach.

Figure 7: Error indicator E (maximum value within the frequency band of interest): (a) tuned bladed disk,
(b) mistuned bladed disk 1 and (c) mistuned bladed disk 2.

5 Conclusion

The WFE method has been applied to compute the dynamic response of bladed disks with distributed loads
(engine order excitation) where the focus is on the analysis of industrial structures with 3D substructures
(sectors). To improve the efficiency of the WFE method, model reduction techniques have been proposed.
To speed up, first, the computation of the condensed dynamic stiffness matrix of the substructures, a CB
reduction for the internal DOFs has been proposed. Next, a second reduction for the interface DOFs has been



considered where the displacement vectors at the substructure interfaces are approximated with a reduced
set of boundary modes. With this strategy, the computation of the wave modes can be drastically sped up.
To control the accuracy of the model reduction techniques, an error indicator has been proposed. Numerical
experiments have been conducted where the relevance of the WFE approach has been clearly highlighted for
predicting the dynamic behavior of tuned and mistuned bladed disks.
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