
HAL Id: hal-04695747
https://hal.science/hal-04695747

Preprint submitted on 13 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Seamless hybrid Phase II/III design with Bayesian
interim subgroup selection

Benjamin Duputel, Nigel Stallard, François Montestruc, Sarah Zohar, Moreno
Ursino

To cite this version:
Benjamin Duputel, Nigel Stallard, François Montestruc, Sarah Zohar, Moreno Ursino. A Seamless
hybrid Phase II/III design with Bayesian interim subgroup selection. 2024. �hal-04695747�

https://hal.science/hal-04695747
https://hal.archives-ouvertes.fr


A Seamless hybrid Phase II/III design with Bayesian

interim subgroup selection

Benjamin Duputel1,2,3, Nigel Stallard4, François Montestruc3, Sarah Zohar1,2,†

and Moreno Ursino1,2,5,†

1Université Paris Cité, Sorbonne Université, Inserm, Centre de Recherche des

Cordeliers, F-75006 Paris, France

2Inria, HeKA, F-75015 Paris, France

3eXYSTAT, 92240 Malakoff, France

4Warwick Clinical Trials Unit, Warwick Medical School, University of Warwick,

Coventry, UK

5Inserm CIC-EC 1426, F-75019 Paris, France

†Authors made equal contribution

September 13, 2024

Abstract

Population selection is a crucial subject in clinical development nowadays as person-

alized medicine is growing interest. Evolution on biomarker scanning techniques allow for

composition and detection of subpopulation of interest when analysing new drug responses

in a disease. Seamless adaptive trials could allow for subgroup analysis with selection of

the most promising population at interim analysis. We propose a hybrid Bayesian design

in two stage for seamless phase II/III trials with binary and time-to-event outcomes for the

first and second phase, respectively. In this work, at interim analysis several prior distribu-

tions including shrinkage prior are compared to possibly select/discard a population, and
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a final test using conditional error function as a combination method testing procedure,

to control the frequentist type I error, is used. Simulation studies showed that the logistic

regression model performs better than frequentist testing for population selection problem

when the subgroup should be selected. Shrinkage prior distributions tends to be more

conservative than simpler normal distributions as studies that would have ended positive

are stopped at interim analysis.

1 Introduction

For the last decades, interest on flexible designs for clinical trials has grown significantly. Both-

well et al. [4] reported in their review paper that almost no adaptive clinical trials were found

in the 1980-1990’s whereas since 2010 more than twenty a year are recorded. Adaptive designs

(AD) are appealing because they respond to ethics requirements as they propose faster ways to

propose an efficient treatment to the patients and stop the inefficient ones. They can be more

powerful than classical studies (by sample size re-estimation by example) or use a smaller sam-

ple size (seamless trials and combination testing) while controlling error rates. They also offer

logistical and economical benefits. The counterpart is that those methods need more upfront

planing and modeling.

Usually AD are constructed around interim analyses (IA) that help to decide applying

or not a predetermined adaptation. The most common and simple adaptation is the group

sequential design (GSD) as proposed, for example, by Pocock [16], in which repeated analysis

of an outcome allow for early stopping once a significance threshold is reached. The idea has

been extended in Jennison and Turnbull [11] or Whitehead [21] books allowing for early futility

stopping of the trial if efficacy analyses reach a futility threshold. Other adaptations consider

sample size reassessment method [7], dropping ineffective treatment or dose arms [18, 17], or

selection of previously identified population [13].

For population selection problems, trials can be constructed as seamless studies (two phases

combined in a unique protocol), where the Phase II, that aims at selecting the population that

could benefit from the therapy, is combined with the confirmatory Phase III. Pooling both

phases together has the benefit of reducing the global sample size while controlling type one

error rate. Seamless PhaseII/III trials with population selection has been studied in a few
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papers. Jenkins et al.[10] or Spiessens and Debois [19] for example proposed combination test

methods to deal with the problem. Those methods select the population on the base of interim

responses, and use combined values of statistical tests from both stages at final analysis. Friede

et al.[8] proposed a conditional error procedure, which similarly to the previous procedures make

interim decision based on statistical tests and conclude based on all studies values while taking

into account the correlation between normally distributed statistical tests. This correlation

structure has been studied and extended to multi populations, multi arms trials by Chen et al.

[6]. Miao et al. [14] recently proposed a gated subgroup analysis using progression free survival

and overall survival in a combination test for their seamless phase II/III trial. Bayesian theoretic

designs have also been proposed as in Brannath et al. [5], Kimani et al. [12], or more recently,

Ballarini et al. [3]. Those methods use maximization of utility functions (responding to a

specific need as safety and efficacy, or logistical costs, etc.) to decide if the trial should go to

the second stage with the subgroup or the full population.

In this paper we propose to use a Bayesian selection step based on posterior distribution

from parameters of a logistic regression. A binary survival rate endpoint is used for the first

stage of the study and overall survival for the final analysis. To account for the selection step

and try to avoid multiplicity issues, we use the same conditional error function of Friede et

al. [9] with the statistical test values from the first and the second steps in the final analysis.

Comparison between multiple prior distributions is made and a frequentist two stage design

based on statistical test for selection is also used for comparison. The proposed method uses

a logistic regression and the selection step is based on posterior distribution rather than an

utility function.

In the next section, we briefly present the real clinical trial Atalante-1 that serves as a

motivational case study for this research. In Section 3, the model and design are described and

illustrated. In Section 4 the parameters and the scenarios of simulations studies are presented

along with the results for two distinct prevalence of the subgroup as well as for another selection

threshold for the Bayesian designs. Finally the benefits and limitations of the proposed method

are discussed.
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2 Motivating study

The Atalante-1 clinical trial (NCT02654587) used a seamless Phase II/III design with a Fleming

single arm method [8] for first stage and a stratified log-rank test for the second one. The study

compared the experimental treatment (Tedopi) to the best standard of care (Docetaxel or

Pemetrexed) in terms of survival rate at one year (stage 1) and overall survival (stage 2) on

non-small-cell lung cancer. The operating characteristics of this trial included a type I error

rate of 2.5% and a power of 80%. The sample size required was 84 evaluable patients for the

first stage of the trial, under the null hypothesis of a 12-month Overall Survival rate of 25% in

the treatment group, and an alternative hypothesis of 40%. At the interim analysis, the study

could be either stopped for futility or proceeded to Phase III to compare overall survival with

the control using a frequentist approach. For the second phase, aiming for a power of 80% to

detect a significant difference with a bilateral significance level of 5%, 363 new patients were

planned to be evaluated. This was under a 2:1 randomization scheme to detect a Hazard Ratio

(HR) of 0.7, assuming a median survival of seven months in the control arm, which would imply

a ten-month median survival in the treatment arm. At the time of the planned interim analysis

when the first 103 patients reached 12 months of follow-up, decision was taken by the sponsor

to prematurely stop the accrual due to the coronavirus disease 2019 (COVID-19) pandemic

which was rapidly expanding with a strong concern about its impact on patient safety and data

integrity. Thereafter, treatment and follow-up continued for the ongoing 219 patients already

randomized. Due to this early accrual discontinuation, the data were unblinded and analyzed in

the first 103 patients. A subgroup of interest from a stratification factor was identified based on

a clinical and biological rationale [2]. At the time of final analysis, this subgroup was analyzed

in the overall population of 219 patients as post-hoc analysis.

A confirmatory study (Artemia) is ongoing to confirm the treatment effect in this popula-

tion of interest. Motivating by this experience, our research focused on exploring new Bayesian

method for seamless design where a subgroup is pre-identified, at the design stage, and prospec-

tively selected or discarded during the trial.
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Figure 1: Trial scheme with selection of the relevant population at interim analysis based on
binary survival rate endpoint. Then, the final analysis is based on a time-to-event endpoint. In
this example, subpopulation is selected at interim and the treatment is found superior to the
control at final analysis.

3 Model and Design

Our method shares the same endpoints with the case-study trial used. The mortality rate

at one year is used for decision in the first step of the seamless trial, and overall survival is

considered for final analysis. At interim analysis, a Bayesian approach, as described in the

following subsections, is used as selection tool for the determination of the most promising

population (possibly both) for the second step of the study. In the phase III of the trial, we

use frequentist testing that accounts for the first stage data via conditional error function for

final efficacy analysis. In addition, a closed testing procedure is considered when F and S

populations are simultaneously analyzed at the end of the trial. The overall trial design is

illustrated in Figure 1.

3.1 Notations

Let k = 0 and k = 1 be the indicator of control and treatment group respectively. In this work,

only two arms are considered. Let NII and NIII be the fixed sample size of the Phase II and
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Phase III in each group. Let the full population be denoted by F , and the subgroup of interest

be denoted by S (and its complementary SC , F = S∪SC). Let ti,k and ci,k be the time to event

(death in our motivating example) and time of censoring for patient i in treatment group k.

Let yi,k be the first occurrence between event and censor (lost to follow up or alive at the time

of analysis) yi,k = min(ti,k, ci,k) with ti,k, ci,k > 0, and let νi,k be the event indicator meaning

that νi,k = 1 if yi,k = ti,k or νi,k = 0 if yi,k = ci,k. Let Dp
k denote the data from group k at phase

p = II or III, Dp
k = {Nk,yk,νk}, where Nk is the sample size of the group k at time of data

collection (i.e. Nk = NII or Nk = NIII), and, νk and yk are vectors of length Nk containing all

values of yi,k and νi,k.

3.2 Stage 1 - Phase II

A dichotomous endpoint, the survival rate at t∗ (1 year) is used for interim analysis decision.

A patient can either be dead or alive at t∗, patients censored before observation of their status

at t∗ are excluded from the survival rate comparison. Interim analysis takes place when NII

are recruited in both group and have finished the follow-up period. We denote by y∗i,k the

observation at t∗

y∗i,k =

 1 if yi,k ≥ t∗

0 if yi,k < t∗,
(1)

Let pi,k ∈ [0, 1] represent the probability of being alive at time t∗, then for patient i in the

k group, we have y∗i,k ∼ Bernoulli(pi,k). We assume that pi,k depends on the sub-population for

patient i and for k and we use the logit link function, as recommended by Albert and Hu [1],

to link pi,k to patient’s covariates, that is:

logit(pi,k) = θTXi,k, (2)

with θ = (θ0, θS, θT , θTS) and Xi,k the covariate indicator matrix containing information on

patient’s group (F or S and control or treatment group). θ0 is the intercept and represents the

control effect on the Full population, θS is the shift from θ0 of the global (control and treatment)

sub-population group, θT the shift of the treatment group in the Full population, and θTS is

the interaction term between the treatment arm and the sub-population. Prior distributions

on these parameters are introduced in Section 3.5.
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Table 1: Interim analysis decision relative to observed outcomes at the end of the Phase II.
P(θTS > ζe|Dk) > τS P(θT > ζe|Dk) > τF Population studied in Phase III

Yes
Yes F&S

No S if P(θT + θTS > ζe|Dk) > τ1
Futility if P(θT + θTS > ζe|Dk) ≤ τ1

No Yes F
No Futility

3.3 Interim selection rules

At the end of the Phase II, the promising population (possibly both) is selected for the sec-

ond stage of the study. Decision rules for each situation are reported in Table 1. After the

computation of posterior distributions of all parameters, posterior samples are used to decide

if the trial will continue with F , S, or declared futile. In the case of the treatment showing

efficacy in both S and F population, the trial would continue in F , but the final analysis would

consider both populations. In this case, treatment benefits the full population, but the sub-

group treatment effect is then stronger. The interim analysis uses θT and θTS as parameters

of interest, meaning that the decision to continue or stop the study will only consider those

two parameters as we expect the control to have already proven efficacy in the global popula-

tion. Therefore as summarized in Table 1, the first step consists on looking at θTS posterior

distribution and its probability of being higher than a fixed threshold ζe (for simplicity, ζe is

set to zero) of being higher than an interim limit threshold P(θTS > 0|Dk) > τS. Given the ob-

served outcomes, analysis of the θT parameter follows the same rule. If P(θTS > 0|Dk) > τS and

P(θT > 0|Dk) > τF , then the trial continues with an analysis in S&F . If P(θT > 0|Dk) < τF , but

P(θT +θTS > 0|Dk) > τ1 then the trial continue in the subgroup as a treatment effect is found in

the subgroup, otherwise the trial stops for futility. If P(θTS > 0|Dk) < τS, if P(θT > 0|Dk) > τF

then the trial continues with an interest on F only (see below), if P(θT > 0|Dk) < τF , the trials

stops for futility.
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Figure 2: Representation of the trial tests at the end of the trial given the outcome of interim
analysis.

3.4 Stage 2 - Phase III

If the trial continues to the second stage, there are three possible situations, either the trial

continues with F , either it continues with S, or with both F&S for analysis as shown in Figure 2.

An one-sided Log Rank Test (LRT) is considered for the final analysis: H0 : S0(t) ≥ S1(t) vs

H1 : S0(t) < S1(t), with S0 and S1 representing the survival function of the control and

treatment group respectively, in the selected population. To account for the selection step

and control the type-one error rate, we use the conditional error function approach along with

Spiessens and Debois [19] testing method to account for correlation of F and S tests. If both

population are selected to be studied in the final analysis, we also use a closed test procedure

to ensure that the type-I error rate is controlled at the desired level (0.025 unilateral in our

application).

3.4.1 The Conditional Error Function (CEF) accounting for correlation

The CEF approach used for the final analysis is proposed by Friede et al. [8] and used in [9] or

Stallard et al. [20]. It is known to have good properties (better power and comparable type-I

error rate control) compared to other combination approaches. The use of the Spiessens and
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Debois [19] testing procedure allow for correlation between F and S tests to be accounted for.

This method also considers the existing correlation between different tests statistics as well as

correlation between S and F denoted ZS and ZF . The use of a combination approach supposes

that the Phase II data is stored using the late time-to-event endpoint, therefore first stage

patients of the selected group continue follow-up until the final analysis.

Let HF
0 be the null hypothesis for F , HS

0 the one of S, and H
{S,F}
0 = HF

0 ∩HS
0 the intersection

null hypothesis. Let ZF
1 and ZS

1 be the observed normalized tests statistics of Phase II time-to-

event data in F and S, and similarly ZF
1,b and ZS

1,b be the tests statistics of Phase II binary data

in F and S. We also assume that corr(ZF
1 , Z

F
1,b) = ρ (similarly for S). Let SF

1 = w1Z
F
1,b (resp.

SS
1,b) be the weighted tests where w1 =

√
nphII/ntotal represents the ratio of patients of phase

III over the total sample size. For the Phase III data, let ZF
2 (resp. ZS

2 ) be the statistic tests

and SF
2 = w1Z

F
1 + w2Z

F
2 (resp. SS

2 ), w2 =
√
1− w1 represents the ratio of patients of phase

III over the total sample size. As described by Friede et al. [8] under H{S,F}
0 , the weighted test

statistics are correlated and follow a Multi-Normal distribution, that is in our situation:
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(3)

At interim analysis, early termination of the trial can be considered if the observed test

statistic exceeds a fix threshold, similarly to group sequential designs. In our design, we do

not consider early termination for efficacy at interim analysis, computation of the threshold

value for the final analysis depends only on the observed value at the first stage and the wanted

overall type-one error rate. To be declared positive at final analysis, the final statistical test

must reach at least a c2 threshold computed depending on first stage results. This threshold

is computed using the multinormal quantile function with probability = α the type-one error

rate, and correlation matrix

 1
√
τ

√
τ 1

, where τ represents the prevalence of the subgroup as

in Friede et al. [8]. As described in Figure 2, at interim analysis, four decisions can be taken,

either the trial stops for futility, or it continues only in F or only in S, or both population are

analyzed at the end of the trial. The first stage data is introduced in the final test thanks to
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the described method.

If only a population is selected for the final analysis, the individual population null hypoth-

esis HF
0 or HS

0 is then rejected if it individual test statistics values is higher than the corrected

critical value that is ZF
2 >

c2−sF1 ρ

w2
or ZS

2 >
c2−sS1 ρ

w2
.

If both population are selected for final analysis, then the intersection hypothesis also needs

to be rejected. For the intersection hypothesis, the critical p-value threshold pthresh is computed

through the following equation given stage 1 test results sF1 and sS1 : pthresh = 1 − P (ZF
2 <

c2−sF1 ρ

w2
, ZS

2 <
c2−sS1 ρ

w2
). Letting Zmax = max(ZF

2 , Z
S
2 ) be the maximum observed test statistic,

the intersection p-value is pS,F = 1−
∫ Zmax

−∞ Φ(Zmax−
√
τz√

1−τ
)ϕ(z)dz. The intersection hypothesis is

then rejected if pS,F < pthresh. Finally, a closed test procedure is considered for rejecting HF
0

or HS
0 , meaning that individual and intersection hypothesis need to be rejected to conclude to

a significant treatment effect in either of the populations.

3.4.2 Frequentist design

For comparison to Bayesian methods, a frequentist trial is also run. We consider the above

method of conditional error function as presented in Friede et al. [9] with the asd R package.

Selection is also based on a threshold limit, using statistical test values to select the population.

To mimic the Bayesian method, S is selected if ZS
1,b > τ ∗S, Z

F
1,b < τ ∗F , F is selected for a single

test on F if ZS
1,b < τ ∗S, Z

F
1,b > τ ∗F , F and S are tested if ZS

1,b > τ ∗S, Z
F
1,b > τ ∗F , and futility is

declared at interim analysis if none of the thresholds are crossed. Final analysis is the same as

for the Bayesian methods, using CEF and combining statistical tests from both stages.

3.5 Prior distribution and parameter choice

In this work we wanted to evaluate several prior distributions. We first chose two horseshoe

prior parametrization [15]. The horseshoe prior is know for shrinking posterior distributions of

non influential covariates toward zero. For k = {S, T, TS}, θk|λk, τk ∼ N (0, τ 2kλ
2
k), with λk, τ

2
k ∼

Half −T (). We compare two different parametrization of the horseshoe prior distribution, one

with a prior distribution giving more weight to zero, and the other being more spread. We refer

as the centered on zero horseshoe prior as “peaked horseshoe” while the other one is referred as

“flatter horseshoe”. The peaked horseshoe prior as λk ∼ Half−T (0, 1, 1), τk ∼ Half−T (0, 1, 1),
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Figure 3: Prior distribution of regression parameter for all θ in the Bayesian design

whereas τk ∼ Half − T (0, 10, 1) in the “flatter horseshoe”. We also checked another Bayesian

prior, that is a Normal non informative N (0, 2) prior distribution for regression parameters.

Samples from the 3 prior densities are plotted in described in Figure 3. Finally, for the sake of

simplicity we assumed that ρ is known and equal to 0.8 (the correlation we saw in preliminary

sensitivity analysis).

4 Simulation study and application to the case study

4.1 Simulation setting

We evaluate the operating characteristics of the seamless hybrid design and its ability of cor-

rectly choosing the population that benefits the most from the treatment. Let NF , NS and NSC

be the sample size for F, S and SC populations. A global sample size of NF = 190 is used along

with a prevalence of 0.7 for the subgroup S that is NS = .7 ∗ 190 = 133, NSC = 57. In the case

study trial, the identified subgroup had a prevalence around 0.6. Therefore, we restricted our

research to high prevalence simulations, as we wanted to respect that S has a bigger sample
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Figure 4: Survival Times Distribution for F and S population in all scenarios

size than SC . We present results for a S prevalence of 0.7, since other studies of interests, not

described here had similar prevalence values, but results for a lower prevalence of the subgroup

are presented in appendix. Sample size was computed by simulation for a False Positive rate

controlled at 0.05 (bilateral) and a power of 0.8 under the second scenario in which S should

be selected with an Hazard ratio of 0.7 for frequentist analysis, considering ρ = 1. Hazard ratio

were set for both population of the treatment group in comparison to the control. As risk are

proportional in the S subgroup as well as in its complementary, it is not expected to observe

risk proportionality between S and its complementary in the control group.

As described in the figure 4, the first scenario, of “Futility” scenario, was set up to study

the ability of the design to conclude to a futile study when the treatment arm does not benefit

to F nor S. In a second scenario, the S subgroup has an increased benefit from the treatment

compared to its complementary, HR(S) = 0.7, HR(F ) = 0.76. The third scenario has the F
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Table 2: Simulations Scenarios. In column the scenario number, the Hazard ratio Treatment vs
control of the Full population and the HR for the subgroup, where PST, PFT, PSC, PFC are
respectively the one year survival rates in Treatment Subgroup, Treatment Full population and
Control Subgroup and Full population.

Scenario HR(F) HR(S) PST PFT PSC PFC Population to select
1 1 1 30% 30% 30% 30% Futility
2 0.76 0.7 39% 42% 30% 30% S, F or S & F
3 0.7 0.7 42% 42% 30% 30% F & S
4 1.05 0.7 29% 42% 30% 30% S
5 0.75 1 39% 30% 30% 30% F

population having the same treatment effect in both subgroups, that is HR(F ) = HR(S) = 0.7.

In the fourth one, the hazard ratio of the full population HR(F ) = 1.05 and HR(S) = 0.7,

with a strong negative effect in the complementary and still the same effect in the subgroup.

In that case, since S has a high prevalence, in order reach a hazard ratio in superior to one

in F (meaning that the non subgroup patients a high HR). Finally in the last scenario the S

population did not benefit from the treatment, but its complementary did, that would be a

case where the population was badly identified. HR(S) = 1, and HR(F ) = 0.75.

4.2 Results

Results of all methods are presented in Tables 3, and 4. In Table 3 results are shown for a

prevalence of 0.7 of the S subpopulation, the τ1 futility threshold is set to 0 and threshold for

F and for S are respectively τF = 0.7 and τS = 0.5. In the Table 4, we add a stricter rule to

Bayesian methods as the τ1 threshold that is set to 0.4.

For each scenario, the proportion of futile studies at interim analysis is presented among

with the percentage of selection of each population in the 1000 simulated trials. The Ftot and

Stot columns represent the proportion of studies in which F and S were selected and were

significant at the final analysis, finally the overall power column is the global percentage of

positive studies, defined as trials in which the final analysis detects a significant effect of the

treatment in (at least one of) the selected population(s). In scenario 1, we see that the type

one error rate is only controled by the frequentist methods as they often declare more futility

at interim and selects both F&S population when the study continues, leading to a more strict

testing procedure at final analysis. Bayesian methods show a slight inflation (up to 1.5%) of

the false positive rate compared to frequentist. For scenario 2, frequentist methods perform
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less well than Bayesian horseshoe prior model with around 5% less overall power. Both type

of methods are outperformed by the Bayesian Normal model, as this method is less strict for

futility at interim analysis, and selects F for the phase III. In the third scenario, frequentist

methods with no threshold on F are better in terms of power than both horseshoe Bayesian

designs, and more generally frequentist and horsehoe tend to have comparable power. As

previously, Normal prior Bayesian model is the most powerful. The last two scenarios, in which

treatment effect is only simulated in one studied of the population, we observe a large gap

between Bayesian and frequentist methods. In the fourth scenario for instance power drops

significantly for all frequentist methods. When the threshold is put on F , we observe higher

power for the frequentist design. Bayesian methods all select the right population with high

accuracy and are equivalent to each other. Finally in scenario 5 we observe the opposite effect

of scenario 4 as the frequentist model with threshold on S is better than the two others and

Bayesian methods almost always manage to reject the null hypothesis by selecting F

From Table 4, we can see that having a more stringent futility rule by setting τ = 0.4 rises

the proportion of futile studies. While it has a very limited impact on most of the scenario,

it is interesting to note that for scenario 4, where effect is large on S, the peaked horseshoe

prior model is the best. That is because P (θT > 0) is unlikely to reach the thresholds with the

posterior being concentrated around zero, while it is reached for P (θTS > 0) and P (θT+θTS > 0)

in a little bit more cases, leading to more selection of S and then to a little increase in terms

of power. The scenario 3 does not change a lot with the addition of τ1, as both population are

simulated efficient, it leads to good posterior probability of being superior to zero for all terms

and therefore this scenario is not affected by the threshold as the last one which has such a

strong effect that the threshold is easily reached.
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Table 3: Results of the simulated scenarios for a prevalence of 0.7 of the Subgroup.
τF = 0.7, τS = 0.5, τ1 = 0. The % columns indicate the percentages of selection at interim
analysis for Futility, F, S, S&F with the percentage (of them) of positive studies at final analysis
in parentheses. The Ftot and Stot columns respectively represent the percentage of studies with
selection and significant testing in F and S. The False Positive Rate refers to the percentage of
studies erroneously declared as positive while the Overall Power column is the global percentage of
studies with at least one right population selected with positive result.

Scenario Model Futility F S S&F Ftot Stot False Positive Rate

1

Peaked horseshoe 48.1 5.7(9%) 40.1(5) 6.1(8) 1 2.5 3
Flatter Horseshoe 45.5 8.8(9%) 39.8(5%) 5.9(5) 1.1 2.3 3.1

Normal(0,2) 27 26.9(6%) 43.1(5%) 3(7) 1.8 2.3 3.9
Freq(τ∗F = τ∗S = 0) 44.3 9(4%) 8.3(4%) 38.4(4%) 1.9 1.8 2.2

Freq(τ∗F = 0, τ∗S = 0.5) 49.6 20.2(5%) 3(3%) 27.2(5%) 2.4 1.5 2.5
Freq(τ∗F = 0.5, τ∗S = 0) 50.5 2.8(4%) 18.3(3%) 28.4(5%) 1.5 1.9 2

Scenario Model Futility F S S&F Ftot Stot Overall Power

2

Peaked horseshoe 12.5 6.6(89%) 54.7(80%) 26.2(83%) 27.7 65.4 71.3
Flatter Horseshoe 11.8 9.9(88%) 53.4(80%) 24.9(84%) 29.6 63.5 72.2

Normal(0,2) 7.1 28.2(83) 50.2(80%) 14.5(88%) 36.1 52.9 76.3
Freq(τ∗F = τ∗S = 0) 9.9 4.6(72%) 4.7(64%) 80.8(76%) 64.7 64.4 67.7

Freq(τ∗F = 0, τ∗S = 0.5) 13.4 13(68) 1.2(67%) 72.4(78) 65.2 57.2 66
Freq(τ∗F = 0.5, τ∗S = 0) 13.2 1.3(77%) 15.9(70%) 69.6(79%) 56 66.2 67.2

3

Peaked horseshoe 14.2 17.9(94%) 34.8(78%) 33.1(90%) 46.8 57 73.9
Flatter Horseshoe 12.5 25.4(93%) 33.7(79%) 28.4(90%) 49.2 52.2 75.7

Normal(0,2) 7.2 43.5(92%) 31.5(79%) 17.8(93%) 56.6 41.5 81.6
Freq(τ∗F = τ∗S = 0) 7.5 7(89%) 1.9(68%) 83.6(81%) 74.3 69.4 75.6

Freq(τ∗F = 0, τ∗S = 0.5) 8.8 17.6(83%) 0.6(67%) 73(84%) 76 61.8 76.4
Freq(τ∗F = 0.5, τ∗S = 0) 11.4 3.1(90%) 8.9(64%) 76.6(84%) 66.8 69.7 72.5

4

Peaked horseshoe 2.7 0(0) 95.8(79%) 1.5(33%) 0.5 76.4 76.4
Flatter Horseshoe 2.4 0.3(33%) 95.4(79%) 1.9(42%) 0.9 76.2 76.3

Normal(0,2) 2 0.8(25%) 95.6(79%) 1.6(31%) 0.7 76.5 76.7
Freq(τ∗F = τ∗S = 0) 14.3 0.2(0) 23.6(74%) 61.9(26) 16.4 33.8 33.8

Freq(τ∗F = 0, τ∗S = 0.5) 24.3 2.1(5%) 13.6(79%) 60(27) 16.4 27.1 27.2
Freq(τ∗F = 0.5, τ∗S = 0) 14.5 0 41.9(77%) 43.6(31%) 13.7 46 46

5

Peaked horseshoe 2.6 96.1(100%) 0.2(0) 1(18%) 96.1 0.2 96.1
Flatter Horseshoe 1.7 97.1(100%) 0.3(33%) 0.9(22%) 97.1 0.3 97.2

Normal(0,2) 0.1 99.4(100%) 0.2(0) 0.3(67%) 99.3 0.2 99.3
Freq(τ∗F = τ∗S = 0) 4.5 48.8(100%) 0 46.7(6%) 51.5 2.9 51.5

Freq(τ∗F = 0, τ∗S = 0.5) 4.5 65.3(100%) 0 30.2(8%) 67.5 2.4 67.5
Freq(τ∗F = 0.5, τ∗S = 0) 11 42.3(100%) 0.2(0) 46.5(6%) 45.2 2.9 45.2
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Table 4: Results of the simulated scenarios for a prevalence of 0.7 of the Subgroup.
τF = 0.7, τS = 0.5, τ1 = 0.4. The % columns indicate the percentages of selection at in-
terim analysis for Futility, F, S, S&F with the percentage (of them) of positive studies at final
analysis in parentheses. The Ftot and Stot columns respectively represent the percentage of studies
with selection and significant testing in F and S. The False Positive Rate refers to the percentage
of studies erroneously declared as positive while the Overall Power column is the global percentage
of studies with at least one right population selected with positive result.

Scenario Model Futility F S S&F Ftot Stot False Positive Rate

1
Peaked horseshoe 63.5 6.3(9%) 11.3(6%) 18.9(8%) 1 2.5 3
Flatter Horseshoe 51.3 8.8(9%) 34(6%) 5.9(5%) 1.1 2.3 3.1

Normal(0,2) 38.6 26.9(6%) 31.5(6%) 3(7%) 1.8 2.2 3.8

Scenario Model Futility F S S&F Ftot Stot Overall Power

2
Peaked horseshoe 14 6.6(89%) 53.2(81%) 26.2(83%) 27.7 64.8 70.7
Flatter Horseshoe 13.9 9.9(88%) 51.3(81%) 24.9(84%) 29.6 62.6 71.3

Normal(0,2) 10.3 28.2(83%) 47(83%) 14.5(88%) 36.1 51.8 75.2

3
Peaked horseshoe 14.4 17.9(94%) 34.6(78%) 33.1(90%) 67.4 64.9 73.7
Flatter Horseshoe 12.8 25.4(93%) 33.4(79%) 28.4(90%) 49.2 52 75.5

Normal(0,2) 8.8 43.5(92%) 29.9(82%) 17.8(93%) 56.6 41.1 81.2

4
Peaked horseshoe 9.9 0(0) 88.6(82%) 1.5(33%) 0.5 73.3 73.3
Flatter Horseshoe 10.5 0.3(33%) 87.3(82%) 1.9(42%) 0.9 72.6 72.7

Normal(0,2) 11.5 0.8(25%) 86.1(83%) 1.6(31%) 0.7 71.8 72

5
Peaked horseshoe 2.6 96.1(99.9%) 0.2(0) 1.1(18%) 96.1 0.2 96.1
Flatter Horseshoe 1.7 97.1(100%) 0.3(33%) 0.9(22%) 97.1 0.3 97.2

Normal(0,2) 0.1 99.4(100%) 0.2(0) 0.3(67%) 99.3 0.2 99.3

4.3 Application to the Atalante-1 study data

In this subsection, we briefly present and discuss an application of Bayesian and frequentist

methods to the Atalante-1 study data. The original trial did not plan for selection at interim

analysis and therefore pursued the study in the full population, and did not consider testing

the subgroup. When we apply the proposed method to the trial data, each Bayesian method

selects the S population at interim analysis while frequentist designs go on in F&S populations.

Bayesian posterior distribution of θT and θTS are plotted in Figure??. Posterior probability for

θT and for θTS of being superior to zero are reported in Table 5. Frequentist methods all go

with F&S at interim analysis as the value of ZF reaches a high enough value. With all the

designs, the final analysis leads to a futile study with a final p-value of 0.18 in the subgroup. It

was anticipated, given that the original design was not calibrated for these methods, resulting

in a sample size that was not appropriately tailored.
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Table 5: Results obtained using the Atalante-1 dataset.
Method P(θT > 0) P(θTS > 0) ZF

1,b ZS
1,b pF pS pS,F

Peaked Horseshoe 0.49 0.51 0.893 1.01 NA 0.18 NA
Flatter Horseshoe 0.49 0.51 0.893 1.01 NA 0.18 NA

Normal(0,2) 0.58 0.74 0.893 1.01 NA 0.18 NA
Frequentist NA NA 0.893 1.01 0.4 0.18 0.24

5 Discussion

In this paper, we compared the operating characteristics of three Bayesian models and a Fre-

quentist one with diverse thresholds in the context of seamless phase II/III trial with selection

of a population at interim analysis. We compared multiple selection criteria and model while

having a similar (frequentist) testing procedure at the end of the trial.

From the results we saw that for Bayesian distributions, the horseshoe prior models are

the one declaring the more futile studies at interim. The horseshoe prior is known to be

optimal in variable selection when there is an important number of covariates, as only a few are

selected and other are shrinked to zero. In this context of sub-population selection horseshoe

appears to be less appealing than simpler normal prior distribution as the method is often too

conservative declaring futility at interim analysis. Simple prior like the normal prior distribution

can be preferable in those situations, satisfying results of this prior distribution also come with

a reduced computational time and better MCMC convergence. Model selection method as

Bayesian Model Averaging or Weighted AIC were also studied, but were not included as first

results showed no gain of use.

On the other hand the normal prior distribution can inflate a type one error rate as it can

lack of conservatism at interim analysis, with only a few studies stopped. For efficacy scenarios

normal prior tends to select more only F population rather than F&S as the horseshoe. This

results in a higher power as the final test is only based on F tests and is therefore less con-

servative. More generally, selection of the F population at interim analysis when all patients

benefit from the treatment will lead to a higher overall power, as it uses the total number of

patients and only apply the testing procedure to one group. Whereas the testing in S suffers

from a more restricted sample size, and rejection of H{S,F}
0 implies rejection of HF

0 and HS
0 .

Simulation studies also showed that in some situations, the use of the frequentist statistical

test value to chose between the full population and a subgroup can lead to erroneously chose
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to continue with the analysis of both population. In particular when a strong effect of the

treatment is observed on the subgroup, leading to an artificially inflate ZF value. For example,

in scenarios 4 and 5, when only one of the studied population benefits from the treatment, we

observe an important difference on overall power between both types of methods. In scenario

4, ZF
1,b value manages to reach the τ ∗F threshold as S ⊂ F , this implies an analysis in a non

responding population and a more strict rule for final analysis (as tests need to be performed

in both population). For the scenario 5, the opposite effect is observed as the HR = 1 for the

S subgroup, a threshold τ ∗S of zero can be often reach leading to a selection of both population

implying a loss of power for the same reasons of scenario 4.

The use of a logistic regression allow to overcome this issue. If a significant effect is found

on S in the treatment group, then the coefficient associated to the interaction term will be far

from zero while the coefficient of the full population will be close to zero.

Another difference between results from the Bayesian and the frequentist methods lies in the

selection rules. Indeed, if we imagine to apply some mathematical transformations we could see

the Bayesian thresholds on probabilities transferred on the Z scales, to match the frequentist

counterparts. Even if a perfect correspondence between Bayesian and frequentist thresholds

may be found, the Bayesian methods adopt an additional level of selection by using τ1. This

could be the reason why the frequentist methods select more often the F&S populations instead

of the S alone.

Other possible designs include continuing with SC if a null effect where found in S. But

in our context, since the subgroup is supposed to be identified before the trial, we did not

consider that option. Sample size re-estimation is also a common adaptation in that context.

We did not study the optimal sample size as computation for all the methods is time consuming

and a lot more simulations would be needed in that case. But the larger the sample size is

for interim analysis, the better is the choice of the population. However for fixed sample size

designs with no reassessment, having interim analysis done later improve the percentage of

correct population selection, but it does not improve the power by much in scenarios where S

is selected because the final sample size for S would be the same as when interim analysis is

done with a lower sample size. In that case the small gain observed is due to a better selection

accuracy.
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When planing a seamless adaptive design with population selection, we recommend that

the subgroup studied as a large enough prevalence, in particular if no sample size reassessment

is done after interim analysis when the subgroup is selected.
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