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Abstract. Text semantic segmentation is a crucial task in language un-
derstanding, as subsequent natural language processing tasks often re-
quire cohesive semantic blocks. This paper introduces a new perspective
on this task by utilizing global semantic pair relations from both token-
and sentence-level language models. This approach addresses the limi-
tations of prior work, which concentrated solely on individual semantic
units like sentences. Our model processes both local and global levels of
sentence semantics via encoders and then combines the semantics ob-
tained at each stage into a semantic embedding matrix. This matrix is
then fed through a convolutional neural network and finally used as input
through another encoder. This process enables the identification of se-
mantic segmentation boundaries by describing the relationships of global
semantic pairs. Furthermore, we utilize semantic embeddings from large
language models and consider the positional information of text within
the document to assess their efficacy in augmenting semantics. We test
our model with both contemporary and historical corpora, and the re-
sults demonstrate that our approach outperforms benchmarks on each
dataset.

Keywords: Text semantic segmentation · Semantic pair relation · His-
torical documents

1 Introduction

Text semantic segmentation consists of analyzing the semantic relationships be-
tween sentences or paragraphs based on the input text and next dividing them
into coherent semantic blocks [15,28]. An example is shown in Figure 1. By
identifying semantics between different blocks, this task can assist in numerous
downstream natural language processing (NLP) tasks, such as dialogue analysis
[31] and automatic summarization [20].

Researchers have proposed several models to address this task [1,19,18], all
of which perform single-sentence semantic analysis on text based on the output
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Fig. 1. Example of text segmentation

of a language model (LM) and ultimately output segmentation labels. However,
these models suffer from one drawback: they neglect to analyze the relationships
between groups of sentences. In addition, these approaches intend to obtain the
final sentence semantic vectors either by combining the token-level embeddings
or by directly using some sentence-level embeddings. But none of them have
attempted to combine these two levels of information for a more accurate em-
bedding. These two types of LMs are pre-trained on extensive data and offer
two different perspectives: the relationship between tokens and the relationship
between sentence meanings. Therefore, we aim to combine them and leverage
the advantages of both types of LMs simultaneously, integrating the local and
global viewpoints they provide.

We introduce Global-SEG, a new semantic segmentation model for text
that leverages the global relationship between semantic pairs that utilizes both
token-level and sentence-level LMs. A first encoder with transformer [29] ar-
chitecture is used to obtain new sentence vectors from token embeddings. The
outputs of the first encoder are then input into another encoder to get the re-
lations between single sentences. Subsequently, the original sentence embedding
from the sentence-level LM is combined with the output of these two encoders,
forming a semantic embedding matrix. This matrix undergoes convolution by a
convolutional neural network (CNN) along the semantic dimension to generate
the embeddings for the sentence pairs. Finally, a last encoder aggregates the
relationship between the sentence pairs and a linear layer predicts the semantic
division. This general architecture is shown in Figure 2.

We experimented on both contemporary and historical corpora. Concerning
the contemporary corpora, we used the Diseases and City subsets of the Wiki-
section semantic segmentation dataset [1]. Regarding the historical corpora, we
utilized the NewsEye [11] dataset, where we evaluated the semantic segmentation
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Fig. 2. General architecture of Global-SEG

on Finnish4 and French5 historical texts. In addition, we tested the effect of text
position on semantic segmentation since the Newseye dataset is a multimodal
corpus containing both text and images. This idea was inspired by the Lay-
outlm model [32], which feeds both word embeddings and position embeddings
of text into BERT [8] for document analysis and achieves excellent performance
on related tasks like table comprehension and classification. Overall, Global-SEG
outperforms benchmarks in each corpus and verifies the importance of analyzing
global semantic relationships. Furthermore, we discuss the effects of including
text location information and the use of large language models (LLMs) into
Global-SEG6.

The paper is organized as follows: In Section 2, we review existing research
related to text semantic segmentation. Section 3 delineates the architecture of
the model, accompanied by a comprehensive description of the data. The experi-
mental setup and evaluation metrics are expounded upon in Section 4. Section 5
encompasses the presentation of results and related discussions. Section 6 offers
the conclusion, highlights potential avenues for future research and provides the
analysis of the limitations of our work.

2 Related Work

Text semantic segmentation typically consists of computing the text semantics
(converting text into a vector) and then segmenting the whole text into blocks
based on the semantic similarities. First researches implemented this task using
a statistical approach [3], which constructs incremental exponential models to

4 https://zenodo.org/record/5654858
5 https://zenodo.org/record/5654841
6 The code of this paper is available at https://github.com/WenjunSUN1997/text_

seg

https://zenodo.org/record/5654858
https://zenodo.org/record/5654841
https://github.com/WenjunSUN1997/text_seg
https://github.com/WenjunSUN1997/text_seg
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detect boundaries by analyzing the semantic changes of topic and cue words.
There are also methods based on Bayesian models [6,24], which calculate the
text topic by analyzing the word list and the word distribution of the text.
Others have tried to build relationship graphs to describe semantic relevance to
segment text by unsupervised methods [12].

With the development of neural networks (NNs), the common approach to-
day is to use LMs to project the text into a vector space and then detect semantic
transformations. The transformer architecture proposed by [29] has significantly
improved the performance of the LMs in various domains. Based on this ar-
chitecture, several pre-trained models and LLMs such as BERT [8], GPT [22],
and LLAMA [26] have emerged, followed by reinforcement learning (RL) models
such as GPT-4 [21] and Llama 2-Chat [27].

Based on the token semantics, different models for meaning understanding at
the sentence level have been proposed, including InferSent [7], Sentence-BERT
[23], and SimCSE [10] as top three solutions. For the detection of the segmenta-
tion boundary, the long short-term memory (LSTM) architecture and its variants
are heavily employed due to the sensitivity to sequential data and the ability to
remember long-term information [1,2].

In the context of detecting semantic changes, the attention architecture of
the transformer architecture has been also explored. In a similar manner, the
cross-segment method [19] employs the token embedding of multiple sentences as
input to the transformer for semantic processing. Furthermore, researchers have
attempted to directly input sentence vectors to accomplish this task [13,18].
However, these approaches primarily focus on the relationships between individ-
ual sentences while neglecting the semantic relationships among pairs or groups
of sentences. Additionally, they do not leverage both token-level and sentence-
level LMs to compensate for the limitations of each approach. To overcome these
challenges, we propose a novel architecture that takes advantage of the global
semantic relations information for text semantic segmentation.

3 Model

Global-SEG is composed of an intra-sentence encoder (ECinner) that is used to
process the token-level semantics, and a global semantic encoder (ECglobal) set
to process the relation between individual sentences of the whole document. Both
sentence semantics conform a semantic embedding matrix (Msem) for integrating
and representing the semantics of each level more efficiently. Since semantic seg-
mentation occurs between two semantically different sentences, the segmentation
point is determined between sentence pairs. A CNN (CNN) is used for sentence
pair information processing. Finally, an encoder (ECrela) is set to model sen-
tence pair relations and amplify the difference between the sentence pairs where
the segmentation point is located and other semantically harmonized sentence
pairs.

Directly capturing the semantics of a sentence using a pre-trained LM has
shown to be a challenge [16]. Furthermore, contemporary LMs, trained on present-
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day corpora, lack the robustness required to handle the inherent noise in his-
torical text [5,25]. The inclusion of the ECinner encoder serves to address these
issues, and its efficacy has been empirically validated [5].

ECglobal is used to aggregate the various levels of embeddings and process
the semantics of individual text units from a global perspective. Then, these
semantic embeddings obtained from different perspectives form Msem and the
convolution results of semantic unit pairs are obtained by CNN . The reason
for using both token- and sentence-level LMs is that the former can be com-
bined with an encoder to reduce the noise and semantic bias of historical text
and digitization errors but lacks the ability to describe the semantic similarity
at a sentence-level [23]. Conversely, the latter can provide semantic assistance.
Building a global semantic embedding matrix for analysis has already yielded
positive results on the entity-level relation task [33]; we extend this same concept
to global semantic segmentation and formulate Msem.

The complete pipeline of Global-SEG is the following. Initially, a sentence
undergoes processing by the LM to acquire both token-level (EMtoken) and
sentence-level (EMsen ori) embedding representations. Subsequently, the first
encoder, denoted as ECinner, operates on the token embeddings, generating the
second sentence-level vector representation EMsen inner as the average of the
encoder’s output, i.e., EMsen inner = Avg(ECinner(EMtoken)).

All the sentence embeddings from the previous encoder EMsen inner are then
fed into the global syntactic encoder ECglobal to obtain the embedding EMsen glo

that represents the relationship between sentences. After that, the embeddings
EMsen ori, EMsen inner and EMsen glo are concatenated to form a semantic
embedding matrix

Msem = [EMsen ori, EMsen inner, EMsen glo], (1)

where Msem ∈ R3×Sen num×Dim. Sen num corresponds to the number of sen-
tences and Dim to the dimension of the semantic representation. For the mul-
timodal data, we also introduced bounding box information EMpos of the text
area to enhance the semantics. Since the bounding box information contains
two-dimensional coordinates on the top left and bottom right, i.e., two x-axis
coordinates and two y-axis coordinates, we set up four embedding layers to em-
bed these four values and use them as position embeddings. Hence, the dimension
of the semantic embedding matrix becomes Msem ∈ R7×Sen num×Dim.

The CNN is responsible for convolving the semantic embedding matrixMsem

to obtain a representation of the sentence pairs, after which the ECrela encoder
processes the output of the CNN to express the relationships among the indi-
vidual sentence pairs.

Finally, linear and softmax layers are used to obtain the labels for the se-
mantic segmentation as follows:

Seg = Softmax(Linear(ECrela(CNN(Msem)))). (2)
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Fig. 3. An example from the NewsEye dataset. Different articles are marked with
different colors. As shown in the red area, in addition to the text block’s text annotation,
there is also its bounding box annotation.

4 Experiments

In this section, we first introduce the datasets used for the experiments and then
describe the evaluation metrics used to measure Global-SEG’s performance as
well as other experimental details.

4.1 Datasets

Our experiments were performed over two dataset types: contemporary and his-
torical corpora.

Contemporary Corpus We utilized the Diseases and City subsets of Wiki-
section [1] sourced from Wikidata’s disease category in English. This dataset
encompasses abstracts and complete texts of pertinent articles and was used on
the Sector [1] and Transformer2 [18] methods.

Historical Corpus We selected the Finnish (fi) and French (fr) sections
of the Newseye dataset [11]. This dataset, whose texts are derived from media
sources (i.e., newspapers) between 1848 and 1918, was compiled by the national
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libraries of France, Finland, and Austria. It contains newspapers in German,
French, and Finnish; however, only the sections in French and Finnish are pub-
licly available. Evaluation campaigns like HIPE-2022 [9] have used this dataset
to test the capacity of state-of-the-art LM-based systems to process historical
texts given that the semantic information of numerous tokens has undergone
changes over time. Since most LMs are trained on contemporary corpora, they
are likely to encounter challenges in accurately embedding the desired semantics
of certain historical content. Furthermore, this dataset contains substantial noise,
including OCR errors, which introduces additional hurdles for individual text se-
mantic segmentation models. Leveraging the multimodal nature of this corpus,
which incorporates both text and image data with specific textual locations la-
beled within the images, we explore the integration of positional embeddings
into Global-SEG as an additional aid to enhance text semantic comprehension.
An example can be seen in Figure 3.

For the division of the contemporary dataset into train, development, and
test, we used the official 70%, 20%, and 10% partitions. Meanwhile, we divided
the different languages of the historical corpus into train (60%), development
(20%), and test (20%). Table 1 provides the number of articles (Docs), sentences,
paragraphs, and average number of sentences per paragraph (Avg. sents) of each
dataset.

Table 1. Statistics of each dataset

Dataset Docs Sentences Paragraphs Avg. sents

Diseases 3,590 237,671 24,248 9.80
City 19,539 1,238,133 114,103 10.85

Newseye (fr) 182 50,698 6,792 7.46
Newseye (fi) 200 22,042 6,348 3.47

4.2 Metrics

Pk [3] is a metric specifically designed to measure the result of segmentation. It
uses a sliding window of size k to determine whether the nodes on the two edges
of the window belong to the same topic. To perform the evaluations we used the
default value of k which corresponds to half of the average size of each block of
the standard segmentation.

Precision, recall, and F1 are the common evaluation metrics to measure the
model’s ability to correctly identify targets in the test set (precision) and the
quality of the model’s own prediction (recall). F1 corresponds to the harmonic
mean of precision and recall and measures the model’s performance in a compre-
hensive manner. These mentioned metrics are also widely used in text semantic
segmentation [30,17,1,19,14,31], thus our results are directly comparable to the
benchmarks.
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4.3 Language Models

LMs are responsible for embedding the input textual information into a continu-
ous vector space. Moreover, token-level LMs vectorize individual tokens lacking
a comprehensive understanding of the text as a whole. To address this limita-
tion, sentence-level LMs capable of mapping entire sentences into vectors have
been introduced. While still based on tokens, they offer superior performance in
tasks like sentence meaning comprehension.

Considering the importance of both token-level and sentence-level under-
standing, our proposed model combines these two approaches. For token-level
modeling, we selected BERT, while for sentence-level modeling, we opted for
Sentence-BERT. Besides, we used the LLaMA-7B version to analyze the impact
of LLMs. Given the dimensionality of the semantic vector generated by LLaMA
is 4,096 and by Sentence-BERT is 768, we took the average value of individual to-
ken embeddings as the initial semantic vector for each sentence when conducting
experiments with LLaMA.

4.4 Baselines and Benchmarks

LMs We take into account four models as baselines: (1) BERT, (2) Sentence-
BERT, (3) hmBERT [25] and (4) LLaMA. While BERT and LLaMA consider
the mean value as the sentence vector, Sentence-BERT takes advantage of the
model’s output directly. HmBERT is a language model trained using media
sources that includes the historical corpus from the experiment in its training
data. We use the cosine similarity to measure the semantic difference and set the
threshold to 0.0. This means that if the cosine similarity between 2 sentences is
less than 0.0, segmentation is needed. Otherwise, the two sentences belong to
the same text block.

Sector [1] is a model that relies on Bi-LSTM and sentence vectors. Firstly, it
obtains the sentence semantics with a LM which is then fed to the Bi-LSTM
network to derive a topic embedding. Then, a classification layer is employed
to analyze these embeddings and identify topic shifts within the text. In our
experiments, Sentence-BERT is used to vectorize the sentences.

Transformer2 [18] is an optimization of the two-level transformer model [13]. In
the original model, token embeddings are obtained using fastText [4] and input
along with token positions into a transformer to generate sentence vectors. A
second transformer is then employed to further process the sentence vector and
perform the final prediction. In contrast, Transformer2 improves the process of
obtaining sentence vectors. Using BERT or its variants, the [CLS] vector of the
sentence is obtained, after which it is spliced with the [CLS] of the sentence pair
to describe the final sentence semantics. Finally, the semantic segmentation is
performed by a similar method as the two-level transformer. Since the Newseye
dataset has no topic annotation, the topic prediction layer of Transformer2 is
not involved during the training of the historical corpus.



Text Semantic Segmentation Based on Global Semantic Pair Relations 9

4.5 Detailed Setup and Hyperparameters

In our experiments, transformers are used as encoders and the number of at-
tention heads for both ECinner and ECglobal encoders are set to 8, while 4 for
ECrela. All the encoders’ layers are set to 2. When using BERT and LLaMA,
the model’s encoder dimensionality is 768 and 4,096 respectively. The backbone
LM is not fine-tuned and is frozen during training. The CNN network is of di-
mensions (2 ; 192) and (2 ; 1,024) for BERT and LLaMA respectively. Batch size
is set to 16 and the random seed is set to 3,407 with a window length of 8 and
a step size of 7 to load the data for training and validation. We set the learning
rate of the AdamW optimizer to 10−5 with a dropout of 0.5. In our experiments,
we used an NVIDIA RTX A6000 GPU with 48Gb.

5 Result and Discussion

In this section, we first summarize the experimental results according to contem-
porary and historical corpora. Secondly, we analyze the reasons for these results.
In tables 2 to 4, the symbol ↓ means that lower values are better, while ↑ is the
opposite. The -Inner, -Global, and -Rela mean that the corresponding encoder
has been removed for the model. This is used to perform the ablation study. The
results of Sector[1] and Transformer2[18] in the contemporary corpus were taken
from its original paper, while in the historical corpus, we reproduced the works
and used the results from our experiments.

5.1 Results

Contemporary Corpus Global-SEG outperformed the baselines and benchmarks
in precision, recall, and F1 for the Diseases and City datasets as reported in
tables 2 and 3. It is important to notice that in some cases, when the model
achieves a high F1 value it also obtains the worst Pk. This phenomenon is due
to the calculation method of the Pk. The window size used in the calculation
process is set to the default, which is half the average size of each semantic
block. Consequently, during the sliding window process, multiple segmentation
boundaries can be assigned to the same window, causing several erroneous pre-
dictions of the model to be counted only once. Additionally, the Pk calculation
method considers the text at both ends of the window to be correctly assigned to
the corresponding semantic block, without considering the accuracy of the seg-
mentation position. Regarding LMs, employing solely BERT yielded the least
favorable results across all three datasets. BERT seems to miss a lot of segment
boundaries which results in a low coverage compared to the other methods. It
is worth noting that Sentence-BERT outperformed LLaMA in F1. It is possible
that the performance of BERT and LLaMA models could be improved by op-
timizing the computational methods and setting new thresholds. However, the
experimental results demonstrate that the models trained specifically for the
sentence comprehension task can better respond to semantic changes under the
current conditional settings.
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It is crucial to take into consideration that all models, except BERT, have
higher recall than precision in prediction. Meanwhile, Global-SEG achieves the
smallest difference between precision and recall and obtains the highest F1, which
means that it is more reliable compared to the benchmarks.

Table 2. Results on Diseases dataset. -Inner, -Global, and -Rela are the results of
removing the corresponding encoder.

Models Pk(%)↓ Precision(%)↑ Recall(%)↑ F1(%)↑

BERT 42.06 27.99 4.17 7.26
Sentence-Bert 44.60 21.10 72.03 32.65

LLaMA 55.85 11.75 99.39 21.02
Sector 26.80 — — 56.70

Transformer2 18.80 — — —

Global-SEGBERT 1.37 97.23 98.89 98.05
Global-SEG−Inner 3.72 87.73 99.76 93.46
Global-SEG−Global 3.67 86.94 99.96 92.99
Global-SEG−Rela 4.08 87.49 99.57 93.14
Global-SEGLLaMA 1.44 95.37 100.00 97.63

Table 3. Results on City dataset. -Inner, -Global, and -Rela are the results of removing
the corresponding encoder.

Models Pk(%)↓ Precision(%)↑ Recall(%)↑ F1(%)↑

BERT 43.58 6.19 5.88 6.03
Sentence-Bert 45.79 18.82 89.07 31.08

LLaMA 43.44 18.00 81.81 29.50
Sector 14.40 — — 71.60

Transformer2 9.10 — — —

Global-SEGBERT 8.58 62.50 96.63 75.90
Global-SEG−Inner 11.96 49.58 99.35 66.29
Global-SEG−Global 12.59 53.12 100.00 69.38
Global-SEG−Rela 8.34 61.02 98.03 75.21
Global-SEGLLaMA 9.54 60.24 88.23 71.59

Historical Corpus As seen in tables 4 and 5, Global-SEG continues to outperform
the benchmarks in terms of F1 and Pk for the historical corpus, while BERT
consistently exhibits the least favorable performance. For the French dataset,
BERT cannot determine the correct segmentation position at all. This could be
related to the threshold that has been set, but overall, BERT has trouble adapt-
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ing historical text. On the other hand, LLaMA outperforms Sentence-BERT in
the Finnish texts, with a higher F1 of 4.34%.

Introducing positional information into the model (Global-SEGBbox) resulted
in a 3.27% improvement in Pk and a 4.58% increase in F1 for the Finnish dataset.
And for the French dataset, compared to Global-SEGBERT , Global-SEGBbox

improved 0.77% in Pk, but was 0.98% less in F1.

Table 4. Results on Newseye French dataset. -Inner, -Global, and -Rela are the results
of removing the corresponding encoder.

Models Pk(%)↓ Precision(%)↑ Recall(%)↑ F1(%)↑

BERT 39.32 0 0 0
Sentence-Bert 45.47 20.77 54.56 30.08

hmBert 57.58 14.58 22.88 17.81
LLaMA 60.67 13.60 98.83 23.91
Sector 29.70 38.98 51.16 44.25

Transformer2 29.38 31.14 65.44 42.20

Global-SEGBERT 27.97 37.91 62.29 47.14
Global-SEG−Inner 28.72 42.78 43.35 43.06
Global-SEG−Global 27.18 47.23 39.70 43.14
Global-SEG−Rela 27.16 52.78 36.21 42.95
Global-SEGLLaMA 30.08 41.46 42.35 41.90
Global-SEGBbox 27.20 43.25 49.50 46.16

Table 5. Results on Newseye Finnish dataset. -Inner, -Global, and -Rela are the results
of removing the corresponding encoder.

Models Pk(%)↓ Precision(%)↑ Recall(%)↑ F1(%)↑

BERT 44.77 42.85 0.46 0.91
Sentence-Bert 36.06 40.86 35.02 37.71

hmBert 47.73 31.91 26.42 28.90
LLaMA 55.54 28.07 83.71 42.05
Sector 27.73 50.91 77.50 61.45

Transformer2 23.59 59.16 71.88 64.90

Global-SEGBERT 18.60 64.81 84.28 73.27
Global-SEG−Inner 32.17 46.60 78.27 58.42
Global-SEG−Global 22.38 58.80 83.35 68.96
Global-SEG−Rela 23.50 57.42 85.82 68.80
Global-SEGLLaMA 21.93 63.70 76.27 69.42
Global-SEGBbox 14.33 79.67 76.11 77.85
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5.2 Discussion

Ablation Study In tables 2 to 5, Global-SEG−[Inner|Global|Rela] refers to the per-
formance of the model when the corresponding encoder is removed. A compar-
ison of the results on the contemporary and historical corpus shows that the
segmentation results are all negatively affected when one of the encoders in the
model is removed. This suggests that each encoder is playing a role in the se-
mantic segmentation task. In particular, on the historical corpus, the model’s
performance shows a significant drop when the encoder ECinner is removed,
which further illustrates that the models pre-trained with the modern corpus re-
quire additional components for semantic enhancement. However, on the French
dataset, the model performance gap is not as large as in Finnish after removing
the different encoders, which suggests that the removal of the encoder has had
a greater impact on the Finnish than on French.

Impact of LLMs By comparing the results on each dataset it can seen that the
introduction of a LLM does not improve Global-SEG’s performance. The rea-
son for this phenomenon could be explained by the procedure we followed to
extract the sentence embedding from LLaMA using the average value of token
embedding. LLaMA is designed to target language generation rather than lan-
guage understanding, so using a more appropriate LLaMA sentence embedding
extraction method or switching to a prompt engineering approach may improve
Global-SEG performance with LLaMA.

Impact of Historical Corpus By comparing the performance of a model on both
the contemporary and historical corpus, the scores are consistently better on the
former than on the latter. Part of the reason for this behavior is that the semantic
changes in the historical text and the noise produced by the OCR challenge the
semantic embedding ability of LMs trained on contemporary data. Also, since the
historical data is obtained from newspapers, there are many texts that cannot be
accurately located, such as publication date, article author, etc., which may be
marked as a separate paragraph, but which are not clearly semantically related
to the news text. In addition, the granularity of text annotation varies greatly
in the historical corpus, with some texts having only a few words while others
having whole paragraphs, which also poses a high challenge to the embedding
ability of the LMs and the segmentation model. It can be seen that hmBERT
performs much better than the LMs that have not been trained on historical
corpora, however it does not outperform Sentence-Bert given that it has not
been trained for semantic similarity.

Impact of Text Position and Layout Regarding the historical corpus, we can see
that all models perform better in Finnish than in French. Moreover, the intro-
duction of positional embedding improves Global-SEG’s performance of both Pk

and F1 in Finnish, while the performance of F1 in French is slightly reduced.
This indicates that depending on the complexity of the text layout, simply using
text location information does not reliably add semantic information.We have



Text Semantic Segmentation Based on Global Semantic Pair Relations 13

Fig. 4. Example of comparison of two dataset layouts, Finnish newspaper on the left
and French on the right

only used a simple embedding layer to vectorize the bounding box coordinates
of the text, which could potentially be changed if a more optimal approach is
introduced.

As shown in Figure 4, the text layout of Finnish newspapers is less complex
than the corresponding layout of French. This means that for Finnish, a simple
positional embedding can reflect the text’s positional and semantic relations.
However, this approach does not work for the French dataset due to its com-
plex layout. If two adjacent text blocks are in the same horizontal line but not
in the same column, they have adjacent coordinates but do not belong to the
same semantic segment. In this case, the similar position embedding will instead
interfere with the simple semantic vector. Figure 4 also shows the effect of the po-
sition information of adjacent paragraphs on the semantic segmentation, where
two paragraphs have similar y-axis coordinates, but belong to different semantic
blocks. This is why the aforementioned Layoutlm model can enhance the seman-
tics with the positional embedding. As Layoutlm uses fine-grained positions of
tokens, adjacent tokens tend to have similar semantics where they are likely to
be in the same semantic unit (e.g., the same phrase, sentence, or paragraph).
However, unlike Layoutlm, in our experiments with Global-SEG, the location of
paragraphs is used.
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6 Conclusion

In this paper, we introduced Global-SEG to address the text semantic segmen-
tation task with global semantic relations by combining token- and sentence-
level LMs and LLMs. The results over several corpora reveal that Global-SEG
outperforms the benchmarks and that including LLaMA does not improve the
semantic segmentation ability of the model. We observed that when applied to
the historical corpus, the performance of all models (baselines, benchmarks, and
Global-SEG) decreases compared to the contemporary corpus. This indicates
that historical texts present certain particularities related to spelling, casing,
grammar, and semantics that neither LMs nor LLMs manage to capture.

Furthermore, since the historical corpus contains information about the lo-
cation of the text, we included it to improve the semantics. However, while this
addition had a positive impact on Finnish texts, the opposite was true for French
texts. We hypothesize that using the bounding box embedding method alone
to represent positional information would result in a weakening of the seman-
tic differences between juxtaposed text segments. This aggregation improved
Global-SEG’s performance due to the simpler layout of Finnish compared to
French, but the presence of more text columns in French data exacerbates the
above-mentioned problem.

To the best of our knowledge, current text-semantic segmentation models
must follow the reading order, i.e., the input text is sorted in advance according
to human reading logic. If the input of these models is the OCR output text of a
complex structured text such as a newspaper (no reading order), they will fail the
task. This is a problem that needs to be solved for text semantic segmentation. In
addition, when dealing with multimodal data, introducing location information
alone may require more training data to mitigate the problem of juxtaposed
text location confusion, or directly introducing visual embeddings to assist the
model.

The biggest shortcoming of Global-SEG is that the inputs have to follow
a reading logic and it cannot automatically sort and analyze unordered inputs.
This shortcoming means that the model requires higher-quality annotation when
facing multimodal text analysis scenarios (e.g., layout+text or image+text).
Also, since the embedding of the layout uses only the most direct embedding
network, this makes the positional embedding of text blocks with adjacent posi-
tions to each other to have a negative effect on the model instead. This is due to
the fact that they usually have the same x or y coordinates. In addition, since
the texts in the experiments for French and Finnish are taken from historical
newspapers and the majority of LMs are now trained using modern corpora,
the embedding of historical texts is insufficient. To handle this complication, we
added an encoder to further process the text after obtaining the word embed-
ding in order to compensate for the errors in the backbone LM. As a result, the
complexity of the model is increased.
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