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Finite-dimensional homogeneous boundary control for a 1D
reaction-diffusion equation

Mericel Ayamou Nicolas Espitia Andrey Polyakov Emilia Fridman

Abstract— In this paper, we address the problem of finite-
dimensional boundary stabilization of the 1D reaction-diffusion
equation. Using the modal decomposition approach, we propose
a finite-dimensional homogeneous controller, stabilizing the
unstable dynamics while ensuring the stability of the residual
part. The closed-loop system with homogeneous feedback is
well-posed and stable. The proposed controller is proven
superior to a finite-dimensional linear feedback controller in
terms of closed-loop performance. The numerical simulations
are presented to support the analytical results.

I. INTRODUCTION

Parabolic partial differential equations (PDEs) play a cru-
cial role in the mathematical description of complex systems
involving diffusion phenomena (arising in biology, chemistry,
spatial ecology, etc). Control design for complex systems
modeled by PDEs has constituted, for many years, a central
research area [1], [2]. A traditional way to act on those
systems is through in-domain and boundary control . Tradi-
tionally, two main approaches have been used for boundary
control and observer design: 1) the backstepping method [3]
and 2) modal decomposition approach. The latter approach
relies on separating a finite-dimensional unstable part from
a stable infinite-dimensional part of the PDE. It allows for
the design of finite-dimensional controllers and observers,
which are easier to implement and offer greater flexibility,
including the possibility of designing nonlinear boundary
controllers (e.g., sliding mode output feedback control as
described by [4]) and sampled-data controllers [5]. The roots
of modal decomposition can be traced back to seminal works
like [6], [7], [8]. In [7], for instance, a Galerkin projection
on modal subspace is used to design a finite-dimensional
control for the reduced order model of the reaction-diffusion
equation so that the control law stabilizes the unstable part
while maintaining the stability of the residual part. This
method has gained renewed interest in recent years, with
several contributions utilizing it to propose constructive ways
to design finite-dimensional observers and controllers (see,
e.g., [9], [10], [11], [12], [13] through Lyapunov and LMI-
based techniques). In [9], a finite-dimensional linear control
has been constructed for 1-d reaction-diffusion equation with
input delay at boundary. Based on some feasible LMIs con-
ditions and using a direct Lyapunov method, the authors of
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[10] constructed a finite-dimensional observer-based control
for stabilization of a parabolic PDE with unbounded control
operator and either bounded and unbounded observation
operator and extend this approach to the case of Dirichlet
boundary control and measurement for heat equation in [11].
In [13], they constructed a finite-dimensional control for
semi-linear parabolic PDE. The authors of [12] extended the
work [10] to the case of Dirichlet boundary control and either
a Dirichlet or Neumann boundary observation.

In most cases, the resulting finite-dimensional controllers
for PDEs are linear, which are suitable for application and
implementation because of their simplicity and for enabling
more accessible a well-posedness analysis of closed-loop
systems. However, similar to finite-dimensional settings,
alternative approaches like sliding-mode or homogeneous-
based controllers might offer better performance with fea-
tures like accelerated or even finite-time convergence com-
pared to linear controllers.

Homogeneity is a sort of symmetry of an object (function
or set) with respect to group transformation (dilation), which
has been discovered for many physical models. As dilation,
we can cite a uniform dilation introduced by Leonhard Euler
in the 18th century, a weighted dilation [14], a geometric
dilation generated by unstable C1 vector field [15] and a
linear dilation generated by an anti-Hurwitz matrix [16] (as
used in this paper). Homogeneous-based controllers (known
to be an intermediary of linear control and sliding mode
control) have been widely used in control and estimation
design in finite-dimensional systems [16], [17] as better
convergence rate, and lesser overshooting. The closed-loop
system with homogeneous feedback are known to be highly
stable (finite/fixed time stability).

While homogeneous-based in-domain control for
parabolic PDEs exists [18], applying this approach to
boundary actuation remains underdeveloped. Hence, in this
paper, we propose a finite-dimensional homogeneous-based
controller for the boundary stabilization of a reaction-
diffusion PDE. This controller capitalizes on the advantages
of homogeneity applied through boundary actuation and
enables improved performance in such PDE systems.

Exploiting the modal-decomposition approach, we design
stabilizing feedback (for the unstable modes) using the con-
cept of generalized homogeneity. We state and give a sketch
of the proof that the closed-loop system with the proposed
nonlinear control is well-posed and performs better than a
finite-dimensional linear control. In fact, we can achieve what
is called partial finite-time stability (see e.g., [19] for more
details on partial finite time stability).



To our knowledge, this work constitutes a first attempt to
design a finite-dimensional homogeneous-based boundary
controller for a reaction-diffusion PDE in the literature.

The paper is organized as follows: In Section 2, we
present some preliminaries on homogeneity notions. Section
3 deals with preliminaries on modal decomposition, linear
finite-dimensional control design for reaction-diffusion equa-
tion, and homogeneous control design for the linear finite-
dimensional system. The main result is presented in Section
4. Numerical results are presented in Section 5 showing the
effectiveness of control strategy.

A. Notation

R+ = {a ∈ R : a > 0}; |z| =
√
z⊤z is Euclidean norm

of z = (zi)
n
i=1 = (z1, . . . , zn)

⊤ ∈ Rn; we write P ≻ 0 if
the symmetric matrix P = P⊤ ∈ Rn×n is positive definite
; ∥x∥ =

√
x⊤Px is the weighted Euclidean norm with the

matrix P ≻ 0 defined below ; given L > 0, ⟨·, ·⟩ is a scalar
product on L2(0, L) such that ∀f, g ∈ L2(0, L), ⟨f, g⟩ =∫ L

0
f(x)g(x)dx, Hk(0, L) is Sobolev space having k square

integrable weak derivatives ; 0N = (0, . . . , 0)⊤ ∈ RN , 1N =
(1, 0, . . . , 0)⊤ ∈ RN ; C(R+) is a set of continuous function
on R+. A function σ : R+ → R+ is said to be a class-
K function if it is continuous, zero at zero, and strictly
increasing. A class-K function σ : R+ → R+ is said to
be a class-K∞ function if it is unbounded with its argument.

II. PRELIMINARIES ON HOMOGENEITY AND PROBLEM
STATEMENT

A. Preliminaries on Homogeneity

Homogeneity is a symmetry property with respect to a
group of transformations and in this paper we consider a
particular case of homogeneity with respect to linear dilation.

A family of linear operators d(s) : Rn 7→ Rn with s ∈ R
is a called a dilation if it satifies:

• group property : d(0)x=x, d(s) ◦ d(t)x = d(s+ t)x,
∀x ∈ Rn,∀s, t ∈ R;

• continuous if the mapping s 7→ d(s)x is continuous,
∀x∈Rn;

• limit property: lim inf
s→+∞

∥d(s)x∥ = +∞ and

lim sup
s→−∞

∥d(s)x∥ = 0, ∀x ̸= 0.

Any linear dilation d in Rn admits the representation [20]:

d(s) = esGd =

∞∑
j=0

sjGj
d

j! , s ∈ R. (1)

where Gd ∈ Rn×n is an anti-Hurwitz matrix called a
generator of d with Gd .

Definition 1: A dilation d is monotone if s 7→ ∥d(s)x∥
is a monotone increasing function for any x ̸= 0.

Corollary 1: A linear continuous dilation in Rn is mono-
tone with respect to the weighted Euclidean norm ∥x∥ =√
x⊤Px, 0 ≺ P = P⊤ ∈ Rn×n if and only if

PGd +G⊤
dP ≻ 0, P ≻ 0. (2)

Any linear continuous and monotone dilation in a normed
vector space also introduces an alternative norm topology.

A function ∥ · ∥d : Rn 7→ [0,+∞) defined as follows:
∥0∥d = 0 and

∥x∥d = esx , where sx ∈ R : ∥d(−sx)x∥ = 1, x ̸= 0,
(3)

is called canonical d-homogeneous norm in Rn where d is
a dilation. Note that ∀s ∈ R and ∀x ∈ Rn, one has:

∥d(− ln(∥x∥d))x∥ = 1. (4)

Definition 2: [15] A function h : Rn 7→ R (resp., a vector
field f : Rn 7→ Rn) is d-homogeneous of degree µ ∈ R if

h(d(s)x) = eµsh(x), ∀x ∈ Rn, ∀s ∈ R. (5)

(resp., if f(d(s)x) = eµsd(s)f(x), ∀x ∈ Rn ∀s ∈ R.)

B. Problem Statement

Let us consider the 1D reaction-diffusion equation :

∂ty(t, x) = ν∂xxy(t, x) + qy(t, x), (6)
y(t, 0) = 0, (7)
y(t, L) = U(t), (8)
y(0, x) = y0(x), (9)

(t, x) ∈ R+ × [0, L] , L > 0 , where y(t, ·) is the reaction-
diffusion PDE state at time t, ν is the diffusion coefficient
and q > 0 is the reaction coefficient. U(t) ∈ R is the control
input. The aim of this paper is

• to design the homogeneous finite-time stabilizer for the
system (6)-(9) using modal decomposition approach;

• to investigate if the use of the homogeneous feedback
results in a smaller peaking than the linear feedback.
More precisely, consider the following control problem:
given initial state y0 ∈ H2(0, L) with y0(0) = 0, a
stabilization precision ϵ > 0, a prescribed time T > 0
and a maximal control amplitude Ū , the closed-loop
system (6)-(9) has the desired stabilization precision:

∥y(t, ·)∥H1(0,L) ≤ ϵ, ∀t > T, (10)

with the restricted control magnitude

sup
t>0

|U(t)| ≤ Ū . (11)

We aim to investigate if (for some given y0 ∈ H2(0, L)
with y0(0) = 0) the homogeneous feedback may solve
this problem, while linear feedback always violates one
of the above conditions (see [21], [22]).

III. MODAL DECOMPOSITION

In this section, we recall the main ideas for boundary
control design using modal decomposition. We start by using
the following change of variable (see [2, Definition 3.3.2]):

w(t, x) = y(t, x)− x
LU(t), (12)



where, as in [11], we set U(0) = 0, to obtain the following
equivalent PDE:

∂tw(t, x) = ν∂xxw(t, x) + qw(t, x)− x
L U̇(t)

+ qx
L U(t), (13)

w(t, 0) = 0, (14)
w(t, L) = 0, (15)
w(0, x) = y0(x), (16)

provided that

w(0, x) = y0(x)− x
LU(0) = y0(x). (17)

By introducing a new control input ξ(t) = U̇(t), one obtains
a coupled ODE-PDE

U̇(t) = ξ(t), (18)
∂tw(t, x) = ν∂xxw(t, x) + qw(t, x)− x

Lξ(t)

+ qx
L U(t), (19)

w(t, 0) = 0, (20)
w(t, L) = 0, (21)
w(0, x) = y0(x), (22)

The solution to (19) can be represented as follows:

w(t, x) =

∞∑
n=1

wn(t)ϕn(x), wn(t) = ⟨w(t, ·), ϕn⟩, (23)

with ϕn(x) =
√

2
L sin(nπxL ), n = 1, 2, . . . and projecting

onto the basis {ϕn}∞n=1, one has

U̇(t) = ξ(t) (24)
ẇn(t) = (νλn + q)wn(t)− bnξ(t) + qbnU(t), (25)
wn(0) = y0,n, (26)

where n ≥ 1, λn = −n2π2

L2 is the eigenvalue of the operator
∂xx corresponding to the eigenvector ϕn, yn,0 = ⟨y0, ϕn⟩,
and

bn = 1
L

∫ L

0

xϕn(x)dx. (27)

Since λn → −∞ when n → +∞, then there exists an integer
N ≥ 1 such that

νλn + q < −δ, ∀ n ≥ N + 1, (28)

with δ some positive constant.
By setting, wN (t) = (U(t), w1(t), w2(t) · · · , wN (t))⊤,

B̃N =
(

1
−BN

)
, BN = (bn)

N
n=1, ÃN =

(
0 01×N

qBN AN

)
and

AN = diag{νλn + q}Nn=1, we obtain from (24)-(26), the
following augmented system:

ẇN (t) = ÃNwN (t) + B̃Nξ(t), (29)
ẇn(t) = (νλn + q)wn(t)− bnξ(t) + qbnU(t), (30)

and initial data (wN (0), wn(0)) = (yN0 , y0,n).

IV. HOMOGENEOUS-BASED CONTROLLER AND MAIN
RESULT

We propose a nonlinear control following the concept
of generalized homogeneity based on a linear dilation d
generated by an anti-Hurwitz matrix Gd as defined in (1).

Since the pair (ÃN , B̃N ) is controllable, then according
to [23], the linear algebraic equation

ÃNG0 −G0ÃN + B̃NY0 = ÃN , G0B̃N = 0, (31)

has a solution Y0 ∈ R1×(N+1), G0 ∈ R(N+1)×(N+1) such
that the matrix G0−IN+1 is invertible. Moreover, the matrix

Gd := IN+1 + µG0, (32)

is anti-Hurwitz for any µ ∈ (−1, 0) and the matrix Ã0 =
ÃN + B̃NK0 with K0 = Y0(G0 − IN+1)

−1 satisfies the
identity

Ã0Gd = (Gd + µIN+1)Ã0, GdB̃N = B̃N . (33)

Furthermore, the Linear Matrix Inequalities

(Ã0+δGd)Xh+Xh(Ã0+δGd)
⊤+B̃NYh+Y⊤

h B̃
⊤
N ⪯0, (34)

GdXh+XhG
⊤
d ≻0, Xh = X⊤

h ≻0, (35)

have solutions Xh ∈ R(N+1)×(N+1), and Yh ∈ R1×(N+1).
The following result proposes a homogeneous control using
a dilation d that is generated by Gd defined in (32). This
controller can achieve finite-time stabilization of the finite-
dimensional system (29).

Lemma 1: ([23]) Given any initial condition yN0 ∈ RN+1,
the system (29) with the feedback law

ξ(wN (t)) = K0w
N (t) +N (wN (t)), (36)

with

N (wN (t)) =∥wN (t)∥1+µ
d K̃hd(− ln(∥wN (t)∥d))wN (t), (37)

where K̃h = YhX
−1
h , Yh, Xh solution of (34)-(35) and d

the dilation generated by Gd defined in (32) is globally
Lyapunov stable and satisfies

wN (t) = 0N+1, ∀t ≥ T (yN0 ), (38)

with T (yN0 ) :=
∥yN

0 ∥−µ
d

−δµ .
Proof: The proof follows the same lines as in the

proof of [23, Lemma 5] showing that the functional V (t) =
∥wN (t)∥d satisfies V̇ (t) ≤ −δV (t)1+µ along the solution of
closed-loop system (29), (36), (37).

Based on this lemma, we propose a finite-dimensional
homogeneous control stabilizing globally the infinite-
dimensional system (6)-(9).

Theorem 1: For any initial condition y0 ∈ H2(0, L) such
that y0(0) = y0(L) = 0 , if µ ∈ (−1, 0) then the system
(6)-(9) with feedback law (36) has a unique solution and the
origin y ≡ 0 is globally asymptotically stable in H1(0, L).
Moreover, for all t ≥ T (yN0 ) :=

∥yN
0 ∥−µ

d

−δµ , the control input
U and y satisfy

U(t) = 0, ⟨y(t, ·), ϕn⟩ = 0, n = 1, ..., N, (39)



∥y(t, ·)∥2H1(0,L) ≤ Me−2δ(t−T (yN
0 ))

∑
n>N

|λn||yn(T (yN0 ))|2

(40)
with yN0 = (0, ⟨y0, ϕ1⟩, . . . , ⟨y0, ϕN ⟩)⊤ and some positive
M > 0.

Proof: We provide a sketch of the proof, which is
divided into two parts.

Part 1: (Existence and uniqueness)
The closed-loop system (18)-(22), (36)-(37) is rewritten in
the following compact form:

Ż(t) = (A+ BK0P)Z(t) + BN (PZ(t)), (41)
Z(0) = (0, y0) ∈ H, (42)

where H = R × L2(0, L) is a Hilbert space with inner
product given by ⟨Z1, Z2⟩H = U1U2 + ⟨w1, w2⟩, with Z1 =
(U1, w1) ∈ H, Z2 = (U2, w2) ∈ H, Z(t) = (U(t), w(t, ·)) ∈
H is the system state, the operator A : D(A) ⊂ H → H is
given by

AZ(t) =

[
0 0
qr ν∂xx + q1

]
Z(t),

D(A) = {(U,w) ∈ R×H2(0, L)|w(0) = w(L) = 0}, (43)

r(x) = x
L , using the identity operator 1 on H and null

operator 0 on H, the operator P : H → RN+1 defined
as PZ(t) = wN (t) is linear and bounded and the operator
B : R → H defined as Bξ(t) =

[
1

−r(x)

]
ξ(t) is linear

and bounded. Since the Laplacian operator ∂xx generates
a C0-semigroup on L2(0, L) and the operator Z(t) ∈ H 7→
q[r(·),1]Z(t) ∈ H is linear bounded in H then, the operator
A generates a strongly continuous semigroup on H ([24,
Therorem 3.2]), and in parallel, since B,P are linear and
bounded, then A + BK0P generates a strongly continuous
semigroup (S(t))t≥0 on H. Moreover the control operator
B is admissible (see [25, Section 4.2] ) for the semigroup
generated by A+ BK0P .

Following same lines as in [26, Theorem 1] and using [25,
Proposition 4.2.5 and 4.2.10], the closed loop system (41)-
(42) admits a mild solution Z(t) ∈ C([0,+∞),D(A)) ∩
H1

loc([0,+∞),H) for µ ∈ (−1, −1
2 ) and a classical solution

Z(t) ∈ C([0,+∞),D(A)) ∩ C1([0,+∞),H) for µ ∈
[−1

2 , 0) defined by

Z(t) = S(t)Z(0) +

∫ t

0

S(t− s)BN (α(s))ds, (44)

where α(t) is solution of

α̇(t) = Ã0α(t) + B̃N (N (α(t)), (45)
α(0) = P(0, y0) ∈ RN+1, (46)

for any initial condition y0 ∈ H2(0, L) such that y0(0) =
y0(L) = 0, Ã0 and B̃N are such that (33) is verified. Notice
that the solution α(t) of (45) is unique and continuously
differentiable on [0,+∞) (see [16, Theorem 9.1]); the map

t 7→ N (α(t)) ∈

{
L2
loc([0,+∞),R), if µ ∈ (−1,− 1

2 ),

H1
loc([0,+∞),R), if µ ∈ [−1

2 , 0).
(47)

The proof of existence of solution of closed-loop system
(41)-(42) is complete.
The uniqueness of the solution of closed-loop system (41)-
(42) can be shown by contradiction. In fact if Z1 and Z2 are
two solutions of (41)-(42) and using the fact that (45)-(46)
admits unique solution, one derives Z1 = Z2. The proof is
complete.

Part 2: (Asymptotic stability)
Let us consider the system

ẇN (t) = Ã0w
N (t) + B̃NN (wN (t)), (48)

ẇn(t) = (νλn+q)wn(t)− bnf(w
N (t)), (49)

where n > N , wN (t) = (U(t), w1(t), w2(t) · · · , wN (t))⊤,
f(wN (t)) = K̃0w

N (t)+N (wN (t)), K̃0 = K0−q1⊤
N+1 and

Ã0 = ÃN + B̃NK0.
From (12) and using Wirtinger’s inequality along with [11,

Lemma 1], one has

∥y(t, ·)∥H1(0,L) ≤ M1

(( ∞∑
n=1

|λn||wn|2
) 1

2 + |U(t)|
)
, (50)

for some positive M1.
Since 0N+1 is Lyapunov stable for (48) and using [16,

Lemma 7.2] there exists σ̄1 ∈ K∞ such that

∀t ≥ 0, |wN (t)| ≤ σ̄1(|yN0 |). (51)

This implies that there exists σ1 ∈ K∞ such that( ∑
n≤N

|λn||wn|2
) 1

2 + |U(t)| ≤ σ1(|yN0 |). (52)

Since wN (t) = 0N+1,∀t ≥ T (yN0 ), then ∀n ≥ N + 1 and
∀t ≥ 0,

wn(t) = eλ̄ntyn,0 − bn

∫ T (yN
0 )

0

eλ̄n(t−s)f(wN (s))ds, (53)

with λ̄n = νλn + q.
Then using [16, Lemma 7.2] and (51), there exists σ2 ∈

K∞ such that ∀t ≥ 0,

|wn(t)| ≤ |yn,0|+
|bn|

|νλn + q|
σ2(|yN0 |), ∀n > N. (54)

Thus,( ∑
n>N

|λn||wn|2
) 1

2 ≤ M2

[( ∑
n>N

|λn||yn,0|2
) 1

2 + σ2(|yN0 |)
]
,

(55)

with M2 =
√
2max{1,

(∑
n>N

|λn||bn|2
|νλn+q|2

) 1
2 }.

Using the inequalities (50) and (52),(55), there exists σ3 ∈
K∞ such that

∀t ≥ 0, ∥y(t, ·)∥H1(0,L) ≤ σ3(∥y0∥H1(0,L)). (56)

This means that y ≡ 0 is Lyapunov stable in H1.
From (49), ∀t ≥ T (yN0 ), one has

wN (t) = 0N+1,

ẇn(t) = (λn + q)wn(t), n ≥ N.
(57)



Then using (50), one derives ∀t ≥ T (yN0 ),

∥y(t, ·)∥H1 ≤ M1e
−δ(t−T (yN

0 ))
[ ∑
n>N

|λn||wn(T (y
N
0 ))|2

] 1
2

,

(58)
which implies

lim
t→+∞

∥y(t, ·)∥H1(0,L) = 0. (59)

This means y ≡ 0 is asymptotically attractive in H1(0, L).
Since ∀t ≥ T (yN0 ), U(t) = 0 then (12) implies that

∀t ≥ T (yN0 ), y(t, ·) = w(t, ·). (60)

Using (38) one derives

∀t ≥ T (yN0 ), ⟨y(t, ·), ϕn⟩ = 0, n = 1, · · · , N. (61)

The proof is complete.

Remark 1: The homogeneous control (36) is a nonlinear
static feedback, which is Non-Lipschitz at wN = 0N+1.
In this case, Theorem 1.6 from [27], commonly used to
justify the well-posedness of infinite dimensional systems
with locally Lipschitz non-linearities, is inapplicable to the
entire space H.

Remark 2: Theorem 1 proves that the closed-loop system
with the homogeneous control is partially finite-time stable.
The proposed homogeneous controller steers the first N
modes of the distributed state y to zero in a finite time, while
all other modes decay exponentially to zero.

V. NUMERICAL SIMULATIONS

We perform numerical simulations on the system (6)-
(9), by using system (18)-(22) and transformation (12). The
initial condition and parameters are: y0(x) = x(π − x),
q = 1.4 , ν = 1, L = π and N = 1. We consider (23)
with M = 10 truncated basis. We use the control toolbox on
Matlab to compute the following linear control gains:

Kl1 = (−13.5600,−106.6818),

Kl2 = (−17.7100,−147.8641)
(62)

We use the Homogeneous Control Systems (HCS) Toolbox
for MATLAB [28] to compute µ, ∥ · ∥d,K0, K̃h, Xh, Gd:

µ = −0.1,K0 = (−0.5600,−2.0918),

K̃h = (−13.0000,−104.5900),

Xh =

(
0.0269 0.3096
0.3096 3.8570

)
, Gd =

(
0.9600 −0.5229
0.0107 1.1400

)
.

(63)
Figure 1 shows the simulations in logarithmic scale of the
norm ∥y(t, ·)∥H1(0,π) of the closed-loop system with linear
control (blue line), with high-gain linear control ( black
dashed line), and with homogeneous control (red line). We
can observe that the closed-loop system with homogeneous
control converges faster to zero than a closed-loop system
with linear control. One can also observe that only a closed-
loop system with high-gain linear control and homogeneous
control achieves

∥y(t, ·)∥H1(0,π) ≤ ϵ := 10−4, ∀t ≥ T := 6, (64)
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Fig. 1: Evolution of ∥y(t, ·)∥H1(0,π) in a logarithmic scale
of the closed-loop system with linear control (blue and black
dashed lines) and homogeneous control (red line)
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Fig. 2: Evolution of ∥y(t, ·)∥H1(0,π) of the closed-loop
system with linear control (blue and black) and homogeneous
control (red) during the initial phase of stabilization

with the price to pay, the linear controller violates the
conditions stated in (11). Indeed, from Figure 3 only the
homogeneous control achieves (64) with the control restric-
tion

sup
t>0

|U(t)| ≤ Ū := 9.5. (65)

One can also observe in Figure 2 and Figure 3 that using
high-gain linear control to achieve (64) implies a large
deviation of solution closed-loop system (a peaking) and an
overshoot of the control signal during the initial phase of
stabilization. Note that using high-gain linear control may
result in an unbounded peak and a very large overshoot when
N is very large. Hence, we can observe the advantage of
using a homogeneous control while making it possible to
obtain faster convergence without a peaking effect and with
a small overshoot.
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Fig. 3: Time-evolution of the control signal U(t) of the linear
control (black and blue line) and homogeneous control (red
line) during the initial phase of stabilization

VI. CONCLUSIONS

In this paper, we designed a finite-dimensional nonlin-
ear homogeneous controller for stabilizing a 1D reaction-
diffusion equation. We provided a statement and sketch of
the proof for the existence of the closed-loop solution and
demonstrated the system’s stability. Simulations revealed
that the homogeneous controller outperformed the linear
feedback controller in terms of closed-loop performance,
eliminating peaking effects and reducing overshoot. Future
work will focus on developing homogeneous observer-based
controllers for reaction-diffusion PDEs and extending these
results to nonlinear PDEs, such as the 1D viscous Burgers
equation.
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