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Abstract: 

Next generation sequencing revolutionized food safety management these last years providing 

access to a huge quantity of valuable data to identify, characterize and monitor bacterial pathogens 

on the food chain. Shotgun metagenomics emerged as a particularly promising approach as it 

enables in-depth taxonomic profiling and functional investigation of food microbial communities. In 

this chapter, we provide a comprehensive step-by-step bioinformatical workflow to characterize 

bacterial ecology and resistome composition from metagenomic short-reads obtained by shotgun 

sequencing. 
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1. Introduction 

Despite continuous improvement of food safety practices and production techniques, the control of 

food contamination and subsequent diseases remains a major issue throughout the world [1]. In 

addition, the worrying increase in antimicrobial resistance (AMR) over the past years in various 

bacterial species including foodborne pathogens has become a growing public health concern and 

strengthen the need to monitor thoroughly resistance emergence in food microbial ecosystems [2, 

3]. Understanding how bacteria colonize, develop, adapt and spread in food environments is 

nevertheless an ongoing challenge and required the use of dedicated approaches integrating the 

specificity of environmental conditions and stresses experienced in the different food sectors. In 

particular, the interactions of foodborne bacterial pathogens with resident microflora are known to 

greatly influence their survival and persistence abilities in various food-production areas [4–6]. 

Different studies have reported the protection by resident surface flora of pathogens including 

Listeria monocytogenes, Pseudomonas aeruginosa, Staphylococcus aureus or Escherichia coli for 

instance, when exposed to various disinfectants [7]. Besides, food environments could constitute hot 

spots for genetic exchange between bacteria that can lead to the dissemination of antimicrobial 

resistance gene [8]. This highlights the necessity to identify the nature of genetic elements involved 

in antimicrobial resistance and associated transmission routes by integrating data on ecological 

interactions and gene distribution in bacterial populations, in order to apprehend dynamics of 

resistance emergence and contributing factors in food environments [9]. 

Evolutions in sequencing technologies along with development of user-friendly bioinformatical 

worklflows facilitated the use of sequencing approaches and next generation sequencing (NGS) have 

consequently revolutionized food safety management these last years [10]. Genomics approaches 

(including whole genome sequencing WGS) have been successfully applied to the accurate 

identification of bacterial pathogens and their phylogeny, strain subtyping, the detection of 

outbreaks, source attribution, or the characterization of the virulence, pathogenicity and or 



resistance attributes of foodborne pathogens for instance [11]. A limitation of WGS is the need to 

have a pure culture of the bacteria to be sequenced, while in most cases bacterial isolates are 

unavailable or unculturable in laboratory conditions. More recently, the dramatic reduction for 

sequencing cost and computing resources led to a democratization and a growing use of shotgun 

metagenomics, corresponding to the direct sequencing of whole DNA from samples without selective 

isolation of bacteria or target-specific amplification [9]. Such approach has therefore the potential to 

detect non-culturable bacterial pathogens and to simultaneously characterize ecological diversity 

and gene distribution in communities from food, industrial surfaces or environmental sample [12]. In 

recent years, shotgun metagenomics have thus provided valuable data on resistome dynamics and 

related bacterial populations in various food-associated microbial communities [13–16]. Along with 

the increasing use of metagenomics, the development of dedicated bioinformatical tools, processing 

pipelines and databases emerged as a necessity to face the huge amount of data thereby generated. 

In this chapter, we describe as step-by-step processing pipeline from sequencing short-read to the 

characterisation of bacterial ecology and resistome. 

 

2. Materials 

1. Computal ressources: To carry out the various stages of shotgun metagenomics analysis, 

computational resources are essential. A minimum of 16 cores, 96GB of RAM and 500GB of 

storage is recommended, either from a computer or from a remote computational cluster. 

2. Bioinformatical tools and databases (see Note 1-2-3): Table 1 shows the different tools and 

databases used for building the bioinformatic pipeline for metagenomic sequence analysis 

3. Sequence files (see Note 4): 

 Paired-end raw fastq files from short reads shotgun sequencing by an Illumina 

instrument. 

 Animal host reference genome in fasta format. 



 

3. Methods 

Shotgun metagenomics makes it possible to analyse the bacterial population of a sample. It also 

provides an overview of possible functions in the population, with an analysis of antimicrobial 

resistance genes in particular. Figure 1 shows an overview of the bioinformatic pipeline proposed in 

this chapter for analysing bacterial ecology and resistome from short-read metagenomics. 

During the analysis, information about the animal host will have to be removed from the reads 

dataset. According to the analyses to be carried out, samples will have to be taken from places in the 

agri-food industry. Depending on the location and the production chain sampled, the host animal will 

not be the same. For example, to analyse bacterial populations in a pig slaughterhouse, surface 

samples will be taken. As well as bacteria, animal matter will be found in the sample (see Note 5). 

However, this can be problematic because more or less animal matter can be collected. The more 

animal matter there is, the less information we will have about the bacteria during sequencing. The 

DNA of the host animal can flood bacterial DNA. Nevertheless, even if the sample preparation before 

the sequencing is correct, the host DNA will inevitably be sequenced. 

 

Here Figure 1 

 

3.1.  Processing raw reads 

Cleaning raw reads is an important step to avoid continuing the analysis with reads of poor quality. 

Reads can also be made up of adapters used for sequencing. All this information can have a negative 

impact on future analyses. So, we use Fastp to filter out low-quality reads and adapters. The software 

also provides a report on the quality of reads before and after processing. 



fastp -i $FASTQ_R1 -I $FASTQ_R2 -o $FASTQ_CLEAN_R1 -O $FASTQ_CLEAN_R2 -h 

$FASTQ_REPORT_HTML --detect_adapter_for_pe -M 25 -5 -r --correction 

Where: 

 -i is an option to input the first fastq reads file of a strain $FASTQ_R1. 

 -I is an option to input the second fastq reads file of a strain $FASTQ_R2. 

 -o is an option to output the first fastq reads file processed by Fastp $FASTQ_CLEAN_R1. 

 -O is an option to output the second fastq reads file processed by Fastp $FASTQ_CLEAN_R2. 

 -h is an option to output quality control report of the reads in HTML file 

$FASTQ_REPORT_HTML. 

 --detect_adapter_for_pe is an option to detect and remove automatically sequencing 

adapters. It is only used for paired data. 

 -M is an option to specify the quality threshold for others quality options. Here the threshold 

is setup on 25. 

 -5 is an option to drop the bases with bad quality at the start of the read. It uses a sliding 

window and cut if the mean quality of the bases in the window are below the thresholds 

specified by the option -M. 

 -r is almost the same option as -5. The sliding window cut the right part of the read if the 

mean quality of the bases in the window are below the thresholds specified by the option -

M. 

 --correction is an option to enable base correction in overlapped regions. 

 

The process of analysing shotgun metagenomics samples can then begin, starting with the 

elimination of reads from the host organism. 

 

3.2.  Recovery of bacterial reads. 



To recover reads from bacteria only, it is essential to know the host organism in which the sample 

was taken. The reference genome of the species is used in the next step. It can be retrieved from the 

NCBI database. The reference assembly method will be employed, using the host genome as a 

reference. All reads that map to the genome will be removed from the dataset. Bowtie2 software will 

be used to carry out the assembly. 

3.2.1.  Reference alignment 

To begin with, an index of the reference genome must be built using bowtie2-build. 

bowtie2-build $GENOME_FASTA SPECIES 

Where: 

 $GENOME_FASTA is the genome fasta file. 

 SPECIES is an index name used to call the genome index. 

After that, the alignment step can be carried out with Bowtie2. 

bowtie2 -x SPECIES -1 $FASTQ_CLEAN_R1 -2 $FASTQ_CLEAN_R2 -S $ASSEMBLY_SAM 

Where: 

 -x is an option to specify the genome index SPECIES build by bowtie2. 

 -1 is an option for calling the first fastq file of reads processed by fastp $FASTQ_CLEAN_R1. 

 -2 is an option for calling the second fastq file of reads processed by fastp 

$FASTQ_CLEAN_R2. 

 -S is an option to specify the name of the sam $ASSEMBLY_SAM file that will be output by 

the process. 

All mapped and unmapped reads are now present in the SAM file. The Samtools toolbox will be used 

to extract the unmapped reads. 

3.2.2.  Remove host reads 



The SAM file needs to be converted into a BAM file to be processed (see Note 6).  

samtools view -b $ASSEMBLY_SAM > $ASSEMBLY_BAM 

Where: 

 view is the tool to convert and process SAM/BAM file. 

 -b is an option used to specify that the output will be in BAM format. 

 $ASSEMBLY_SAM is the file in SAM format. 

 $ASSEMBLY_BAM is the same file but in BAM format. 

Unmapped reads can now be extracted from the BAM file. 

samtools view -f 12 -F 256 $ASSEMBLY_BAM > $READS_UNMAPPED_BAM  

Where: 

 -f is an option to specify reads that can only be extracted from the file, followed by a flag. 

Here, flag 12 specifies read unmapped and paired read unmapped. 

 -F if an option to specify reads that cannot be extracted from the file, followed by a flag. 

Here, flag 256 specifies reads that are not primary alignments. 

 $ASSEMBLY_BAM is the BAM file with all the reads. 

 $READS_UNMAPPED_BAM is the file that contain only the reads not mapped to the reference 

genome. 

The final step is to separate this file of unmapped reads. Some software will require paired files to 

work. 

The BAM file is sorted to have paired reads next to each other. 

samtools sort -n $READS_UNMAPPED_BAM -o $READS_UNMAPPED_SORTED_BAM  

Where: 

 sort is the tool to sort BAM file. 



 -n is an option for sorting by name. 

 $READS_UNMAPPED_BAM is the file containing unsorted reads. 

 -o is an option to specify the output name of the file $READS_UNMAPPED_SORTED_BAM 

containing sorted reads. 

Now the reads file can easily be split into two fastq files for the two paired reads files. 

samtools fastq $READS_UNMAPPED_SORTED_BAM -1 $HOST_READS_REMOVED_FASTQ_R1 -2 

$HOST_READS_REMOVED_FASTQ_R2 

Where: 

 fastq is the tool to convert a BAM file to FASTQ. It will automatically compress the file if the 

file name has a .gz extension (see Note 7). 

 $READS_UNMAPPED_SORTED_BAM is the file that contain sorted reads. 

 -1 is an option to specify the name of the first paired reads file 

$HOST_READS_REMOVED_FASTQ_R1. 

 -2 is an option to specify the name of the second paired reads file 

$HOST_READS_REMOVED_FASTQ_R2. 

Reads from the host are now eliminated from paired fastq files. Several analysis steps can now be 

performed using these processed files, such as meta-assembly. 

 

3.3. Analysis of bacterial communities 

An important step in the analysis of a shotgun metagenomics sample is to know its bacterial 

diversity. The analysis is performed on the read with the host remove from the previous part. The 

MetaPhlAn software will be used to profile the bacterial community in the sample. It can detect 

Bacteria but also Archaea and Eukaryotes, which will be filtered out of the result because the analysis 

is carried out on bacteria only.  



3.3.1. Build MetaPhlAn database 

To search for the bacterial population present in the metagenome, the database used by MetaPhlAn 

must be installed. 

metaphlan --install 

Where: 

 --install is an option for building the latest MetaPhlAn database. If the database is 

already installed, the build will not be started. 

The database is installed in the Conda environment of the MetaPhlAn software. 

3.3.2.  Speciation 

MetaPhlAn can now be launched, the software can handle paired-end metagenomes but it will not 

use the paired-end information. So here, the two fastq files can be used separately but also merged. 

metaphlan $HOST_READS_REMOVED_FASTQ_R1,$HOST_READS_REMOVED_FASTQ_R2 --bowtie2out 

$INTERMEDIATE_METAPHLAN --input fastq > $METAPHLAN_RESULT 

Where: 

 $HOST_READS_REMOVED_FASTQ_R1,R2 is the two fatsq files. 

 --bowtie2out is a recommended for saving the intermediate Bowtie2 output 

$INTERMEDIATE_METAPHLAN to quickly rerun MetaPhlAn if needed. 

 --input_type is an option to specify the input type. Here, it is in fastq format. 

 $METAPHLAN_RESULT is the output file containing all the MetaPhlAn results. 

The resulting file contains relative abundances of each bacterium at species level. This data may 

contain Archaea that need to be filtered to avoid analysis. 

To go further and analyse the bacterial diversity of our sample using this file, two parameters can be 

calculated with the R package vegan and RStudio: alpha and beta diversity. Alpha diversity is a 



measure of diversity in a single sample. It is, for example, the number of species present. But there 

are many indices that can be used to calculate this diversity in the vegan package. Beta diversity 

measures the diversity between different samples. A multivariate analysis of relative abundances 

using ordinal methods such as principal component analysis (PCA) is often carried out to represent 

this beta diversity. 

Example of possible analysis and representation after processing the results with R. We want to 

know the bacterial populations in a pig slaughterhouse between 2017 and 2019. Two samples are 

taken, one at the beginning (in) and one et the end (out) of the slaughter line. 

 

Here Figure 2 and Figure 3 

 

 

Here is an example of how to represent the data obtained with metaphlan using 4 samples. The most 

common genus found are shown as pie plot (figure 2). The diversity of species present in samples 

from the beginning of the slaughter chain is lower than in samples from the end of the chain 

between 2017 and 2019. The diversity for each sample is also represented with the alpha diversity in 

the form of the Shannon index and the species richness (figure 3A). We can see the same conclusions 

as with the pie plots in the beta diversity graph. The two samples at the start of the chain are close 

together in the PCA, whereas the samples at the end of the chain are far apart. 

3.4. Metagenome assembly 

Assembling the metagenome will provide, after annotation, an overview of the biological functions 

presents in this metagenome. To carry out this assembly, the host’s clean reads will be used. 

3.4.1.  Assembly 



MEGAHIT software will be used to carry out the assembly. This stage of the analysis requires 

significant computational resources to operate. 

megahit -1 $HOST_READS_REMOVED_FASTQ_R1 -2 $HOST_READS_REMOVED_FASTQ_R2 -o 

$MEGAHIT_RESULT_FOLDER 

Where: 

 -1 is an option to specify the name of the first paired reads file 

$HOST_READS_REMOVED_FASTQ_R1. 

 -2 is an option to specify the name of the second paired reads file 

$HOST_READS_REMOVED_FASTQ_R2. 

 -o is an option used to specify the output folder of megahit. 

The newly assembled metagenome is found in the output folder. It is made up of several contigs 

placed one after the other. Newly formed contigs must be filtered to ensure that the metagenome is 

as clean as possible. 

3.4.2.  Contigs filtering 

To filter out potentially poor-quality contigs in the assembly, two parameters are considered: contig 

size and depth. In terms of depth, the reads used to assemble the metagenome will be used to carry 

out an assembly using the newly constructed metagenome as a reference. Thus, contigs with little or 

no depth will be considered of poor quality. 

So, as in the host read elimination step (3.2.1), bowtie2 will be used to perform reference assembly. 

bowtie2-build $METAGENOME_ASSEMBLY METAGENOME 

Where: 

 $METAGENOME_ASSEMBLY is the metagenome assembly file in fasta format. 

 METAGENOME is the basename chosen to call the index. 



bowtie2 -x METAGENOME -1 $HOST_READS_REMOVED_FASTQ_R1 -2 

$HOST_READS_REMOVED_FASTQ_R2 -S $METAGENOME_ASSEMBLY_SAM 

Where: 

 -x is the basename of the index METAGENOME for the reference genome. 

 -1 is an option for calling the first fastq file of host’s removed reads 

$HOST_READS_REMOVED_FASTQ_R1. 

 -2 is an option for calling the second fastq file of host’s removed reads 

$HOST_READS_REMOVED_FASTQ_R2. 

 -S is an option to specify the name of the sam $METAGENOME_ASSEMBLY_SAM file that will 

be output by the process. 

Now that the reference assembly is complete, it remains to estimate the depth for each contig using 

the Samtools toolbox. As in step 3.2.2, the SAM file from the previous step will be converted into a 

BAM file (see Note 6), which will be sorted as follows. 

samtools view -b $METAGENOME_ASSEMBLY_SAM > $METAGENOME_ASSEMBLY_BAM 

Where: 

 -b is an option used to specify that the output will be in BAM format. 

 $METAGENOME_ASSEMBLY_SAM is the file in SAM format. 

 $METAGENOME_ASSEMBLY_BAM is the same file but in BAM format. 

samtools sort $METAGENOME_ASSEMBLY_BAM –o $METAGENOME_ASSEMBLY_SORT_BAM 

Where: 

 $METAGENOME_ASSEMBLY_BAM is the file containing unsorted reads in the BAM assembly. 

 -o is an option to specify the output name of the file $METAGENOME_ASSEMBLY_SORT_BAM 

containing sorted BAM reads. 



The BAM file needed to be sorted to calculate the number of reads mapped to each contig in the 

metagenome.  

samtools coverage --reference $METAGENOME_ASSEMBLY –o 

$METAGENOME_ASSEMBLY_COVERAGE $METAGENOME_ASSEMBLY_SORT_BAM 

Where: 

 coverage is the tool to produce an output of reads coverage by reference sequence. 

 --reference is a generic option for setting the reference fasta file. This is mainly used to 

match the IDs of the contigs in the metagenome with the IDs of the contigs that will be 

obtained in the output. 

 -o is an option for defining the name of the output $METAGENOME_ASSEMBLY_COVERAGE in 

.cov format. 

 $METAGENOME_ASSEMBLY_SORT_BAM is the input sort BAM file.  

Now that the coverage for each contig is known in the $METAGENOME_ASSEMBLY_COVERAGE file, 

the metagenome can be filtered according to two parameters: the size and depth of the contig (see 

Note 8). 

awk '$7>=1 && $3>=500' $METAGENOME_ASSEMBLY_COVERAGE | awk '{print $1}' > 

$CONTIGS_TO_KEEP 

Where: 

 awk is a language for processing files line by line like spreadsheets. 

 $METAGENOME_ASSEMBLY_COVERAGE is the file analysed by awk. It contains several 

columns with parameters on the size and coverage of the contigs. The filters are applied to 

column 7, which represents the average depth of the contig, and column 3, which indicates 

the size of the contig. Here, contigs with an average depth greater than or equal to 1 and a 

length greater than or equal to 500nt are kept. 



 Then, if the conditions are met, another awk command is run after the pipe ‘|’ symbol to 

store the name of contig contained in the first column of the 

$METAGENOME_ASSEMBLY_COVERAGE file in another file $CONTIGS_TO_KEEP used as a 

list. 

Now that a list of contigs to keep has been compiled. All that remains is to filter the metagenome. 

The seqtk toolbox will be used for filtration. 

seqtk subseq $METAGENOME_ASSEMBLY $CONTIGS_TO_KEEP > $METAGENOME_FASTA 

Where: 

 subseq is a tool for extracting sequences from a file using a metadata file. 

 $METAGENOME_ASSEMBLY is the starting metagenome file. 

 $CONTIGS_TO_KEEP is a list of contigs ID that will be kept in the metagenome. 

 $METAGENOME_FASTA is the final metagenome file. 

The metagenome is now filtered and can be used for further analysis. 

3.4.3. Assembly quality control 

Before moving on to the next stage, it may be useful to obtain statistics on the assembly of the 

metagenome using the MetaQUAST software. 

metaquast -o $METAQUAST_RESULT -1 $HOST_READS_REMOVED_FASTQ_R1 -2 

$HOST_READS_REMOVED_FASTQ_R2 $METAGENOME_FASTA 

Where: 

 -o is an option used to define the name of the MetaQUAST result output file 

$METAQUAST_RESULT. 

 -1 is an option to define the first fastq file of reads $HOST_READS_REMOVED_FASTQ_R1. 

 -2 is an option to define the second fastq file of reads $HOST_READS_REMOVED_FASTQ_R2. 



 $METAGENOME_FASTA is the file of the genome in fasta format. 

MetaQUAST will output a report that contains statistics like the number of reads used, the number of 

contigs, the mean length of the contigs, etc. 

3.5.  Annotation 

Using the metagenome obtained in the previous step, a search for biological function can be carried 

out. This analysis will begin by annotating the genes present in the metagenome using the Prodigal 

tool. 

prodigal -i $METAGENOME_FASTA -o $METAGENOME_GBK -a $PROTEINS_METAGENOME -d 

$NUCLEOTIDES_METAGENOME -p meta 

Where: 

 -i is an option to define the input file of the metagenome $METAGENOME_FASTA in fasta 

format. 

 -o is an option to specify output file. Here a file in genbank format is requested. 

 -a is an option to define the proteins translations file $PROTEINS_METAGENOME. It contains 

the genes predicted by Prodigal in fasta proteomic format with amino acids sequences. 

 -d is an option to define the nucleotide sequences file $NUCLEOTIDES_METAGENOME. It 

contains the genes predicted by Prodigal in fasta nucleotide format.  

 -p is an option for defining the analysis mode. Here, it’s in meta format for metagenomics. 

The metagenome is now partially annotated, meaning that Prodigal has only predicted the possible 

genes between each start and stop codon. Two files are therefore obtained as output, containing the 

predicted genes in fasta nucleotide and protein format. Subsequently, when searching for genes in 

databases or software, one or other of the files will be used as input. 

3.6.  Resistance gene research 



Based on the partial annotation carried out in the previous step, it is now possible to search for 

resistance genes in the metagenome. To do this, various online databases (see Note 9) and software 

will be used for this purpose. There are several different tools for searching for antibiotic, biocide and 

metal resistance genes, but we will look at an example for each type of resistance here. 

3.6.1.  Antibiotic resistance genes 

ABRicate software will be used to search the metagenome for antibiotic resistance genes. The tool is 

directly associated with different gene databases that can be changed as the files are processed. 

Here, we will use the NCBI AMRFinderPlus database. 

abricate --db ncbi $NUCLEOTIDES_METAGENOME > $ANTIBIOTIC_RESISTANCE_GENES 

Where: 

 --db is an option to specify the database that will be used for the process. Here, we use the 

NCBI AMRFinderPlus database with the variable “ncbi”. 

 $NUCLEOTIDES_METAGENOME is the file containing all the predicted gene of the 

metagenome in fasta nucleotide format. 

 $ANTIBIOTIC_RESISTANCE_GENES is the output that will contains all the result from 

abricate. 

The output file contains all the antibiotic resistance genes identified by abricate. Along with the gene 

name and the target antibiotic, two parameters are important to consider the percentage of 

coverage and identity. We can filter out genes with less than 90% identity and coverage to interpret 

only correct results. 

3.6.2. Biocide and metal resistance genes 

The BacMet database will be used to search for resistance genes to biocides and metals. The Blast 

tool and the Perl language must be installed to run the tool implemented with the database. The tool 

and database can then be downloaded from the BacMet website 



(http://bacmet.biomedicine.gu.se/index.html). For research purposes, we use the experimental 

database that contains experimentally verified data. The other BacMet database has much more 

data, but all of them are predicted. The last step before launching the search is to bring the tool and 

the database together in the same directory. 

./BacMet-Scan.pl -i $PROTEINS_METAGENOME -protein -blast -table –counts -o 

$BIOCIDE_AND_METAL_RESISTANCE_GENES -d $BACMET_DATABASE_FOLDER 

Where: 

 BacMet-Scan.pl is a Perl script used to search the database. It is launched with “./” 

before, since it is not installed but just present in the directory. 

 -i is an option used to specify the input file. The proteins $PROTEINS_METAGENOME file of 

the metagenome will be input. 

 -protein is an option indicating that the input contains proteins. 

 -blast is an option calling the tool Blast for searching BacMet. 

 -table is an option to specify that the BacMet-Scan report will be in table format. 

 -counts is an option to output a list of counts for each gene in the database. 

 -o is an option to specify the output file of the process 

$BIOCIDE_AND_METAL_RESISTANCE_GENES.  

 -d is an option to indicate the database $BACMET_DATABASE_FOLDER to be used. 

The BacMet results file shows the IDs of the genes in the database that are found in the proteins of 

the metagenome. It is therefore necessary to link the information from these gene IDs to the 

resistances specific to them to continue the analysis. To do this, we need to link the IDs contained in 

the results file with the IDs in the database metadata file (see Note 10). On we have succeeded in 

linking the genes contained in the results and the associated resistances, it is possible to interpret the 

results. All types of resistances to biocides and metals present in the metagenome are highlighted. 

http://bacmet.biomedicine.gu.se/index.html


Genes for resistance to antibiotics, biocides and metals have been identified in the metagenome. To 

go further than simply concluding that these genes are present, it may be interesting to obtain their 

abundance to quantify them in the metagenome. We will see how to obtain the abundance of all the 

genes predicted by Prodigal in the next step. 

 

3.7.  Gene abundance 

To obtain the abundance of genes in the metagenome, we will use the genes predicted by Prodigal in 

fasta nucleotide format. We will work on the principle that the gene abundance will depend on the 

number of reads that align with the gene. So, the more reads that align with a gene, the more 

abundant it will be in the metagenome. 

3.7.1.  Gene abundance 

To align the reads with the genes, we will once again use reference genome assembly using the 

Prodigal predicted gene file in fasta nucleotide format. Bowtie2 will be used for the assembly and 

Samtools toolbox for the process of the BAM file. 

bowtie2-build $NUCLEOTIDES_METAGENOME NUCLEOTIDES_GENES 

Where: 

 $NUCLEOTIDES_METAGENOME is the list file of predicted gene of the metagenome in fasta 

format. 

 NUCLEOTIDES_GENES is the basename chosen to call the index. 

bowtie2 -x NUCLEOTIDES_GENES -1 $HOST_READS_REMOVED_FASTQ_R1 -2 

$HOST_READS_REMOVED_FASTQ_R2 -S $GENES_ASSEMBLY_SAM 

Where: 

 -x is the basename of the index NUCLEOTIDES_GENES for the reference genome. 



 -1 is an option for calling the first fastq file of host’s removed reads 

$HOST_READS_REMOVED_FASTQ_R1. 

 -2 is an option for calling the second fastq file of host’s removed reads 

$HOST_READS_REMOVED_FASTQ_R2. 

 -S is an option to specify the name of the sam $GENES_ASSEMBLY_SAM file that will be 

output by the process. 

samtools view -b $GENES_ASSEMBLY_SAM > $GENES_ASSEMBLY_BAM 

Where: 

 -b is an option used to specify that the output will be in BAM format. 

 $GENES_ASSEMBLY_SAM is the file in SAM format. 

 $GENES_ASSEMBLY_BAM is the same file but in BAM format. 

samtools sort $GENES_ASSEMBLY_BAM –o $GENES_ASSEMBLY_SORT_BAM 

Where: 

 $METAGENOME_ASSEMBLY_BAM is the file containing unsorted reads in the BAM assembly. 

 -o is an option to specify the output name of the file $METAGENOME_ASSEMBLY_SORT_BAM 

containing sorted BAM reads. 

Now that the BAM file is well sorted, we can extract the number of reads that have successfully 

mapped onto the genes. First, we need to create an index for the BAM file. 

samtools index $GENES_ASSEMBLY_SORT_BAM 

Where: 

 index is a tool to create BAI index file of BAM file. 

 $GENES_ASSEMBLY_SORT_BAM is the bam sorted file of the assembly on metagenome 

genes 



The index file is essential for extracting assembly statistics on metagenomes genes. Even if it is not 

indicated in the output, the file is still created in the directory. 

samtools idxstats $GENES_ASSEMBLY_SORT_BAM > $GENES_STATS_ABUNDANCE 

Where: 

 idxstats is a tool used to output alignment summary statistics from a BAM file. It requires a 

BAM index for processing. 

 $GENES_ASSEMBLY_SORT_BAM is the bam sorted file of the assembly on metagenome 

genes 

 $GENES_STATS_ABUNDANCE is the output file that contains all the statistics about the 

assembly. 

Now that we have statistics on the number of reads that have mapped onto each gene, it is 

important to normalize all this data to interpret the results. 

3.7.2.  Normalization 

Data normalization avoids any bias linked to gene-mapped reads. It also makes it possible to 

compare different metagenomics samples. These two samples have different numbers of total reads. 

So, normalizing on the number of mapped reads provides a way to compare two sets of data. 

Therefore, we will apply the gene coverage per million formula for each gene: 

 

 

Where: 

 counts (t) = number of mapped reads to the gene (t). 

 gene length (t) = the length of gene (t) 

 n = number of all predicted genes. 

GCMP (t)   
 

          

               
     

           

               

 
   

 



Now that we have a quantification for each predicted genes, we can link the ID of predicted genes 

with the ID of genes identified in a resistance. This makes it possible to quantify resistance to 

antibiotics, biocides and metals in our metagenomic sample. 

For example, here is a representation of the results obtained for the metal resistance genes for the 4 

samples also used as examples in the MetaPhlAn step (2.3.2) (figure 4).  

 

Here Figure 4 

 

4. Notes 

1. It is mandatory to use a UNIX environment to perform shotgun metagenomics analysis. Some 

software is only available on UNIX. In addition, the permeability of the environment will 

facilitate software installation and execution. So, a basic knowledge of the Bash language is 

essential. 

2. To install each software, it is recommended to use a single Conda environment for each of 

them. This will facilitate use and avoid version conflicts between each software. So, before 

each use of a tool, the Conda environment where it will be installed should be activated. 

3. All software has an option to indicate the number of CPUs that will be used to run it. This 

option often has a base value that way be insufficient, making execution take longer. It is 

therefore important to specify this option in all commands. 

4. All the files described in the method section are called up in the form of a global variable. It 

takes the following the form: $NAME_OF_THE_FILE. In fact, each use of this variable with the 

same file name refers to the same file throughout the analysis. 

5. Sample preparation is a critical step in the entire analysis, well before the bioinformatics 

analyses begin. As explained in the methods section, it is essential to avoid having animal 



DNA in the sequenced sample as much as possible, as this will result in DNA being sequenced 

unnecessarily. 

6. The SAM file is a very large file, so it is important to delete it to save space in the workspace, 

as it is not important to keep it for later. 

7. It can be important to always compress fastq files to conserve storage space, as these are 

generally large files. Most software can use .fastq.gz files as input. 

8. It can be interesting to play on these parameters to influence the quality of the metagenome 

and obtain stringent results, depending on the objectives of the study. 

9. Pay attention to the versions of the databases that will be used. If it is already several years 

old, it is better to use a more recent database. While paying attention to the data contained 

in this database, it is best to use manually or experimentally processed data. 

10. It is possible to perform this join using the Excel spreadsheet or by using Python or R scripts. 

 

5. Data availability 

All the data used as examples in this work are available on NCBI in the BioProject PRJNA1018717. 
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Tables 

Table 1. Bioinformatic tools and databses uses for metagenomics sequences analysis 

Name Description Source 

ABRicate 

Contig analysis tool for the antimicrobial 

resistance gene. It is associated with other 

databases. 

https://github.com/tseemann/abricate 

AMRFinderPlus 
NCBI database of antimicrobial resistance 

genes. 

[17] 

Bacmet 

Antibacterial biocide and metal resistance 

genes database. Genes are added either 

manually, with experimental verification of 

resistance, or predictively by sequence 

similarity with other known genes. 

[18] 

BLAST 
Tool to compare two or more sequences to 

find similar regions. 

[19] 

Bowtie2 
Tool to align sequencing reads to reference 

sequences. 

[20] 

fastp 
Tool to control the quality of data from 

high-throughput sequencing. 

[21] 

Megahit 
Designated software to assemble 

metagenomes from NGS data. 

[22] 

Metaphlan 

Tool to profile microbial communities from 

metagenomic shotgun sequencing data. It 

relies on 5.1M unique clade-specific marker 

genes. 

[23] 

MetaQuast Tool to evaluate and to compare [24] 



metagenome assemblies. 

Prodigal 
Predict protein-gene coding sequences for 

prokaryotic genomes. 

[25] 

Samtools 
Toolbox for processing sequence alignment 

file in BAM, SAM or CRAM format. 

[26] 

Seqtk 
Toolbox for processing sequence files in 

FASTA or FASTQ format. 

https://github.com/lh3/seqtk 

 



Figure 1. Metagenomic analysis pipeline (available at https://github.com/Arnaud-Bridier/METARes). 

 

https://github.com/Arnaud-Bridier/METARes


Figure 2. Proportional abundance of bacterial genus between 2017 and 2019 at the beginning (in) 

and end (out) of the pig slaughter chain. 

 

 

 

 

 

 

 



Figure 3. (A) Intra-sample alpha diversity of each bacterial populations using Shannon index and 

species richness. (B) Inter-sample beta diversity with Bray-Curtis index. 

 

Figure 4. Mean abundance of metal resistance gene between 2017 and 2019 at the beginning (in) 

and end (out) of the pig slaughter chain.  

 



 

 

 

 

 


