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Abstract— In this work, we explore the complex social norms
underlying human decision-making in social scenarios and
propose a machine learning model to replicate and understand
these decisions. Focusing on the distribution of rewards, efforts,
and risks between individuals, we conducted experiments in-
volving 188 human participants in an online decision-making
game. We then developed an XGBoost-based model to predict
their decisions accurately. To assess the model’s alignement
with social norms, we conducted a Turing test which showed
that our model was perceived as making morally acceptable
decisions, similar to those of human participants. Furthermore,
we embodied the model in a robot negotiator, to observe
how participants perceived and accepted decisions made by
a robotic agent that automatically distributed token reward,
effort and risk among participant dyads by perceieving their
physical characteristics. Our findings contribute towards the
development of a moral robot, and enabling decision making
considering social norms.

I. INTRODUCTION

Morality and social norms are the keystone of human
society ([1]). We are expected to follow many subtle social
rules while making even mundane decisions in our daily
life, ans often these decisions may not seem rational. For
example, imagine a party scenario where only the last three
of the party’s popular cakes are left on the plate, and a child
and an adult female guest are interested in them. Logic may
suggest that, given the body size, a fair division according
to the body size be 2-1 in favour of the adult, but this will
rarely happen. The more socially acceptable decision is that
the child is allowed to take two. Now consider the same
scenario when the child is replaced by an adult male. In
such a case, it may be the female adult who will get to have
two cakes, at least the first time. However, the same female
may be expected to give two to the male contra part the next
time, when the same situation arises again. This example is
that of a social negotiation scenario, where a negotiator has
to distribute a reward between two other individuals.

The rules governing such distribution decisions in our
society are decided by multiple parameters (like age, gender,
and past decisions in the above example) that change in
different situations. Furthermore, these rules can change
across cultures and with time epochs. Understanding and
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Fig. 1: Our robot can perceive the characteristics of partic-
ipants and automatically make socially acceptable (moral)
distribution of reward, effort or risk between them.

following them are, however, crucial for a human individual
to be accepted in our society, and coexist harmoniously with
others. The need to understand the moral rules of human
society is therefore also recognized as a key challenge for
computer and robotic agents [[2], [3], [4], [5], [6], [7]],
for them to be accepted in the human society. However,
morality for machines has predominently been considered in
very extreme scenarios involving decisions resulting in the
death of humans [[2]]. On the other hand, daily life scenarios
like the example above, are not so consequential but still as
crucial for machine acceptance by the human society. Un-
derstanding the social norms in these scenarios can provide
a computational understanding of human social interactions
and be extremely important for artificial agents, if they want
to go beyond their current ability to just communicate with
human individuals, and be accepted in social decision making
roles of negotiations [[8], [9]], decision support [[10], [11],
[12], [13]], planning [[14], [15]], argumentation [[16], [17]].

Understanding the complete set of moral rules governing
human society is of course a complex challenge. Here
we start with a specific but significant question, that to
understand and predict how one can make socially acceptable
distributions of three important items that are known [[18],
[19], [20]] to be key motivators of human social behaviors:
reward (like our example above), effort and risk. Specifically,
we are interested to develop an artifical agent that can make
‘moral’ and socially acceptable distribution of reward, effort
and risk between given two human individuals, which can be
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Fig. 2: Experiment 1. in the decision game, over repeated
trials, participants were shown scenarios of reward, effort,
or risk with two characters in each. Fig. 2a: Example of
distribution scenario. Fig. 2b: The list of characters used in
the game.

relavant for scenarios like a robot server who has to distribute
some cakes in a party, or a robot teacher who has to distribute
workload or tasks involving some risks between students.

Previous studies have shown that decisions by most hu-
mans in society are ‘moral’ [[21], [22], [23]]. Here we there-
fore hypothesized that the examination of human decisions
can provide us with cues to understand the social norms in
our society. Therefore in this study, we first designed a novel
decision game to explore human decisions of reward, effort
and risk distribution depending on the age, gender, nature
(human or robot) and perceived strength of individuals. We
analyzed the participant decisions and developed a machine
learning model that is able to make human-like distribution
decisions. The social acceptability of the decisions by the
machine learning model were evaluated using a Turing test.
Finally, we embodied the model in a robot (Fig.1) to eval-
uate the perception of human dyads when they experience
distributions by a real physical agent.

II. EXPERIMENTS AND PARTICIPANTS

We conducted three experiments that included 242 French
participants of which 141 participants (70 women, 68 men,
and 3 others) participated online, and 92 participants were
from a group of students from the University of Montpellier
(24 women, 63 men, and 5 other). The mean age of the online
participant group was 29 years (SD= 12.55) and the mean age
of the student group was 24 years (SD= 5.33). This study was
conducted under the ethical approval of the research ethics
committee of the University of Montpellier, and participants’
agreement was obtained via an online consent form before
the start of the experiment.

III. EXPERIMENT 1: SOCIAL DECISION GAME

A. Procedure

Experiment 1 included 188 participants, who were asked
to play a decision game on a computer screen. They acted
as a ‘leader’ in the game who decided on the distribution
of reward, risk, effort (in different types of scenarios) to
dyads of ‘characters’: humans of different ages, gender, and
size, or a robot. Fig.2b shows the characters the participants
encountered, and Fig.2a shows a sample of each ‘type’ of
scenario that was presented to the participants. They started

Fig. 3: Effect of age of characters on reward, effort and risk
assigned to them.

the game by first providing their own perceived physical
strength of each character. Following this, in each scenario,
the participants were asked to distribute 10 units of reward,
effort or risk between the two characters, in a way “that is
socially correct, humane and will be acceptable and seen
well in the human society”. In effect, in these scenarios,
we examined how participants’ distributions were determined
by the character’s physical features, specifically whether the
character is a robot or a human, and their perceived strength,
gender, and age.

We worked with three variations of each type of sce-
nario and each participant was presented 3 trials of each
scenario type with variations randomized across participants.
Furthermore, some scenarios were repeated (twice) with the
same characters for every participant. This repetition was
performed to check whether and how the previous decisions
in the scenario affected their decisions if the same characters
were present in the same scenario again. We did not find any
variation with repetition in this work so will omit to discuss
these further here. Finally, random ’control’ scenarios were
interspersed in the experiment. The control scenarios looked
similar to the other scenarios but asked factual questions
(like ‘What size is the tall woman?’ and the size was
displayed) and were used to verify that the participants
maintain concentration through the task. Readers interested
in further details of the procedures and scenarios can see



Fig. 4: Fig.5a : Effect of age on different reward types. Fig. 5b: Effect of sex of characters on reward, effort and risk assigned
to them. At least in the French population we examined, we observed good parity in decisions. Fig.5c : The nature of the
characters, whether he/she is human or whether it is a robot, made a major difference in the reward, effort and risk assigned.

them online1 and/or take part on the decision game2.
Overall, this experiment yielded usable data from 4482

decisions across participants, with 1494 decisions for each
scenarios of reward, effort, and risk distributions. We ob-
served several interesting trends.

B. Human behavior patterns

1) Effect of Age on distribution decisions: We could ob-
serve a clear effect of age on the distributions (Fig.3). Adults
were consistently assigned not just higher risk (T (586) =
31.081, p < 0.005) and effort (T (538) = 48.354, p <
0.005), but also reward(T (520) = 15.535, p < 0.005)
than children. The trends were similar within the child-
elderly pairs (reward: T (130) = 5.818, p < 0.005;effort:
T (112) = 6.424, p < 0.005;risk: T (154) = 10.478, p <
0.005) but the differences between the distributed values
were smaller. Finally (young) adults were consistently also
assigned higher reward, effort and risk than the elderly
(reward: T (550) = −8.523, p < 0.005;effort: T (604) =
−33.492, p < 0.005;risk: T (628) = −24.273, p < 0.005).
Note that in our experiment participants encountered and
made decisions for a given character pair at one time and
never all together. Therefore, in Figs.3-4 we choose to take
these decisions together and analyzed them with T-tests and
not an ANOVA across all characters.

The ‘reward’ in our task were either monetary (coins),
beauty and monetory (diamond) and food (bread). In Fig. 3
we considered different rewards together and found that there
were minimal differences between an adult and an elderly
person or between a child and an elderly person. However,
the patterns were different between the different kind of
rewards (Fig. 5a). The distribution of food was lower (∼ 1
unit on average) between the adult and child compared to the
coins (∼ 4 units) and diamond (∼ 3 units). All differences
were still significant (p < .005).

2) Effect of sex on distribution decisions: We observed
parity in the reward assignment across men and women,
and we could not see a difference between the rewards for

1https://docs.google.com/document/d/
1Mg1uZZYjls8g6MA0suhDPZudugAuXR4FbmZKR9VOTyg/edit?
usp=sharing

2https://ethicallychoice.alwaysdata.net/

Fig. 5: Effect of strength difference on distribu-
tions.Percieved strength did not seem to affect reward
distribution, but affects effort and risk distribution.

men and women (Fig. 5b, (T (604) = −0.831, p = 0.406)
while men were assigned ‘slight’ but consistently more
effort (T (466) = −7.109, p < 0.005) and risk (T (532) =
−6.053, p < 0.005) than women. We observe no significant
distribution difference in the individual reward types.

3) Human vs Robot: Between robot and humans (Fig.
5c, human characters were consistently assigned significantly
higher reward (T (910) = 35.061, p < 0.005), but less effort
(T (1006) = −54.208, p < 0.005) and risk (T (892) =
−40.450, p < 0.005).

4) Effect of perceived strength on distribution decisions:
In our experiment, we asked participants to report the
perceived strengths of the characters before the game. In-



terestingly we observed that, while reward assignment did
not show a correlation with perceived strength (Spearman
R(1939) = −0.033, p = 0.149), percieved strength strongly
correlated with the distribution of effort and risk (Fig. 5.
Higher effort (Spearman R(1963) = 0.800, p < 0.001) and
higher risk (Spearman R(1906) = 0.680, p < 0.001) were
assigned to characters perceived to have larger strength.

IV. A ‘MORAL’ MACHINE LEARNING MODEL

Our analysis of our data exhibited not just that the
distribution was qualitatively affected by the nature, age
and sex of the agents involved, but also that the decisions
were quantitatively similar across human participants (note
the error bars in Figs. 3-4), indicating that the quantity is
important. In order to enable an artificial agent (a computer
or robot) to make similar human-like decisions, we next
examined whether one of several popular machine learning
models can learn from the Experiment 1 data to make similar
human-like decisions. Our model took as input a feature
vector of 9 elements. These included the two characters in a
scenario, difference in character strengths percieved by the
participant, difference of character age, the scenario (whether
the distribution was of reward, effort or risk), and attributes
on the participant who made the decision including their sex,
height, age and if they have a child. The characters were pre-
assigned the ages as 0 for a child, 1 for an adult (both male
and female), 3 for an elderly person and 10 for a robot.

We explored 5 supervised learning models as candidates
to reproduce the human decisions in Experiment 1: a Lin-
ear Regression classifier (LR), a Random Forest Classifier
(RFC), a Decision Tree classifier (DT), a Dense Neural
Network (DNN), and an XGBoost classifier (XGB). Note
that for the DNN, we tried 15 different combinations of
layers and neurons, with the number of layers ranging from
3 to 5 and the number of neurons varying between 32,
64, 128, 256, 512. We performed a grid search, with a
5-cross-validation, to choose the best hyperparameters of
our models. Once the best hyperparameters were obtained,
we trained 10 different models with an 80%/20% train-test
split. We allowed a margin of 1 in our predictions, i.e., the
predicted result that is at most one class away from the actual
value is seen as “satisfactory”. Interested readers can see the
details of the hyperparameters and the accuracy of each class
here3 but importantly, the average accuracy of the different
classifiers was as follows, LR:49.5%, RFC:72.5%, DT:70.5%
and DNN=48.5%, while the best accuracy was achieved by
the XGBoost classifier: 87.2%. We therefore take XGBoost
as our model of choice.

V. EXPERIMENT 2: EVALUATION OF THE MODEL USING A
TURING TEST

The XGBoost model could predict human decisions with
an average prediction accuracy of 87.2% considering a ±1
error in the rating. However, the key goal for us is to enable

3https://docs.google.com/document/d/
1Mg1uZZYjls8g6MA0suhDPZudugAuXR4FbmZKR9VOTyg/edit?
usp=sharing

Fig. 6: Feature importance: Our XGBoost model could
make human like distribution decisions with an accuracy
of 87.2%. To understand which features are important to
predict the human decisions, we looked at the ‘gain’ (blue)
and ‘permutation importance’ (orange) of various features.
The first four features are those for the characters to whom
a participant distributes items in each ‘scenario’ (5th feature
in the figure) of reward, effort or risk. The last four features
are features of the decision making participant. We found
the perceived strength difference and age difference of the
characters, as well as the age and height of a participant to
be the most importance features to predict human decision
behaviors.

a artifical agent to make decisions that are perceived in
accordance to social norms by humans. It is important to
realize that this perception accuracy may not be the same as
prediction accuracy (of the algorithm). To solve this issue
and show that our agent decisions are not just accurate but
also perceived to be in line with social norms, we developed
Experiment 2 in which we tested the results of the algorithm
using a Turing test [[24]]. In fact the Turing test served three
purposes. First and most importantly, the Turing test verified
if the accuracy of our algorithm is enough for the computer
agent to be perceived to follow social norms. Moreover, even
though we have over 87% accuracy with our artifical agent,
this is the overall accuracy over the entire trial population,
while perception may have dynamics, and change depending
on how these errors are distributed over trials. The Turing test
helped us verify that observers still perceive computer agent
decisions as moral when they see several serial decisions
by the agent. Finally, we used data collected from human
participants to train the model assuming that humans are
normally moral and follow social norms. The Turing test
could help us show this hypothesis is indeed true.

A. Procedure

40 participants took part in Experiment 2. They were
shown three consecutive scenarios from Experiment 1 in each
trial (Fig.7a, and the distribution decision (reward, effort or
risk) made in these scenarios. Each participant was shown
a mix of decisions by humans participants, decisions by
our machine learning model and, as control, ‘non-human’
decisions, developed by subtracting human decisions from
10. The participants were then asked to rate (again on a 10
point scale) how much they perceived the set of decisions as



(a)

(b)

Fig. 7: Turing test: Participants were shown three consecutive
decisions (see the slider values) by a human, our model or
a non-human (human data but subtracted from 10). Fig.7a:
An example decision set shown to the participants. Note that
‘force’ (french for ‘strength’) indicates the percieved strength
reported by the decision making agent of each character.
Fig.7b: The distribution of ratings by the observing partici-
pants. The results showed that the participants gave similar
scores of moral acceptance for decisions by our machine
learning model (green) and those by real humans (blue)
(Wilconsin signed rank test W (239) = 12522, BF = 24.42).
Perception of participants were however completely different
in the case of ‘non-human’ decisions (purple) (Wilcon-
sin signed rank test non-human & human : W (239) =
2018.5, p < 0.001; non-human & model : W (239) =
1500p < 0.001).

being “moral and according to social norms”, ‘0’ indicating
“definitely not”, and 10 indicating “definitely in line with
social norms”.

B. Turing Test Results

Fig.7b shows the distribution of ratings across 720 trials by
the participants in Experiment 2. The participants predom-
inantly rated human decisions (blue data) as according to
social norms. This corroborated our hypothesis that human
decisions are in general moral. Importantly, the ratings of
decisions by the machine learning model (purple data) were
similar to ratings on human decisions (Wilconsin signed rank
test W (239) = 12522, BF = 24.42, Bayesian Equivalence
test) and significantly different from the non-human deci-
sions (green data, Wilconsin signed rank test non-human &
human : W (239) = 2018.5, p < 0.001; non-human & model
: W (239) = 1500p < 0.001). These results showed that our
machine learning algorithm can make distribution decisions
that were perceieved human like and in accordance to social
norms.

(a)

(b)
(c)

Fig. 8: Fig.8a: Our moral robot system: The robot system
integrates a camera based sex and age estimation with a
custom made participant strength estimation system. The
perception data from these are fed to the XGBoost model
to provide the decision and corresponding robot action, that
is developed using the velocity controller (Eq.1). Fig.8b:
Cardboard tabs with pictures of candys, boxes and bombs
represented the reward, effort and risk distributed to the
participants. Fig.8c: The simulated example of the steps of
our participant strength estimation method.

VI. EXPERIMENT 3: ROBOT EMBODIMENT AND HUMAN
INTERACTION

A. Setup

Finally we embodied our model in a robot ‘negotiator’
who automatically distributed a given reward, effort or risk
between two participant dyads. This embodiment experiment
was performed to analyze three issues. First, whether the
physical form of the robot affects the participant perception
and whether the decisions are still percieved accepetable
when there is a physical robot involved. Second, to see
whether our model, developed using emperical characters
(Fig.2b with no physical features (like colour, fashion style,
facial expressions) can be seen to make acceptable decisions
even with real human dyads (with obviosuly diverse physical
features). And third, to see whether the affected participants
(individuals recieving the distributed objects) also percieve
the decisions to be acceptable like participants observing the
decision making (like in Experiment 2).

Fig.8a shows the experiment setup. The participants (two
at time) sat in front of a table on which we placed ten
cardboard tabs. Cardboard tabs with pictures of candies,
boxes or bombs represented reward, effort and risk respec-
tively (Fig.8b and were distributed by the robot between the
participants (see also Fig.1). A Universal Robotics UR10
robot was placed on the opposite side of the table. The UR10
was equipped with a Real Sense D4554 camera. We used
a open source pre-trained CNN based algorithm to detect
the age and sex of the participants or participant (if one

4https://www.intel.fr/content/www/fr/fr/
architecture-and-technology/realsense-overview.
html



participant was a robot) (https://opencv.org/). This
was combined with a custom made algorithm for visually
estimating the ‘strengths’ of the observed participants. The
algorithm assumes that the size of the silhouette of a partici-
pant correlates with his or her strength. For this our algorithm
takes the binarized images of the participants with a threshold
equal to the mean contrast of the pixels in the image. It then
plots a coloumnwise pixel count which gives a bi-modal pixel
frequency plot representing the two dyad participants. The
area covered by each mode of the plot is used to estimate
the percieved strength of each of the dyad participant. The
area is finally normalized using a linear scale so the strength
difference (calculated as the difference in the area of the two
frequency modes) is between 15 units, which corresponds to
the values of the strength differences in the training data
in Experiment 1. Fig.8c shows an example image and the
various steps leading to the strength calculation.

The percieved participant characteristics, including the
age, sex and percieved strengths of the participants were used
by the robot to calculate the distribution of the reward, effort
or risk between them using the procedure developed in Sec.
IV. Our model also requires 4 characteristics (age, sex, height
and ‘parent or not’) of the decision making agent, in this case
our robot, as input. We assumed the age of the robot to be
the average of the estimated ages of the participant dyad
(assuming that this would be best for optimal acceptance),
while the sex of the robot is chosen randomly as male of
female in each session. The height of the robot was set at
180 cm corresponding to the real height of our robot setup,
while the ‘parent or not’ criteria was set to ‘no’.

B. Robot movement control

Each distribution action involved the robot making six
movements, a movement from the initial position to the
position to partition the objects placed on the table (11
possibilites given there were 10 objects to distribute),
push the partitioned objects to the left participant, push
the objects front towards the left participant, push the
partitioned objects to the right participant, push the objects
front towards the right participant and finally, move back
to the initial position. The movements were achieved by
moving the robot to pre-recorded joint targets using velocity
control of the form:

Q̇(t) = D ṙ(t) + γ [Qi +D r(t)−Q(t)], 0 < t < tf (1)

with D = Qd − Qi, where Qi,Qd and Q represent the
6 × 1 vector of the initial, desired, current joint positions
pre-defining for each of the six robot movements for a
distribution task. tf represents the time to complete the
movement. r(t) = 10 ( t

tf
)
3−15 ( t

tf
)
4
+6 ( t

tf
)
5 represents a

5th order polynomial. We used a gain γ = 1 and movement
time tf = 10 sec for our experiments.

C. Participant Feedback

The demonstration was conducted with 9 new participants
who did not take part in Experiment 1 or Experiment 2. 6

Fig. 10: Fig.10a: 3 examples of participant pairs. Fig.10b:
The various questions put to participants after each robot
distribution. Fig.10c: Average feedback from 9 participants
on robot distributions, according to questions on Fig.10b.

of the participants worked together (as 2 dyads) while three
others were paired with a robot partner in the experiment.
We posed three different questions to the two participants
after each scenario was presented. We enquired whether the
participant ”agreed with the distribution”, if they would ”still
agree if the distribution were inversed”, and ”what distribu-
tion decision the participant would have made themselves
in the same scenario”. Finally, after the three scenarios, we
asked if the person was satisfied with the demonstration. The
exact questions are listed in Fig.10b. Each question had to be
rated on a scale from 0 to 10. Fig.10c shows the average of
these four questions across all participants. We can see that,
on average, participants agreed with the distribution made
by the robot (question 1: 7.48 ± 1.68SD). Conversely they
indicated that they would not agree if the distribution were
reversed (question2: 3.22± 1.95SD). This inverted question
was utilized to verify that there is no participant bias of
giving high scores. The difference between the robot chosen
distribution and what the participants reported they would
have chosen (question 3) was equal to 1.04± 0.98SD. The
participants reported a score of 7.44±2.96SD for how happy
they were with the demonstration. Overall, this preliminary
study suggests that the robot was percieved well by the
human participants and out moral decision model, which was
developed using empirical charaters can provide acceptable
decisions with real human participants.

VII. CONCLUSIONS

Human social life is full of decisions that involve other
individuals around us. We make these decisions very im-
plicitly but in accordance to moral rules and social norms.
These rules are sometimes subtle, but crucially determine
our acceptance in our society, and hence very important
for artificial agents when they interact with humans. While
morality has been extensively examined for life and death
scenarios, here we were interested in more daily life scenar-
ios believeing that they are equally, if not more, relavent for



current social robots. We specifically analyzed how physical
features influence our decisions in terms of reward, effort
and risk distribution among individuals. We started with this
question because these factors are known to be fundamental
determinants of human behaviors [[18], [19], [20]].

However, this work is still a first step towards our un-
derstanding of the social norms and has several obvious
limitations. First, the decisions at the moment consider only
‘open loop’ scenarios where there is no feedback from the
interacting agents. Second, we have examined the decisions
of a restricted population, specifically French and in the age-
range of 25-80 years. The results therefore, do not represent
social norms in general. Here our aim is to exhibit how a
decision game and machine learning may be used for this
process and similar experiments can be utilized to quantify
the social norms for other sub-populations. Furthermore,
here we used featureless empirical characters (Fig.2b) to
develop our model, so as to avoid the effects due to specific
physical characteristics like facial features that are known to
influence decisions by individuals[[25]]. Interestingly, even
with this ommision, Experiment 3 showed that our model
is still perceived well by real human participants. However,
further studies to understand the effect of facial features and
expressions can further improve the decision perception by
our robot. Finally, many real life scenarios require one to
make multiple decisions in tandem, requiring us to balance
reward, risk and effort between each other. In our current
study we consider reward, effort and risk distributions to
be ‘orthogonal’ and independent of each other and hence
evaluate them distinctly. Future work on combined decisions
are needed in order to clarify how these factors may interact
with one another.

However, having listed the limitations, we believe the
results here are still a significant step for improving human-
robot interactions. The work is probably the first to develop
the moral rules for distributions, a fundamental decision task
for humans in society. As shown in our robot experiment,
even though our behavioral model was developed using
empirical characters, it can provide good results with human
participants indicating that these results can be already
useful for scenarios like stalls and markets where robots
need to make decisions and distribute items among humans.
Further data can be collected to continuously improve the
performance of the algorithm and extend its validity over
different cultures and age groups.
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