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Abstract

Although Augmented Reality (AR) has been extensively studied in supporting
Immersive Analytics (IA), there are still many challenges in visualising and inter-
acting with big and complex datasets. To deal with these datasets, most AR
applications utilise NoSQL databases for storing and querying data, especially
for managing large volumes of unstructured or semi-structured data. However,
NoSQL databases have limitations in their reasoning and inference capabilities,
which can result in insufficient support for certain types of queries. To fill this
gap, we aim to explore and evaluate whether an intelligent approach based on
ontology and linked data can facilitate visual analytics tasks with big datasets
on AR interface. We designed and implemented a prototype of this method for
meteorological data analytics. An experiment was conducted to evaluate the use
of a semantic database with linked data compared to a conventional approach
in an AR-based immersive analytics system. The results significantly highlight
the performance of semantic approach in helping the users analysing meteorolog-
ical datasets and their subjective appreciation in working with the AR interface,
which is enhanced with ontology and linked data.

Keywords: Immersive Analytics, Augmented Reality, Ontology, Linked Data,
Meteorology



1 Introduction

Advances in Augmented Reality (AR) and Virtual Reality (VR) have resulted in the
emergence of Immersive Analytics (IA), a domain combining immersive technologies
and Visual Analytics. This approach emphasises on analytical reasoning and decision
making process through the “human-in-the-loop” approach (Thomas and Cook 2006).
Following this paradigm, Immersive Analytics (IA) takes advantages of immersive
systems to allow users to be immersed in the data-world for better data analytics
performance (Chandler et al. 2015). Indeed, by including the users in the analytics
processes, human-centred TA integrates interactive and immersive visualisation into
automated analysis techniques in order to actively employ the users’ perceptual and
cognitive capabilities toward data analysis tasks. The users’ active involvement can,
in turn, help build better information models for extracting insights from data.

Big data is at the heart of this emerging TA field. The sheer volume of the data
and its heterogeneity are two of many challenges that IA has to deal with to make
the data accessible and interactive within the reach of the users. Most AR applica-
tions use NoSQL databases to store and query data (Rodriguez and Huang 2017;
Shah et al. 2022; Naticchia et al. 2019), or to handle large volumes of unstructured or
semi-structured data (Amirian et al. 2015; Seipel et al. 2019; Khan and Nandi 2021).
However, NoSQL databases are limited in terms of reasoning and inference capabili-
ties, therefore, may not support some range of queries. One approach to help reduce
the complexity of the datasets and to accelerate the analytical reasoning process is to
rely on the previous knowledge of the related domain(s) in the form of ontology and
linked data. Essentially, an ontology is defined by Gruber (1993) as “a specification of
a representational vocabulary for a shared domain of discourse - definitions of classes,
relations, functions, and other objects”. In semantic web technologies, ontologies are
used to help in the comprehension and manipulation of data. By linking structured
data, linked data can enhance its utility through semantic queries (Bizer et al. 2011).
Despite the fact that ontology and linked data are field-dependent, once the domain
knowledge has been formulated, it can be easily reused in many VR and AR applica-
tions. Over the last decades, we have seen a colossal effort of many experts in different
scientific fields to build and share their own ontologies (e.g., life sciences (Good and
Wilkinson 2006), climatology (Lefort et al. 2017), biomedicine (Whetzel et al. 2011)).

In the survey done by Kraus et al. (2022) on TA with abstract 3D visualisations,
the authors highlighted that the use of VR in IA is more dominant than AR. This may
be due to the current limits of AR display devices, especially in the case of optical
see-through Head-Mounted Displays (HMDs) or handheld devices, in terms of small
field of view or low computational performance. Despite these limited capabilities,
in this work, we focus on HMD-based AR interfaces for several reasons. First, they
uphold the advantages found in HMD-based VR systems for big data visualisation by
providing the users with an extended workspace that does not need to be anchored
to physical monitors (Martins et al. 2022). Moreover, compared to VR, AR interfaces
facilitate a hybrid and flexible working environment on a daily basis, making possible
a cohabitation between immersive data analysis and interaction with conventional
tools (e.g., desktops, office stationary for taking notes) without having to remove
the headset. In addition, as in many domain applications of immersive technologies,



TA systems using AR can bring together many collaborators into a shared physical
workspace without the need to use avatars to represent them. This will indeed greatly
support the communication between the users equipped with or without AR headsets.
Therefore, our AR technology choice was driven towards this co-located immersive
collaborative context. As the first step to fulfil this ultimate goal, we aim to validate
whether an ontology-based AR system can enhance user performance and experience,
and therefore, a user study for single users was sufficient.

This paper proposes an exploratory study using ontology and linked data in AR-
based IA. With this approach, the users can make queries easily in a database thanks
to existing domain knowledge models. Ontology-based approach can also help the
data filtering process to reduce the amount of data displayed in the 3D space and
to highlight only points of interest. We believe that when visualising and interacting
with data using AR headsets, “less is more” or minimalism philosophy is the design
approach to take to increase user experience. Moreover, displaying part of the data
intelligently will also help save computational resources to facilitate big and complex
data rendering.

Our case study uses meteorological datasets collected from different sources. These
datasets include heterogeneous and multidimensional big data on temperature, heat
flux, precipitation, humidity, and wind velocity, amongst others. We consider this a
typical example to demonstrate the use of AR-based IA in a real-world application.
Our main contribution is designing and developing a proof of concept of an AR user
interface using an ontology-based approach. To bring forth the advantages of ontology
and linked data in AR applications, we examined different ontologies in meteorology
and climatology. We proposed our ontology based on the existing ones. Indeed, the
meteorological and climatological ontologies in the literature are often oversized or
complex in terms of concepts and dependencies on other ontologies, which reduces the
query performance in AR-based systems. Moreover, they also lack certain rules and
concepts to allow the user to formulate queries accurately for some specific parts of
our complex datasets. Finally, we evaluated the potential of our AR-based TA system
in conducting an experiment that aims to demonstrate the relevance of our semantic
approach compared to a conventional non-ontological one.

The paper is organised as follows. Section 2 presents relevant existing research.
Section 3 introduces our semantic TA framework. Section 4 details the evaluation of
the ontology application in TA. Finally, we conclude our use case study and discuss
open problems and future work in Section 5.

2 Related Work

This section explores previous research on AR in Meteorology and Climatology, as well
as some existing ontologies in these fields and their combination with AR technology.
We will conclude this section with some discussion.

2.1 AR in Meteorology and Climatology

Meteorological and climatological data analysis often requires the visualisation and
manipulation of large amount of data. In practice, the analysis process relies heavily on



visualisation methods using weather maps and different types of diagrams and graphs
to represent the data. Most researchers in meteorology and climatology use desktop-
based 3D open-source software (e.g., Met.3D (Rautenhaus et al. 2015), VAPOR (Li
et al. 2019), ParaView (Ahrens et al. 2005)), and the commercial software (e.g., Iris
Explorer (Walton 2003), Amira-Avizo (Thermo Fisher Scientific 2020)) are rarely
employed (Rautenhaus et al. 2017). These tools can be classified into two categories
according to their utility: in a research context and in an operational forecasting
setting (Papathomas et al. 1988). According to Koppert et al. (1998), the research tools
are mostly used to explore data from observations or simulations to find correlations
between numerical variables and real meteorological phenomena. Therefore, ideally
those systems must be complex but flexible enough to adapt to different exploration
and analysis tasks as well as various data formats, and be configurable by different
types of users (novices and experts). On the other hand, forecasting tools have to be
designed with few parameters and be usable in the most efficient way possible.

Putting aside the ongoing debate on whether to use 2D or 3D for data visualisation
(e.g., Diibel et al. 2014; Merwin and Wickens 1991), visualising and interacting with
meteorological and/or climatological data on traditional monitors may affect user
experience. Many studies have been conducted to determine the potential of AR in
these fields. In the research context, AR interfaces have often been used in weather
simulation. For instance, Trembilski (2003) is one of the earliest studies on augmented
video for cloud and sky simulation. Also, an AR simulator was proposed to visualise
precipitation data (rain, snow, and hail) (Heinrich et al. 2008). Recently, Ritterbusch
et al. 2013, through the simulation of urban wind flow, demonstrated the advantages
of mobile AR in facilitating access to simulation results. Besides the simulation, for
scientific data analysis, there are different TA tools designed to plot different graphs of
meteorological and climatological data. Sicat et al. 2018 show that their toolkit can be
used to visualise weather data and how it can be helpful for collaborative tasks. Their
system was designed for hurricane data, but it was limited to only a few thousands of
data points. IATK (Cordeil et al. 2019) asserts to be able to visualise to a much larger
number of data points. For the weather forecasting, few works were done (e.g., Leu
et al. 2014; Chen et al. 2012), and most of them were based on mobile AR because of
their promoted accessibility to the large public.

Apart from scientific and weather forecast context, the AR interfaces have been
used for other applications. For instance, regarding environmental monitoring, some
works have combined the Internet of Things with AR interfaces (Pokric et al. 2015;
Veas et al. 2013). They are used to overlay information (e.g., air temperature, oxygen
rate in the air), informing the user about the surrounding environment in real-time.
And for training about meteorological concepts through AR-based serious games is
another application. Murrell et al. 2020 show that AR can increase students’ engage-
ment to learn the basics of meteorology in large lecture class. Meister et al. 2021
confirm that AR technology can improve the training of aviation students on weather
conditions.

In summary, the existing IA tools proposed in the literature regarding scientific
data visualization present some limits when they are used for meteorological and/or
climatological data analysis on AR interfaces. Indeed, they often do not take into



account the reduced field of view of the AR displays, especially with regard to head-
mounted displays such as Microsoft HoloLens. Given this constraint, we consider that
allowing the users to query and filter the data in a flexible and meaningful way will
keep the system from overwhelming them with too much information.

2.2 Ontology and Linked Data in Immersive Environment

In computer science, an ontology is defined as “a formal, explicit specification of
a shared conceptualization” (Studer et al. 1998). The principal components of an
ontology are classes (or concepts), properties (or attributes), instances (or class mem-
bers), and relations. Domain-specific ontologies are used to semantically describe and
model existing concepts and knowledge. For instance, they help to tackle the explo-
sion of information (Mena et al. 1998; Kalfoglou and Schorlemmer 2003; Mate et
al. 2015), to facilitate the interconnection of data sources (linked data) (Castano et
al. 2001; Kushida et al. 2019), to solve the problems of data integration (Buccella
et al. 2003; Ekaputra et al. 2017) and interoperability (Gandon et al. 2012), to tar-
get the issue of spatial-temporal dimensions and heterogeneous environmental data
visualisation (Tran et al. 2016).

In VR, ontology is often used in many types of applications. For example, Pellens
et al. (2005) used an ontology to define how objects behave in the virtual environment,
while Aubry et al. (2007) proposed to structure and organise the knowledge model
associated with annotations using ontology. Edward et al. (2010) used the ontological
approach to manage a virtual environment for risk prevention. Additionally, Moreno
et al. (2011) employed this technique to enhance simulation realism and integrate
different data sources. Another example is Trellet et al. (2016)’s work which unified the
interaction between 3D structures and 2D data analysis of molecules with ontology.
Youcef et al. (2021) utilised ontology to normalise terminology in cataract surgery
training in VR. Lastly, Chokwitthaya et al. (2023) used ontology to standardise VR
experiments on human-building interactions.

In AR applications, ontology and linked data can be used to increase dynamic
context-awareness of the physical world. For instance, they have been used to display
the contextual information about cultural heritage sites (Aart et al. 2010; Kim et al.
2017; Aliprantis et al. 2018), to specify geographic locations (Aart et al. 2010; Hervas
et al. 2013), to support maintenance or training on complex systems (Toro et al.
2007; Jo et al. 2014; Akbarinasaji and Homayounvala 2017; Gattullo et al. 2020). Such
semantic-based approach for context-awareness in AR is also useful for healthcare and
well-being: to support daily patients’ needs (Hervas et al. 2011, 2013), or for elderly
dependent users (Hervés et al. 2011).

Besides context awareness, semantic-based approach in AR has been used for scien-
tific data visualisation. An example is DatAR (Tanhaei et al. 2019), an IA environment
for the visualisation of neuroscientific concepts. However, regarding meteorological and
climatologist scientific data, we did not find any AR system based on ontology and
linked data. Moreover, for other application fields, no user experiment has been con-
ducted to study the impact of such approach in terms of usability, performance, and
effort for the users to solve data analysis tasks.



2.3 Ontology and Linked Data for Meteorology and
Climatology

To link and share meteorology and climatology data easily without restriction, different
ontologies have been created.

SWEET (Semantic Web for Earth and Environmental Terminology) is one of the
early projects on weather conceptualisation into ontology and linked data (R. Raskin
and M. Pan 2003; R. G. Raskin and M. J. Pan 2005). It is a set of 200 ontologies con-
taining about 6,000 concepts developed by NASA’s Jet Propulsion Laboratory (1936).
Its initial version was based on DAML4-OIL (McGuinness et al. 2002) and the current
version (SWEET 2.3) on OWL 2. Built on top of SWEET ontology, NNEW (Next
Generation Network Enabled Weather) (Braeckel 2009) was promoted in the NextGen
(Next Generation Air Transport System (2008)) project. It especially introduces addi-
tional weather phenomena and concepts as well as relations to develop a 4-dimension
weather data cube (4-D Wx Data Cube). Both SWEET and NNEW contain concepts
describing complex meteorological phenomena to be used as core ontology. However,
they are partitioned into several ontologies and there are dependencies between them.
Using an ontology requires importing all of its dependencies. It can overload the
database and thus affect its response time, while the response time of the database is
important for smooth and real time AR interaction.

Sensor Web Enablement (SWE) (Simonis 2008) proposed by Open Geospatial
Consortium (OGC) (Rees 2013) was set up to describe sensors, sensor observations,
and sensor interface definitions. It is based on seven top-level concepts (i.e., Fea-
ture, Observation, ObservationCollection, Process, PropertyType, ResultData, and
UnitOfMeasurement), excluding the location and time concept which are imported
from other sources. Inspired by SWE, an ontology based on OWL 2 was created by
W3C Semantic Sensor Network Incubator group. It is called SSN (Semantic Sensor
Network) ontology (Compton et al. 2012). It uses DUL (DOLCE-UltraLite) (Pre-
sutti and Gangemi 2016) as an upper-level ontology and adds additional concepts to
describe sensors. Since SSN is the standard ontology of semantic sensor web, we used
it as the main core of our own meteorological ontology.

Several ontologies emerged later which extends the SSN with new concepts
describing time, location, or measurements: AEMET (Atemezing et al. 2013),
SMEAR (Stocker et al. 2014) and ACORN-SAT (Lefort et al. 2017). AEMET ontol-
ogy was designed to publish dataset of the Spanish Meteorological Office in the form
of linked data. It consists of four modules: measurements, sensors, time, and location.
This ontology, however, does not define classes for complex meteorological phenomena.
On the other hand, SMEAR ontology has been designed to describe environmental
phenomena dataset. It was set up as a software framework (called Wavellite) to organ-
ise and interpret sensor data for atmospheric monitoring. It is based on four ontologies
(WURVOC, SSN, QB, and STO) to structure information according to four layers
(measurement, observation, derivation, and situation). Finally, ACORN-SAT is the
ontology proposed to publish the Australian Bureau of Meteorology (BOM) dataset
(daily temperature records over the last 100 years) as linked data. It focuses on the
description of temperature and rainfall data. Moreover, it does not contain classes



for complex meteorological phenomena such as hurricane, storm, or sea and wind
characteristics.

To conclude, we do not use ACORN-SAT as it does not describe the meteorological
phenomena which are necessary in our application. In addition, SMEAR ontology is
too software depend to be reused in our context. And with regard to AEMET, we aim
to use a more simplified version by not including the location and measurement unit
classes. Instead, we incorporate only some basic ontologies (SSN, WGS84_pos (Brickley
2004), time (Hobbs and F. Pan 2006), and units (Rijgersberg et al. 2013)) and add new
classes to describe complex weather phenomena which are currently missing in SSN.

2.4 Discussion

In Section 2.1, we find that while AR provides great potential for meteorological
data analytics. However, the limited field of view of some AR head-mounted display
may hinder the analyse process when there is too much data to visualise all at once
which happens often in this context. Therefore, we propose an approach based on
ontology context modelling and reasoning. This approach will facilitate intelligent data
integration and allow resampling of the dataset during the interaction.

As highlighted in Section 2.3, the existing ontologies for meteorology and climatol-
ogy are often very large or complex in terms of concepts/classes and dependencies (e.g.,
SWEET, NNEW). Some ontologies also lack some of the concepts that are needed in
our application (e.g., SSN, AEMET, SMEAR, ACORN-SAT) or are designed for very
specific datasets (e.g., AEMET, ACORN-SAT). To avoid overloading of RDF store
which stores the data in the form of linked data, which is an issue for real time AR
interaction, we propose an ontology using SSN as a core, extend it by other specific
ontologies such as units and time, and add more classes and rules for our system.

Moreover, as reported in Section 2.2, we did not find in the literature any user
experiments studying the impact of computer-assistance work based on ontology in
immersive analytics. Therefore, our ultimate goal is to conduct a user study to demon-
strate that ontology can enhance task performance in immersive analytics, especially
in terms of usability, completion time, and effort for the user to solve data analysis
tasks using AR.

3 Semantic Immersive Analytics Framework

We present in this section our semantic IA framework which follows the ontology and
linked data approach to support the AR-based immersive analytics process to analyse
meteorological data. During the design and development process, we have collaborated
closely with the meteorologists at the Atmospheres Space Observations Laboratory in
France to study their workflows in working with and analysing meteorological data.
A preliminary prototype was tested by them. They gave valuable feedback on several
interaction issues they encountered when using the HMD-based AR system. Some of
their remarks impulsed the design and evaluation of a more suitable selection tech-
nique for such AR-based immersive analytics systems (Ouedraogo et al. 2022). Other
feedback contributed to our work in progress on the design and evaluation of a col-
laborative system for IA. However, before evaluating complex collaborative tasks with
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Fig. 1 Overview of our semantic immersive analytics approach.

domain experts, we aim to evaluate our AR system with a larger number of laymen
to validate this ontology-based approach on basic analytics tasks with meteorological
datasets. This study helps us to confirm or refute the advantages that ontology and AR,
can bring to the performance and especially user experience in data analytics tasks.

3.1 Design Overview

Our semantic IA pipeline (see Fig. 1) consists of four processes (Data, Models, Knowl-
edge, and Visualisation) proposed by Keim et al. 2010 with some modifications. Data
process is an essential step in our framework (cf. Data Processing and Concept
Modelling component in Fig. 1)). It aims to transform heterogeneous data to homo-
geneous one. Indeed, meteorological data is mainly spatial-temporal and is collected
from different sources (e.g., satellites, radar, weather balloons, etc.). It must be trans-
formed to be used for querying and visualising. Therefore, our first concern was to
set up our own ontology model in this specific domain as aforementioned. We then
instantiated ontological individuals (via RDF triples) to semantically link raw data to
some of the classes of our ontology.

Visualisation process allows the user to explore the data interactively. This pro-
cess is managed by Visualisation Engine via User Interface modules of Interacting
component in order to gain Knowledge from data. However, in some cases, Visu-
alisation process alone is not enough to extract domain knowledge via Querying
component, and it must be coupled with an analysis step (cf. Analytics Engine) which
is characterised by the Models process. This process allows users to automatically
extract information from data, targeting the Knowledge process. It is managed within
Rules and Reasoning component, which infers the model via a reasoning engine
(cf. Reasoner).

3.2 Data Processing and Concept Modelling

To design the domain-specific ontology, there are different approaches (e.g., Uschold
and King 1995; Griininger and Fox 1995; Fernandez-Loépez et al. 1997; Noy, McGuin-
ness, et al. 2001) which allows us to avoid common pitfalls. We built our ontology (Fig.
2) following “Ontology development 101” approach (Noy, McGuinness, et al. 2001).
This approach is divided into sequential steps as follows:



® Step 1: Identifying the domain and scope of the ontology. In this step, questions
related to expertise (also called competency questions) are formulated with the
meteorologists we collaborated with, and the ontology must be able to answer them.
For examples, some of the formulated competency questions are:

— Q1: What is the wind state according to the Beaufort scale table (Water 2005)?
— Q2: Is there a depression/anticyclone?

— Q3: When/Where does the cyclone phenomenon start/ends?

— Q4: Where is the eye of the cyclone phenomenon?

® Step 2: Considering the reuse of existing ontologies in the context of TA, selected
ontologies should be extendable and understandable, facilitating data integration
and resampling. Additionally, they should have minimal dependencies to opti-
mize query response time, crucial for real-time interaction in AR applications.
Therefore, we chose to reuse in a modular structure the four following ontolo-
gies (Fig. 2): SSN (Compton et al. 2012), OWL Time (Hobbs and F. Pan 2006),
WGS84 _pos (Brickley 2004) and Units (Rijgersberg et al. 2013).

® Step 3: Enumerating domain-dependent terms. This step consists in defining the
terms of the ontology glossary. This glossary is extracted from competency questions
(formulated in Step 1). In our case, it contains some terms such as Wind state,
Light winds, Storm, Hurricane, Pressure, Cold, Dew point, Precipitation, Humidity,
Wind, Sunshine, Cloud, etc.

® Step 4: Identifying concepts amongst all the terms defined in Step 3. The class of
a concept either already exists in the reused ontologies and if not, this concept is
added as a new class in our ontonlogy. Following this process, we introduced 28 new
classes (Fig. 2). They are then linked together to create a class hierarchy through
the relationship of subclass-of or is-a.

® Step 5: Iterating over all the classes and determining the terms in the set of
terminology that are properties. We identified 21 object properties and 16 data
properties.

® Step 6: Specifying possible domains and ranges of values for the new properties
defined in Step 5. The domain states that any resource that has a given property is
an instance of one or more classes. The range states that the values of a property
are instances of one or more classes (Brickley et al. 2014).

® Step 7: Defining instances of the classes and adding them into the ontology. This
step transforms the data into RDF triples based on the ontology.

3.3 Rules and Reasoning

The inferred model (cf. Rules and Reasoning in Fig. 1) allows the sampling and
feature extraction of data. To perform reasoning process (i.e., deducing knowledge),
we need reasoners and syntactic rules. Reasoners are used to compute or derive new
facts from existing knowledge. Many reasoners exist (e.g., OWLIM-lite (Bishop et
al. 2012), Jena (Jena 2014), Fuxi (Ogbuji et al. 2015), EYE (De Roo 2013)) with
their pros and cons (Rattanasawad et al. 2013). Amongst them, Jena is a Java-based
open-source application framework for semantic web applications. We selected this
framework because of its predefined reasoners, and especially its generic rule reasoner.
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Fig. 2 A representative part of our ontology model. Different modules are represented with specific
colours: black, green, blue, and red representing respectively WGS84_pos, Time, Units, and SSN (and
our additional classes) ontology.

This latter provides human-readable syntax with short rules to simplify notation. It
also supports user-defined rules written in Jena format.

Our ontology model was defined using basic rules between classes such as tran-
sitivity, disjunction, and equivalence. Moreover, as mentioned above, the ontologies
we reused do not address specifically meteorological phenomena and we thus added
concepts and properties to target them. We also introduced in the inferred model a
number of rules allowing us to extract data that must be classified as an instance of
specific phenomena (e.g., storm, hurricane). Some of these rules have been used to
help the users perform tasks in the experiment (Section 4).

For example, rule R1 (cf. Listing 1) determining the set of data points of a depres-
sion is based on pressure property (in Hectopascal (hPa)). As a Storm is-a Depression,
to determine if this same set of data points describes also a storm, rule R2 (cf. List-
ing 2) only needs to analyse the wind speed property (in m/s). Listings 1 & 2 present
these rules written in Jena generic.

[isDepressionPoint:

(?p rdf:type local:Pressure)

(?p local:hasPressure ?pressure)

le (?pressure ,1013.2)

(?p geo:location ?coordinate)
->(?coordinate rdf:type local:Depression)]

Listing 1 Depression Rule (R1).

[isThePointInSTorm:

(?w rdf:type local:Wind)

(7w local:hasWindForce 7force)
ge(7force ,17.43)le(?force, 32.63)

(?w geo:location ?coordinate)
(?coordinate rdf:type local:Depression)

10



->(?w rdf:type local:Storm )]
Listing 2 Storm Rule (R2).

3.4 Data Query Engine

Once the RDF database is established, it is crucial to set up a data query engine that
can extract and process the data for visualisation in response to real-time interaction
events from the user interface. Our system relies on the use of SPARQL query language,
which is based on different query forms such as: SELECT, CONSTRUCT, ASK and
DESCRIBE (Prud’hommeaux and Seaborne 2008). To support the interaction, we set
up different manipulation and voice commands on the AR interface using Microsoft
HoloLens 2: to trigger generic actions (e.g., show the main menu “Main menu”, to
select a button “Select”), or to make queries on field-dependent information (e.g., to
display data of “Wind Velocity”, “Pressure”, “Depression”, “Storm Zone”, etc.). The
querying process (cf. Querying in Fig. 1) allows the user to filter or resample the
data.

For example, via a SELECT operation automatically generated by a simple voice
command, the user can request part of data which satisfies the specific rule R2 about
the storm to highlight the related data points in the immersive environment (see
Fig. 3).

BPREFIX: «#» =
SELECT  ?longitude ?latitude ?altitude ?temperature ?WindVelocity WHERE {0
?class a local:Storm;
local:hasTemperature *emperature;
local:haskindvelocity Windvelocity;
geo:location ?lecation;
ssniobservationResultTime *time.
?location geo:long *longitude;
geo:lat latitude;
geo:alt raltitude.
Mime time:hour ?x.
FILTER(?x »= "2020-84-86 1:35:39" &k X <= "20828-84-86 3:8:137)
1

Fig. 3 A) Data points resulting from “Storm Zone” voice command. B) The corresponding SPARQL
query to find all data points (individuals) belonging to the inference class Storm during a specific
interval of time.

The user can also trigger an ASK operator to check whether an instance belongs
to a specific class or satisfies some criteria. Some examples of ASK command include:

® To check if a class belongs to another class.

1 ASK {local: Strabus
rdfs: subClass0f local: Cloud
3}

The response is true for this case.
® To check if an individual of a specific class satisfies some criteria:

1 ASK {
2 ?class a local:Storm;
3 geo:location ?location.

11



Fig. 4 A) A user performs meteorological data exploration and analysis tasks using an Augmented
Reality headset. The data is linked between graphs, which facilitates the analysis of associated vari-
ables of a phenomenon. B) Some features implemented for spatial-temporal data exploration: (1)
Bounding box for data manipulation, (2) Toolbox offering different colour maps for data visualisa-
tion, (3) Toolbox for animations of spatio-temporal data, and (4) Main menu to choose the weather
observation(s) to visualise. Thanks to ontology and linked data, it is possible to animate different
variables in the same temporal context.

1 ?location geo:lat "150"""unit:deg;
5 geo:long "-20"""unit:deg.
6 }

This request checks whether the data point with latitude of 150 degrees and
longitude of -20 degrees in the database is situated in a storm area.
® To perform some reasoning by automatically using SPARQL queries.

1 ASK {ssn: ’Feature 0Of Interest’

2 rdfs: subClass0f local: Cirrus

3}

The response will be true despite the absence of an explicit direct link between the
two concepts.

The data resampling (Martinez et al. 2012) based on this querying process allows
the user to visualise only the data of interest. In the context of AR-based IA, it
is beneficial from two main aspects. First, in terms of visualisation and interaction,
the limited field of view of some AR headsets makes their use tiring for the user,
which can affect user experience. The resampling helps to filter the data to show
only relevant parts of it, and thus may enhance user performance and decrease their
workload. Second, concerning computational power, this process will help to save the
GPU calculation to facilitate big and complex data rendering.

3.5 Analytics Engine and Interaction

The TA environment has been designed based on the features and limitations of the
AR device (Microsoft HoloLens 2) we used in this study (see Fig. 4). Our system fol-
lows a client-server architecture that separates database management and interaction
components.

The AR interface allows the user to integrate data from different sources and to
understand the relationship between the data thanks to the semantic links. It can be
used by both novice and advanced users. We focus on AR technology for immersive

12



Fig. 5 A) The user interacts with the graph and the map: when they select a data point, it is
highlighted on the map. B) The user can display together several graphs (e.g., pressure, temperature,
wind velocity, etc.): when a point is selected on a graph, the corresponding points are automatically
selected on the others.

analytics because it provides the user with a large workspace and its potential for
co-localised immersive collaboration.

We implemented different interaction techniques following the O+D design
paradigm for interactive data exploration at various levels of detail (Cockburn et al.
2009; Shneiderman 2003). For instance, with Context-on-demand, the user can see
all the details of a particular point by selecting it (Fig. 5). The system also supports
voice commands and air-tap gestures to confirm the selection. The touch interaction
was implemented, but due to a tracking issue and the large number of data points in
the experiment (Section 4), it was not accurate for selection and is not considered in
our study. Moreover, Microsoft HoloLens 2 headset’s existing pointing techniques (i.e.,
hand-based, head-based, and eye-gaze-based pointing) do not help to avoid the Eisen-
berg effect (Bowman et al. 2001) when selecting distant and small objects. To overcome
this issue, we chose to use Expanded Data Points selection technique proposed in Oue-
draogo et al. (2022). Since we also deal with temporal datasets, we implemented both
automated and manual control of animation to visualise the data which changes over
time.

The user can make queries of different types of data (e.g., pressure, temperature,
humidity, wind) and visualise it in graphs or scatterplots. Thanks to the links created
between them in the ontology, when the user selects a data point in one representation,
its corresponding points are also selected in others (Fig. 5.B). In addition, they can
display a world map to pinpoint the source of the data based on the real spatial
coordinates (Fig. 5.A). They can use two types of data representation: a pixel-based
board for 2D data based on its longitude and latitude, and a voxel-based volume for
3D data with its 3D coordinates. The pixel-based board is a graph in which each cell is
colour encoded. It illustrates meteorological data in conventional way by using colour
maps to indicate the value of physical quantities (e.g., wind speed, pressure, humidity,
etc.). Similarly, the voxel-based volume provides an overview of the multi-dimensional
data in 3D space. For smooth rendering and performance management on Microsoft
HoloLens 2, we used graphical shaders for data visualisations.
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4 Use Case Study

We conducted an experiment to compare our ontological approach with the non-
ontological baseline using an AR Microsoft HoloLens 2 headset.

The experiment follows a counter-balanced within-subjects design with repeated
measures and two independent factors considered as follows:

® APPROACH (A) indicates whether the user uses computer-assisted (A1) or non-
computer-assisted method (A2). Using A1, the user can get help from the underlying
architecture of ontology and linked data (Fig. 6). For example, for task T2 (see
Sec. 4.4), they can trigger a SPARQL query via voice command “Storm Zone”
to automatically select all the data points belonging to a storm zone instead of
manually looking for them. With A2, the data is stored in a MongoDB database
under the document format. The user solves the tasks themselves based on given
rules (e.g., Rule 1: a storm occurs when a depression area is accompanied by circular
wind flow and wind speed between 17.43 and 32.63 m/s).

Fig. 6 When the user focuses their cursor on the graph and says “Storm Zone”, all the data points
belonging to a storm zone which satisfy the rule R2 (Listing 2) are highlighted in a more vivid colour.
This region of interest is rounded by a black circle in the two figures for the readability purpose.

o Task (T) consists of three types of tasks (see Sec. 4.4) selected in the context
of meteorological data analysis. Since we conducted this experiment in the Covid
pandemic context with the participants from our university who are novice in this
specific domain, the tasks were simplified.

In this experiment, we used the data which includes surface pressure and wind speed
from 09/08/2004 to 16/08/2004 simulating Hurricane Charley proposed by Crosby
and Dietrich 2018. Nine separate subsets of the data were picked for training and
evaluation tasks.
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4.1 Hypotheses

We assume that computer-assisted data analysis approach provides the user an intelli-
gent heterogeneous data integration and analysis in the IA environment, thus it would
improve the analysis task performance. We formulated the following hypotheses:

H1 It takes less time and effort for the user to solve data analysis tasks with the
computer-assisted approach than with a non-computer-assisted one.

H2 The computer-assisted will produce the least amount of errors and increase the
user’s confidence in their answers to the tasks.

4.2 Participants

Sixteen participants participated in this experiment, including four females and 12
males aged between 19 and 30 years old (p = 24.25, 0 = 3.66) from our university.
14 were computer scientists, 13 had previously used an AR headset, and seven had
used 3D visualisation software (e.g., CAD, 3D modeling, 3D data visualisation). None
of them had worked with meteorological data before. As meteorologists contributed
to designing and evaluating the first prototype using the talk-aloud approach, we
recruited non-experts in meteorology for this study to gain a more generalized under-
standing of the ontological approach’s performance with basic data analytics tasks.
They could also provide valuable feedback for refining the system and making it appli-
cable to a wider range of users and immersive analytics scenarios in various domain
applications.

4.3 Apparatus

The system was developed in Unity3D and ran on a Windows computer of Intel Xeon
w-2135 processor, 32 GB RAM, and RTX 4000 graphics card. Microsoft HoloLens 2
was used for rendering and interaction. The 5 GHz Wi-Fi connected the desktop to
the headset. Regarding the databases, we used Apache Jena Fuseki server for ontol-
ogy and linked data for A1, and MongoDB for document data for A2 on Windows
10. MongoDB (Room 2021) is a NoSQL document database that allows flexible and
scalable data storage, retrieval, and manipulation, making it popular for web, mobile,
VR and AR applications.

We performed a comparison between these two databases in terms of query
response time according to the number of queried data points (see Fig. 7). The test
was run on the same data using the same hardware for our experiment. It shows the
disadvantage of the Apache Jena Fuseki server when the number of queried data points
at one time increases over 1 million.

4.4 Experimental Tasks

There are three tasks T1 to T3 with increasing complexity (see Table 1) chosen accord-
ing to the meteorological data analysis task process. Each task was solved within the
two conditions (A1 and A2) on different datasets to limit the learning effect. T1 and
T3 have two equivalent sub-tasks, X and Y, using two separate datasets. For exam-
ple, if the T1X was used for A1l then T1Y was used for A2, and vice versa. There
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Fig. 7 Query response time according to the number of queried data points using two types of
database server.

ID Task
T1X | 1. Find three lowest pressure points in Pressure
graph

2. Validate the corresponding points with the same
coordinates in Wind Velocity graph

T1Y | 1. Find three highest pressure points in Pressure
graph

2. Validate the corresponding points with the same
coordinates in Wind Velocity graph

T2 Find four points in the storm area in both the
Pressure graph and Wind Velocity graph

T3X | Find the points in the storm area in both Pressure
and Wind Velocity graph on 12/08/2004

at 02:00 & 17:00, and on 13/08/2004 at 11:00
T3Y | Find the points in the storm area on both Pressure
and Wind Velocity graph on 10/08/2004

at 21:00, 22:00 & 23:00

Table 1 Three types of tasks in the experiment.

were 2450 data points for each graph in T1 and 3872 in T2. In T3, there were 3872
data points for each graph in each timestamp.

During T'1, the participants must find the three lowest /highest pressure data points
and their corresponding wind velocity. With T'1 in A1 condition, thanks to the linked
data, when the participant selected a data point in Pressure graph, its corresponding
point was automatically highlighted in Wind Velocity graph (Fig. 5.B). With T1 in
A2, they had to identify manually the corresponding wind velocity.

With T2 in A1, the participant could use the voice command “Storm Zone” (not
mandatory), which triggered a SPARQL query to select all the data points for the
specific date satisfying the rule R2 (Fig. 6). The user had to check before validating
their choices. With T2 in A2, in order to balance the average time between the two
conditions A1 and A2, the user had to find only four points in the storm areas.

Finally, in T'3, they performed the task similar to T2 at three different timestamps.
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4.5 Procedure

Each session lasted about 75 minutes. At the beginning, each participant was wel-
comed, signed a consent form, and received an introduction to the system. Next, they
filled out a pre-experimental questionnaire on demographic information. Afterward,
they were equipped with the AR headset. A pre-training session was conducted to
familiarise the participant with the use of the headset, the user interface, its functions
and interactions.

There was a training phase before each task when the meteorological concepts and
task instructions were explained on a training dataset. Next, the participant started
a task in A1 and A2 conditions in a counter-balanced order on two different datasets.
After each condition, they filled out two questionnaires: the NASA-TLX for cognitive
load and the SUS for system usability. At the end of the current task, the participant
also ranked the two conditions according to their preference and rated their confidence
in the answers. The same process was repeated for all of the three tasks.

4.6 Data Collection

We collected data from 96 trials: 2 APPROACHES X 3 TASKS x 16 participants. For
each trial, we registered the following measures.
Quantitative data:

e Task Completion Time (TCT): the time needed to complete the task in each condi-
tion. It started when the participant initiated the task and ended once it was done.
This time did not include the response time of queries to the databases.

® Number of attempts: the number of times the participant tried to reach requested
data points during the task. It was calculated based on the number of times the
cursor passes over them.

® Answers to tasks: the number of data points correctly selected. It was used to
evaluate the correctness of the answers.

Subjective data:

o System Usability Scale (SUS): the usability of each approach (A1 and A2) estimated
after the task.

® NASA-TLX: the cognitive load of each approach estimated after the task.

® Quverall ranking: the ranking of the two approaches according to the preference of
the participant for each task.

e Confidence score: the degree of confidence in the participant’s answer from 1 (not
at all confident) to 7 (very confident) after having solved the task.

4.7 Statistical Results

Quantitative data: We used normal QQ-plots and Shapiro-Wilk tests to analyse the
normality of all the data from the three quantitative measurements. Since none was
normally distributed, we applied a log-transformation after an asymmetry test.
Regarding the Task Completion Time (TCT) (see Fig. 8), a two-way repeated-
measures ANOVA was used to evaluate the interaction of the two factors APPROACH
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and TASK. The result revealed that there was no significant interaction between them
(F2.90 = 0.80, p = 0.41). The main effect test was performed and the result showed a
significantly independent effect of APPROACH (F} g9 = 44, p < 0.001) as well as TASK
(Fgfgo =207, p< 0001) on TCT.

TCT (s) —e—Computer-assisted +—Non-computer-assisted
500
400 1
300 — 1
200 1 |
100 - r
R4
0
Tl T2 T3

Fig. 8 Means and 95% Cls of Task Completion Time (TCT) for the two approaches and the three
tasks.
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g 1000 - 1
E 500 — x_/
3 E
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T1 T2 T3

Fig. 9 Means and 95% ClIs of Number of attempts for both of the approaches and the three tasks.

From the Number of attempts (see Fig. 9), we analysed the interaction of the two
factors using two-way repeated-measures ANOVA. We did not find any significant
interaction effect between them (F» g9 = 0.09, p = 0.91). The main effect test showed
that there was a significantly independent effect of APPROACH (Fhg99 = 8.60, p <
0.001) and TASK (Fz 90 = 11, p < 0.001).

To evaluate the correctness of Answers to tasks, the participants’ responses were
transformed into numerical data. We converted correct answers into 1 while the false
ones into 0. The final result showed that there were only two wrong answers.

Subjective data: With the answers from System Usability Scale (SUS) questionnaire,
we used its score calculation method to compute usability score. The pair-sample t-test
was used to compare the mean SUS scale values in computer-assisted (u = 81.30,0 =
13.14) and non-computer-assisted (pn = 71.77,0 = 16.60). We found that there was a
significant difference in the score (p < 0.05).
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Fig. 10 NASA-TLX results are detailed in subscales for the two approaches.

Concerning NASA-TLX (Fig. 10), we used Wilcoxon signed-rank tests to analyse
the overall workload. There was a significant difference between computer-assisted
(u = 24.24,0 = 17.02) and non-computer-assisted (n = 35.04,0 = 14.58) workload
(p < 0.001).

The answers from Owerall ranking showed that all of the participants preferred
computer-assisted approach for T1, and 15 of them preferred the same approach for
T2 and T83.

We used Wilcoxon signed-rank tests for crossed comparison of Confidence score.
There was no significant difference found between computer-assisted (u = 6.06,0 =
1.04) and non-computer-assisted (u = 5.83,0 = 0.16) on the score of confidence.

4.8 Discussion

The statistical analysis showed that computer-assisted approach based on ontology
outperformed non-computer-assisted by means of Task Completion Time (TCT). We
also found that computer-assisted task required significant fewer number of attempts
made by the participants to solve the tasks. These two results support H1.

The answers to the tasks the participants gave were mostly correct for both con-
ditions. The confidence score was also similarly rated. Therefore, we cannot confirm
H2. Both of these measurements can be explained by the fact that each participant
was very well trained in different interaction techniques employed in the tasks as well
as the minimum meteorological concepts required.

In terms of wusability score, both of the approaches were rated positively in all
the tasks even though computer-assisted was significantly rated higher on average
than non-computer-assisted. The participants perceived that solving the tasks using
computer-assisted significantly reduced the cognitive load compared to non-computer-
assisted. Overall, they preferred computer-assisted based on ontological approach to
non-computer-assisted according to the questionnaires’ answers. In general, computer-
assisted approach received overwhelmingly positive feedback from all the participants.

The high usability score of the semantic approach confirms that it can be used to
visualise and analyse complex data for meteorology. Using the same methodology can
help to get this approach go beyond the meteorology domain. Specifically, considering
an application field using immersive analytics, we can first analyse the concepts and
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knowledge required in the related domain to determine if some existing ontologies
can be combined and/or extended to target the application. The second step is to
establish domain-dependent inference rules to help users manage large datasets and,
more specifically, to facilitate data queries in an immersive context. The third step is
to tune these ontologies and rules according to the technical limitations of the chosen
XR technologies. The final step is to experiment with the system using application
scenarios and end-users to validate and enhance the inference rules and their related
interactive paradigms.

5 Conclusion and Future Work

Recently, Immersive Analytics (IA) using Augmented Reality (AR) technology has
gained its popularity. Although AR facilitates data exploration and user experience,
it is still challenging to visualise and interact with heterogeneous and big data from
different sources. It is due to computational limits and the lack of appropriate methods
to integrate such data in the same immersive environment.

To fill this gap, we proposed an approach based on semantic-knowledge repre-
sentation using ontology and linked data. We explored its benefits in the context of
meteorological data analysis. We designed and developed an AR-based IA environment
for novices and experts to work on such divers data sources, which are conceptualised
and linked within an ontology.

One of the contributions of this paper is the design of an ontology for meteorological
data in AR-based TA. Following the “Ontology development 101” methodology (Noy,
McGuinness, et al. 2001), the main features of this design process are: (i) identifying
the domain and scope of the ontology, (ii) considering the reuse of existing ontolo-
gies, (iii) building the glossary of terms by enumerating domain dependent terms in
meteorology with the end-users, (iv) identifying concepts among all this glossary, (v)
iterating over all the classes to find the terms in the set of terminology that are prop-
erties, (vi) specifying the possible domains and ranges of values for each property
previously defined, (vii) defining instances of the classes and adding them within the
ontology. With this ontology set up, we designed and implemented an ontology-based
AR system on Microsoft HoloLens 2 device for IA tasks on meteorological data.

The second contribution of this paper is the use case study we conducted to eval-
uate the interest of such ontological approach for an AR-based TA. In the experiment,
the participants performed three different data analysis tasks under two conditions:
computer-assisted based on ontology and linked data vs. non-computer-assisted using
a NoSQL database (MongoDB). Excluding the query time response from the final
task completion time, the computer-assisted approach allows the participants to solve
tasks of exploring and manipulating the data faster than non-computer-assisted one,
and all the participants rated computer-assisted as the best approach.

A common issue with any ontological approach is that it takes time and domain
knowledge to build an accurate ontology. Apart from this, our work presents some
limitations. First, regarding the user study, due to the Covid-19 condition, we could
only recruit the participants from our university who were not working in meteorol-
ogy and climatology. This led us to simplify the experimental tasks, which did not
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show the full potential of our system in these domains. Its evaluation done by expert
users would be our next step. Second, the query response time of the ontological
approach increases exponentially when the number of queried data points explodes,
which makes it unusable in real-time interactive systems when dealing with big data.
To overcome this limitation, our short-term future work is to enhance the query
execution time. We consider implementing within the client-server architecture of our
system the graph-based indexing and query processing technique proposed by Kyu
and Oo (2020). As a long-term perspective, we aim to assess the performance of such
an TA system using AR technology in a collaboration context.
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