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Abstract. In reinforcement learning, credit assignment with history-
dependent reward is a key problem to solve for being able to model
agents: (i) associating the returns from their environment with their
past (series of) actions, and (ii) figuring out which past decisions are
responsible for the current achievement of their goal. Usual approaches
simplify this problem by assuming an immediate reward for each action.
Our first result is to propose a general and formal framework in which the
credits assigned to actions are updated based on a gradient of expected
rewards from past actions. This framework is able to model complex tasks
that require fulfilling sub-tasks in order, each sub-task consisting of a
specific sequence of actions. Our second result is to propose an algorithm
using the activity of actions to increase (resp. decrease) the credits of
necessary (resp. unnecessary) past actions. We illustrate our algorithm
on a task inspired by a behavioral learning task of rodents in a maze.

Keywords: Credit assignment · Policy gradient algorithm · Non-Markovian
rewards.

1 Introduction

In usual Reinforcement Learning (RL), the environment delivers a reward based
on the current state of the system or action of the agent. This is called a Markovian
reward case [4]. However, in general, the rewards delivered by the environment
might also depend on the past states/actions of the agent: this is called the
non-Markovian, or history-dependent, reward case.

For complex and non-Markovian rewards, a natural question is whether some
specific actions are essential to obtain larger rewards. The credit assignment
problem [6], which consists in assigning credit or blame to a series of decisions
achieved by the agent, aims to answer this question. Identifying key actions allows
adjustments to be made in order to improve the decision making performance.

The credit assignment problem is closely related to the concept of "switch
state" (or action) [2]. In a series of actions, a switch action is an action that
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needs to be chosen to obtain a positive reward from the execution of a series
of actions. If a switch action is not chosen, the reward from the series is null.
Switch actions are difficult to evaluate using temporal credit assignment [16] [14]
since the reward function sums all contributions without informing the agent of
which actions contributed the most.

Activity-based Credit Assignment [8] [9] has been developed to better assign
credit to individual actions in tasks where discounting future rewards is inadequate.
The return from the environment is then computed as a relationship between a
measure of the activity of actions and the global reward obtained at the end of
an episode (a series of actions). Here, we consider the activity as a measure of
the profitability of the actions, in the sense that the agent wants to optimize the
reward using high profitability actions. This corresponds to realistic situations
where an agent achieves a complex task through a series of actions in which some
actions can be discarded. The activity offers a way to figure out which actions
should be taken.

As an application, we consider the problem of learning paths in a T-maze
[7], as shown in Fig. 2a. An action consists in choosing and crossing a corridor
between two crossroads or bends of the maze, and the activity of the action is
the length of the corridor. We show that when taking activity into account, our
algorithm identifies the shortest correct paths, while without the activity, the
agent tends to make superfluous detours.

The policy underlying our algorithms are based on giving each possible action
a credit and selecting an action with a probability given by the softmax of
its credit. It is not necessary to store the whole series of actions as in usual
approaches dealing with history-dependent rewards [4]: the credits are enough.
The convergence of the algorithm is ensured by a gradient-based computation of
the credit of each action. This is an advantage over other approaches that are
not guaranteed to converge [2] [3] [12] or that require converting delayed rewards
into immediate rewards [4].

2 Related work

In RL, two main approaches allow accounting for history-dependent rewards: (i)
Deterministic finite automata [4] [12] used to learn series of actions, with no credit
assignment and reinforcing the full series [4], and (ii) Stochastic gradient methods
in which policies are approximated by a function and updated according to the
gradient of the expected discounted reward [15] [18]. Following this approach,
better estimations can be obtained by recomputing all action probabilities at
each state / step [11]. More references can be found in [4] [12] [11] [2] [3] [12].

The convergence of deterministic automata depends on the convergence of the
underlying RL algorithm used. In these approaches, non-Markovian situations
are typically assumed to be Markovian to be able to use usual RL algorithms
[4] [12]. Stochastic gradient approaches, such as the one we introduce, are more
computationally intensive but provide a formal way to study and ensure the
convergence of the resulting algorithms [15].
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The general gradient ascent approach presented here allows for any return
from the environment: not only the reward obtained at the end of an episode
but possibly other metrics on (series of) actions, such as their activity. We will
see that including some activity metrics over the series of actions in the learning
policy can lead to improved results.

Regarding possible applications, the method obtained here allows to consider
more complex experiments than the human decision making ones presented in [2].
Indeed, these experiments consider the case where a series of actions is correct
if and only if it goes through a given "switch state" and reaches a specific end
point, which is a particular case of our setting. Our application is an example
of free learning of rodents in a maze where multiple correct series of actions are
possible. By free learning we mean that the rodents are not taught the correct
series of actions and need to find them by themselves. Note that although the
behavior of real rodents in a maze has been studied in [7], our focus is on the
models and algorithms rather than on realistically imitating rat brain activity
and behavior. This generalizes the setting presented in [4], which considers only
one correct series of actions. In particular, we allow the insertion of detours in
the middle of correct series of actions: a correct series of actions is a sequence of
groups of consecutive actions that need to be executed in order, with optional
loops inserted between the groups. The reward of the series is zero when one
group is missed.

In cognitive neuroscience, this kind of experiment [7] is more challenging to
study. This is due to the fact that animals have to figure out and discover the
series of actions leading to the rewards while so many useless intermediate actions
can be inserted in the series without affecting the rewards. This is a challenging
example of credit assignment problem.

Credit assignment can be summed up as follow: each time the agent gets
a reward, it assigns credit (or blame) to past actions leading to this reward.
Its objective is to identify the most rewarding sequence of actions. Discounted
reward approaches, that estimate the worth of an action by the expected future
reward without accounting for past actions, do not work in this setting, where
obtaining a reward requires picking specific sequences of actions.

3 Problem formulation

3.1 Notations and definitions

Let N = {1, 2, . . . ,} be the set of positive integers. For any n ∈ N, write [n] the set
{1,2, . . . , n}. Let n ∈ N be a number of states and m ∈ N be a number of actions.
Let S = [n] be the set of all states the agent can be in. Let F = {A(s) , s ∈ S}
be the partition of the set of all actions A = [m], where A(s) is the set of all
actions available to the agent when it is in state s.

For all s ∈ S, let ψ(s, ⋅) be a function from A(s) to S defined by

ψ(s, ⋅) ∶ A(s) Ð→ S
a z→ ψ(s, a) = s′.
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The function ψ describes the (deterministic) state transitions, that is, ψ(s, a)
is the state the agent finds itself in after taking action a in state s. Define the
activity function µ as

µ ∶ S ×A Ð→ R∗+
(s, a) z→ µ(s, a).

This function returns the cost of taking action a in state s.
A trajectory is a vector (T,S,A) ∶= (T, (S1, . . . , ST ), (A1, . . . ,AT−1)), where

T ∈ N is the length of the trajectory, S = (St)t∈[T ] ∈ ST is a vector of states,
and A = (At)t∈[T−1] ∈ AT−1 is a vector of actions. By convention, a trajectory of
length one is of the form (1, S1,∅). In what follow, the index t ⩾ 1 refers to a
time step. A trajectory (T,S,A) is called valid if and only if

∀t ∈ [T − 1], St+1 = ψ(St,At).

Note that if the trajectory (T,S,A) is valid, then At ∈ A(St) for each t ∈ [T − 1].
The total activity of a trajectory (T,S,A) is

M(T,S,A) = ∑
t∈[T−1]

µ(St,At).

The experiment proceeds as follows: at the first time step t = 1, the agent,
starting in s1, picks an action a1 in A(s1) according to a policy πθ, for some
policy parameter θ, observes the activity µ(s1, a1), then moves to the next state
s2 = ψ(s1, a1). The agent continues this procedure until the environment ends the
experiment and returns a reward to the agent, who can then update the policy
parameter θ. We call one step of this procedure an episode, that is, sampling a
trajectory and collecting the reward. We write T (e) the stopping time step which
corresponds to the length of the trajectory picked during the eth episode.

For each e ⩾ 1, let (T (e), S(e),A(e)) = (T (e), (S(e)t )t∈[T (e)], (A
(e)
t )t∈[T (e)−1]) be

the random vector that is the valid trajectory chosen by the agent during the eth

episode, and let M (e) =M(T (e), S(e),A(e)) be the total activity of that trajectory.
We assume that T (e) is a stopping time for the filtration induced by the sequence
((S(e)t ,A

(e)
t ))t⩾1, that is, the event {T (e) = T} depends only on (S(e)t )t∈[T ] and

(A(e)t )t∈[T ] (or simply (A(e)t )t∈[T ], since S(e) is determined by A(e) and ψ).
Fix s⋆ ∈ S. For any family θ = (θt,s,a)t∈N,s∈S,a∈A(s) of real numbers, let πθ

be the distribution such that if (T,S,A) = (T, (St)t∈[T ], (At)t∈[T−1]) ∼ πθ, then
S1 = s⋆ and the random variables (St)2⩽t⩽T and (At)t∈[T−1] are such that:

∀t ⩾ 2, ∀s ∈ S, πθ(St = s ∣S1,A1, . . . , St−1,At−1, t ⩽ T )
= 1s=ψ(St−1,At−1) ,

∀t ⩾ 1, ∀a ∈ A, πθ(At = a ∣S1,A1, . . . , St−1,At−1,

St, t ⩽ T − 1) = 1a∈A(St)
eθt,St,a

∑
a′∈A(St)

eθt,St,a
′

.
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Hence,

πθ(T,S,A) = 1(T,S,A)
is valid

1S1=s⋆P(T ∣S,A)
T−1
∏
t=1

eθt,St,At

∑
a′∈A(St)

eθt,St,a
′

,

= 1(T,S,A)
is valid

1S1=s⋆P(T ∣S,A)
T−1
∏
t=1

softmaxA(St)(θt,St,⋅,At),

where for all a ∈ A, softmaxA(St)(θt,St,⋅, a) is the a-th component of the softmax
function evaluated on θt,St,⋅, restricted on the subset A(St) ⊂ A. It defines a
probability vector on A which gives mass 1 to A(St). Therefore, conditionally to
t ⩽ T − 1, the probability to choose an action a ∈ A at time step t depends only
on St. For all t ∈ N and s ∈ S, we call (θt,s,a)a∈A(s) the credit vector over the set
of actions available in state s at time step t.

The distribution πθ is how the agent picks a trajectory starting from s⋆. We
assume that the distribution of T (e) conditionally to (A(e), S(e)), which is a
function of the environment, does not depend on s⋆ or θ.

3.2 Environmental feedback

Assume that a trajectory can have a length at most Tmax ∈ N∗ before the
environment stops it.

Let r ∈ N and T = (T ∗1 , . . . ,T ∗r ) be a vector of valid trajectories, where
T ∗i = (T ∗i , S∗i ,A∗i ). We call T the family of target sub-trajectories. Note that
these trajectory might not start at s⋆.

Given a valid trajectory (T,S,A), consider the function

ϕ(T,S,A) ∶ [T ] × [r]Ð→ {0,1}
(t, i)z→ 1t⩾T ∗i 1(St−T∗

i
+1,...,St)=S∗i 1(At−T∗

i
+1,...,At−1)=A∗i .

ϕ(T,S,A)(t, i) returns whether or not an instance of the target sub-trajectory T ∗i
is present in the trajectory (T,S,A) and ends at time t.

Let η(t, (T,S,A)) be the greatest integer k ∈ [r] such that there exists integers
1 ⩽ t1 < ⋅ ⋅ ⋅ < tk ⩽ T with ti+1−ti ⩾ T ∗i for each i ∈ [k−1] such that ϕ(T,S,A)(ti, i) = 1
for each i ∈ [k]. If there exists no such k, let η(t, (T,S,A)) = 0 instead.

In other words, the function (t, (T,S,A))z→ η(t, (T,S,A)) counts the num-
ber of sub-trajectories from the family T that have been encountered in order
up to time t in the trajectory (T,S,A).

Fig.1(a) shows an example of a trajectory of length T = 12. In this case,
only two target sub-trajectories have been visited among the three targets
illustrated in Fig.1(b). Examples of the value of η would be: η(7, (T,S,A)) = 1
and η(11, (T,S,A)) = 2. The reward of a trajectory (T,S,A) is the sum of the
lengths of the target sub-trajectories encountered in order:

R(T,S,A) =
η(T,(T,S,A))

∑
i=1

T ∗i .
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For instance, the reward in the example of Fig.1(a) is R(12, S,A) = 8. In what
follows, we write R(e) = R(T (e), S(e),A(e)) the reward of the trajectory from the
eth episode.

1 2 3 4 5 6 7 8 9 10 11 12

Time step
S

ta
te

s

If the target 
blocks are:

(a)

(b)

Fig. 1: Illustration of a trajectory of length 12. (a): the horizontal lines represent
states (4 states in this case). Red sections correspond to the target sub-trajectories,
and the grey sections are intermediate trajectories between the target sub-
trajectories. These intermediate trajectories do not affect the reward. (b): The
target sub-trajectories.

Finally, assume that if a trajectory (T,S,A) ∼ πθ for some θ, then its length
T satisfies almost surely

T =min{{t ∈ [T ] ∶ η(t, (T,S,A)) = r} ∪ {Tmax}}, (1)

that is, the environment stops the episode as soon as all target sub-trajectories
have been encountered in the right order, or if the maximal trajectory length
Tmax is reached without encountering all the target sub-trajectories.

3.3 optimization problem

Write Eθ the expectation under the policy πθ. The goal of the agent is to maximise
the expected value of an objective X:

θ z→Eθ[X(1)]
= ∑
(T,S,A) trajectory

πθ(T (1) = T,S(1) = S,A(1) = A)

×E[X(1) ∣T (1) = T,S(1) = S,A(1) = A].
In the simulations, we consider two choices of X: when it is the reward X = R,
and when it is the ratio between reward and total activity X = R/M . Until then,
we not make any assumption on X, other than that the conditional expectation
Eθ[X(1) ∣T (1) = T,S(1) = S,A(1) = A] does not depend on the credit vector θ: it
is a function of the environment and the trajectory, not of the agent.

The gradient of the expected value of the objective can be expressed as follows.
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Theorem 1. Let B(1) be a random variable that is independent of (S(1)t ,A
(1)
t )

conditionally to {T (1) ⩾ t}, and (T̃ (1), S̃(1), Ã(1)) be a random trajectory with the
same distribution as (T (1), S(1),A(1)), then for all t ∈ N, s ∈ S and a ∈ A,

∂Eθ[X(1)]
∂θt,s,a

= Eθ[1t⩽T (1)−11S(1)t =s(1A(1)t =a − πθ(Ã
(1)
t = a ∣ S̃(1)t = s, t ⩽ T̃ (1) − 1))

× (X(1) −B(1))].
This results in a gradient ascent algorithm whose convergence is ensured by

the following result.
Theorem 2. Assume that there exists r > 0 such that ∣X(e)∣ ⩽ r and ∣B(e)∣ ⩽ r
for all e ⩾ 1. Let (αe)e⩾1 be a sequence of nonnegative real numbers such that
∑e⩾1 αe = +∞ and ∑e⩾1 α2

e < +∞. Update (θ(e))e⩾1 according to the rule: for each
t ∈ [Tmax], a ∈ S and a ∈ A(s),

θ
(e+1)
t,s,a = θ

(e)
t,s,a + αe1t⩽T (e)−11S(e)t =s(1A(e)t =a − πθ(e)(A

(e)
t = a∣S

(e)
t = s, t ⩽ T (e) − 1))

× (X(e) −B(e)), (2)

For each e, t, s and a, let θ̃(e)t,s,a = θ
(e)
t,s,a − max

a′∈A(s)
θ
(e)
t,s,a′ . Then (Eθ(e)[X(e)])e⩾1

converges and the limit points of (θ̃(e))e⩾1 are all in the same connex component
of the set of zeroes of the gradient of θ̃ ∈ Θ z→ Eθ̃[X(1)], where Θ is the (compact)
set of credit vectors θ̃ such that θ̃t,s,a ∈ [−∞,0] and max

a′∈A(s)
θ̃t,s,a′ = 0 for all t, s.

These theorems are proved in Appendix B and C respectively.

3.4 GAtACA Algorithm

Take the update rule of equation (2). We choose the baseline as a discounted
mean: B(e) = 1−γ

1−γe−1∑e−1k=1γ
e−k−1X(k), with B(1) = 0 and γ = 0.99. This algorithm

and choice of baseline are similar to the REINFORCE algorithms introduced
in [18], except that it accounts for history-dependent rewards and explicitly allows
activity measures on state-action pairs.

Algorithm 1 describes the general algorithm Gradient Ascent Activity-based
Credit Assignment (GAtACA), which assigns credits to actions in a series of
decisions based on a reward R(e) collected at the end of each episode.

When X(e) = R(e), the GAtACA algorithm can be seen as an extension
of the usual REINFORCE algorithm to non-Markovian rewards. This baseline
algorithm is coined REINFORCER, where R stands for the reward from the
environment. Note that the usual REINFORCE algorithm assumes Markovian
rewards. Reformulating our setting into a Markovian one, by aggregating states
and actions to obtain one reward per (state, action) pair, for instance, would
exponentially increase the complexity of the model, with one choice per possible
trajectory, making it intractable.

When X(e) = R(e)/M (e), we will see that using the activity allows to obtain
high reward trajectories with short length. In the next section, we compare
GAtACA and our baseline, REINFORCER.
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Algorithm 1 GAtACA(Environment (S,A, ψ), s⋆ ∈ S, T vector of r trajecto-
ries, α > 0, ε > 0)
1: Initialize: e = 1, B(1) = 0, θ(1)t,s,a = 0 for all t, s, a
2: repeat
3: t← 1 and S(e)1 ← s⋆

4: while t ⩽ T (e) as defined by Equation (1) do
5: A

(e)
t ∼ categorical distribution with parameter softmax

A(S
(e)
t )
(θ

t,S
(e)
t ,⋅
)

6: S
(e)
t+1 ← ψ(S(e)t ,A

(e)
t )

7: t← t + 1
8: end while
9: M (e) ← ∑T (e)−1

u=1 µ(S(e)u ,A
(e)
u )

10: R(e) ← R(T (e), S(e),A(e))
11: Compute X(e) from R(e) and M (e)

12: for all t = 1,2, . . . , T (e) − 1 do
13: for all a ∈ A(S(e)t ) do
14: θ

(e+1)

t,S
(e)
t ,a

← θ
(e)

t,S
(e)
t ,a

+ α(1
A
(e)
t =a

− softmax(θ
t,S
(e)
t ,⋅
)(a))(X(e) −B(e))

15: end for
16: end for
17: B(e+1) ← 1−γ

1−γe

e

∑
k=1

γe−kX(k) = 1
1−γe (X(e) + γ(1 − γe−1)B(e))

18: e← e + 1
19: until ∣X(e) −B(e)∣ < ε
20: return (θ(e)t,s,a)t,s,a.

4 Application and results

4.1 Online learning of a behavioral task

Consider the T-maze shown in Fig. 2a. There are n = 4 possible states, S = [n].
Bottom and top intersections offer three possible actions (that is, walking along
the corridor until the next intersection), while corners offer two. The activity
µ(s, a) is the length of the corridor taken by choosing action a from crossroad s.
The oblique corridors of the maze have length 5, the vertical corridor has length
4 and the two horizontal corridors each have length 3. This activity can be easily
extended to more complex metrics, such as the cognitive activity defined as the
number of cognitive processes involved, or the neuronal activity defined as the
mean firing rate of neuronal networks, and the maze setting generalized to more
complex environments, for instance with randomized transitions between states.

The goal of the agent (a rodent in [7]) is to learn the correct series of actions
in the maze as shown in Fig. 2b. However, the agent does not know precisely
which actions are correct or incorrect with respect to the target. It only receives
a dose of sugar when finishing the trajectory4. Note that the last state of a target
sub-trajectory may not be the first state of the next target sub-trajectory. Several
4 The trajectories learned in [7] by real rodents were much simpler, to give them a

chance of finding them.



GAtACA with History-dependent Reward 9

initial 

position

1

4 3 2

(a) Structure of the T-maze: at each intersection and
corner, the rodent can pick a corridor. The initial position
is fixed in position 4.

(b) Indices of the 3 correct (target) series of actions : T ∗1 = (2,1,4),
T ∗2 = (2,3,1,2) and T ∗3 = (1,4,1,4,1). The order of the choices is indi-
cated by characters: a, b, c and d. The shortest path to initiate the correct
series of actions is indicated with dashed arrows.

Fig. 2: Maze choices and correct series of actions.

series of actions, including unnecessary loops, can be inserted between target
sub-trajectories.

This application is a spatio-temporal credit assignment problem [3]. The
spatial problem arises from the fact that sometimes, only a small subset of all
possible states and actions are relevant or contribute to a correct path. For
example, for the target sub-trajectory T ∗3 in Fig.2b, only the left and bottom
corners are relevant. The temporal problem arises from the fact that a state can
be encountered more than once during an episode, and the best action is not
necessarily the same at different time steps. Thus, the problem is to identify the
set of actions and their order to maximize the reward.

At each episode e ⩾ 1, the agent starts in a fixed state, the upper left corner,
as shown in Fig. 2a. The learning phase starts with a uniform policy, and the
credit vector is updated according to either the REINFORCER or GAtACA
algorithms.
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4.2 Results

In this section, we compare the REINFORCER algorithm, based only on the
reward (objective X = R), to GAtACA, based on both reward and activity
(objective X = R/M), for learning series of actions in the T-maze problem.

Fig. 3 presents the rewards and trajectory lengths obtained by both algo-
rithms. Both are able to find trajectories containing the three correct target
sub-trajectories in the right order that are shorter than the maximum trajectory
length, Tmax = 30 in this example.

The trajectories generated by REINFORCER are longer than the ones gener-
ated by GAtACA, as shown in Fig. 3: the length of the trajectories sampled by
GAtACA converges to 15 time steps, the minimum of steps to get the highest
possible reward, while REINFORCER’s average trajectory length remain larger
than 17. Fig. 4, described below, illustrates the end policy of GAtACA and
REINFORCER. REINFORCER’s most likely trajectory contains an unnecessary
loop: the actions between time steps 9 and 13 could be condensed into GAtACA’s
actions between time steps 9 and 11.

This is due to the fact that GAtACA accounts for the total distance travelled
along the trajectory, in addition to the reward, while REINFORCER does not.
For instance, at the beginning of each episode, the initial position of the agent is
4. The shortest path to initiate the first target sub-trajectory T ∗1 is to go through
state 3. REINFORCER does not differentiate between passing by 1 or 3, because
it does not account for activities (corridor lengths in this case), but GAtACA
does. Note that the objective that is optimized by GAtACA is the ratio of reward
over activity: while in this situation it produces trajectories that are optimal for
both reward and length, it is not always the case.

Fig. 3: Reward (left), trajectory length (middle) and activity (right) of the
trajectories generated by REINFORCER (blue) and GAtACA (red) during the
learning phase. The dashed lines show the maximum reward and minimum length
of a trajectory with the maximum reward respectively. The curves are averaged
over 30 realizations, the 95% confidence intervals (see Appendix A) are shown in
a lighter color.
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To simplify the visual representation of the policies in Figures 4 and 5 (in
Appendix D), we pick one trajectory and, for each state along this trajectory,
represent the policy vector at this time step in this state. This trajectory is taken
as a greedy approximation (Tmax, Ŝ, Â) of the most likely trajectory, defined as
follows: Ŝ1 = s⋆ and for all t ∈ [Tmax − 1]

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Ât =min(argmax
a∈A

θt,Ŝt,a
),

Ŝt+1 = ψ(Ŝt, Ât).
(3)

Recall that for any t, s, a, the probability πθ(At = a ∣St = s, t ⩽ T − 1) that the
agent chooses action a in state s at time t is given by eθt,s,a/∑b∈A(s) eθt,s,b . Thus,
maximizing πθ(At = a ∣St = s, t ⩽ T −1) in a is equivalent to maximizing θt,s,a in a.
Thus, this trajectory is built by picking the most probable action at each time step.
When the policy converges to a Dirac distribution, this greedy approximation is
eventually the most probable trajectory and converges the limit trajectory.

The temporal evolution of the policies at each time step, averaged over 30
realizations, for the REINFORCER and GAtACA algorithms, is shown in Fig. 5 of
Appendix D. Fig. 4 shows the end policy of a single realization of REINFORCER
and GAtACA, and shows that the REINFORCER policy does not converge to a
Dirac distribution, while the GAtACA policy does. Note that in both cases, even
if the policy does not converge to a Dirac, the expected reward under the policy
does converge to the maximum possible reward, see Fig. 3.

Fig. 4: Probability, for each time step t, to reach state s at time step t+1 when in
the state Ŝt at time step t, according to the REINFORCER (top) and GAtACA
(bottom) policies. Ŝt is the greedy approximation of the most likely trajectory,
defined in Equation (3).
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4.3 Link between GAtACA and REINFORCER

REINFORCER can be seen as an instance of GAtACA, with its objective function
being chosen as X = R instead of X = R/M . Beyond this connection, the two
algorithms can be seen as the same gradient ascent algorithm as REINFORCER,
with the difference that the learning rate α in REINFORCER is constant and the
learning rate in GAtACA depends on the environment and trajectory: writing
GAtACA as an instance of the REINFORCER algorithm is as simple as taking
αREINFORCER ← αGAtACA

M(e) during episode e.
We take advantage of this similarity to choose α in order to have comparable

rates of convergence. As shown in Fig. 3, the average activity of the trajectories
at the start of the learning phase is around 120. We thus took αGAtACA =
120αREINFORCER, and indeed the evolution of the reward under the two policies
is comparable in the early stages of Fig. 3. The rate of convergence under the
two policies only start to diverge when the activity under GAtACA drops, which
is indeed the kind of behavior expected when changing the learning rate of a
gradient ascent algorithm.

Note that this does not solve the issue of choosing the best possible α, which
is itself a known and challenging issue with gradient ascent/descent algorithms,
see [10] and references therein. GAtACA’s tendency to have larger learning rate
when its activity is smaller could be combined with data-driven methods that
select an intentionally underestimated learning rate α based on the first few
episodes. This would hasten the convergence of the policy when the activity
drops, which coincides with the drop of trajectory length.

5 Conclusion

We propose a general gradient ascent approach for solving the credit assignment
assignment problem in case of history-dependent reward. This leads to the general
form of the GAtACA algorithm, which optimizes an expected objective function
X of the environment. This objective may involve a reward collected at the
end of an episode as well as any other metrics, called activities, on the actions
themselves. We prove that this algorithm converges to a zero of the gradient of
the objective function.

In our example, we took the objective function as being the ratio of a benefit
(reward) over a cost (sum of the activities, that is the total distance travelled)
to show the interest of the activity-based credit assignment with respect to a
more usual reward-based credit assignment. Activity-based credit assignment
is shown to properly converge in the T-maze example where multiple optimal
solutions are possible. This trade-off between reward and distance travelled
proved to be a better way to solve the credit assignment problem than merely
optimizing the expected reward, as it produces the shortest trajectories that
still obtain the highest possible reward. Other activity metrics than corridor
length, such as neuronal activity of the agent, as well as randomizing the state
transition probabilities of the environment, could be worth exploring for further
applications.
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Our approach allows to account for non-Markovian rewards, where the best
choice of action depends on past actions. We do so by allowing the credit of each
action, and through them the probability of choosing these actions, to depend
on the current time step, while keeping the choice independent on the past. In
contrast, a simpler (possibly Partially Observed) Markovian Decision Process
(MDP [5] and POMDP [17]) would have an exponentially larger complexity:
instead of basing its decision on the current state, the agent would need to base it
on the current state and a certain number of previous states and actions. When
accounting for T past actions and n possible states, this results in nT possible
states, before even taking actions into account, compared to n with our approach,
which quickly becomes intractable. Moreover, these models assume that a reward
is made available at each time step, and that it depends only on the current state
and action chosen, which is not the case here.
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A Simulation environment and parameters

The simulation results in this paper are Monte Carlo simulations performed
over N = 30 realizations, using the pseudo-random number generator Mersenne
Twister from of library numpy 1.11.1, with seed = 7052984. The same seed is
used for REINFORCER and GAtACA to guaranty the same environment for
different learning objective.

Each realization, indexed by r ∈ [N], at episode e ⩾ 1 produces Y (e),[r] for any
variable Y (R(e) and T (e) in Figure 3). Therefore, the mean and the standard
deviation of Y over the realizations is given as

∀e ⩾ 1z→ Y
(e) =

1

N

N

∑
r=1

Y (e),[r] =mean((Y (e),[r])
r∈[N]),

∀e ⩾ 1z→ σ
(e)
Y = SD((Y (e),[r])

r∈[N]).

The confidence interval (CI) at episode e is given as follow

[Y (e) − c
σ
(e)
Y√
N
,Y
(e) + c

σ
(e)
Y√
N
],

where c ≈ 2.048 is the 97.5th percentile of a Student distribution with N − 1 = 29
degrees of freedom.

The total number of episodes is 1.5 ⋅ 105. In all simulations, we consider a
constant learning rate α = 0.07

120
in REINFORCER (which optimizes X = R), and

α = 0.07 in GAtACA (which optimizes X = R/M), so that αX is of the same
order in the two algorithms. The reasoning behind this choice of α is explained
in Section 4.3.

B Proof of Theorem 1

Consider the objective function: θ z→ Eθ[X(1)]. By definition,

Eθ[X(1)] = ∑
(T,S,A) trajectory

πθ(T (1) = T,S(1) = S,A(1) = A)E[X(1)∣T (1) = T,S(1) = S,A(1) = A]

= ∑
(T,S,A) trajectory

1(T,S,A) is valid1S1=s⋆P(T ∣S,A)(
T−1
∏
t=1

eθt,St,At

∑
b∈A(St)

eθt,St,b
)νT,S,A

Recall that the conditional expectation νT,S,A ∶= E[X(1)∣T (1) = T,S(1) = S,A(1)AC]
does not depend on θ.
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Let us compute its gradient. Let t ∈ [Tmax], s ∈ S and a ∈ A.

∂Eθ[X(1)]
∂θt,s,a

= ∑
(T,S,A) trajectory

1(T,S,A) is valid1S1=s⋆P(T (1) = T ∣S(1) = S,A(1) = A)νT,S,A

× ∂

∂θt,s,a
(
T−1
∏
u=1

eθu,Su,Au

∑
b∈A(Su)

eθu,Su,b
). (4)

Then,

∂

∂θt,s,a
(
T−1
∏
u=1

eθu,Su,Au

∑
b∈A(Su)

eθu,Su,b
) = 1t⩽T−1( ∏

u∈[T−1]
u≠t

eθu,Su,Au

∑
b∈A(Su)

eθu,Su,b
) ∂

∂θt,s,a

eθt,St,At

∑
b∈A(St)

eθt,St,b

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(∗)

,

(5)
and

(∗) = 1St=s

1At=ae
θt,s,At ∑

b∈A(s)
eθt,s,b − eθt,s,At eθt,s,a

( ∑
b∈A(j)

eθt,s,b)
2

= 1St=s
eθt,s,At

∑
b∈A(j)

eθt,s,b
(1At=a −

eθt,s,a

∑
b∈A(j)

eKt,s,b
)

= 1St=sπθ(A
(1)
t = At ∣S(1)t = s, t ⩽ T (1) − 1)(1At=a − πθ(A

(1)
t = a ∣S(1)t = s, t ⩽ T (1) − 1)).

Substituting (∗) in Eq. (5),

∂

∂θt,s,a
(
T−1
∏
u=1

eθu,Su,Au

∑
b∈A(Su)

eθu,Su,b
) = 1t⩽T−1 ∏

u∈[T−1]
πθ(A(1)u = Au ∣S(1)u = Su, T (1) = T )

× 1St=s(1At=a − πθ(A
(1)
t = a ∣S(1)t = s, t ⩽ T (1) − 1)),

so that the gradient of the objective function (Eq.4) becomes

∂Eθ[X(1)]
∂θt,s,a

= ∑
(T,S,A) trajectory

πθ(T (1) = T,S(1) = S,A(1) = A)

× 1t⩽T−11St=s(1At=a − πθ(A
(1)
t = a ∣S(1)t = s, t ⩽ T (1) − 1))νT,S,A

= Eθ[1t⩽T (1)−11S(1)t =s(1A(1)t =a − πθ(Ã
(1)
t = a ∣ S̃(1)t = s, t ⩽ T̃ (1) − 1))X(1)],

where (T̃ (1), S̃(1), Ã(1)) is a copy of (T (1), S(1),A(1)) that follows the same distri-
bution. Finally, let B(1) be a random variable that is independent of (S(1)t ,A

(1)
t )
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conditionally to {t ⩽ T (1) − 1}, then

Eθ[1t⩽T (1)−11S(1)t =s(1A(1)t =a − πθ(Ã
(1)
t = a ∣ S̃(1)t = s, t ⩽ T̃ (1) − 1))B(1)]

= Eθ[1t⩽T (1)−1Eθ[1S(1)t =s(1A(1)t =a − πθ(Ã
(1)
t = a ∣ S̃(1)t = s, t ⩽ T̃ (1) − 1))B(1) ∣ t ⩽ T (1) − 1]]

= Eθ[1t⩽T (1)−1Eθ[1S(1)t =s(1A(1)t =a − πθ(Ã
(1)
t = a ∣ S̃(1)t = s, t ⩽ T̃ (1) − 1)) ∣ t ⩽ T (1) − 1]Eθ[B(1) ∣ t ⩽ T (1) − 1]]

= 0,

since

Eθ[1S(1)t =s(1A(1)t =a − πθ(Ã
(1)
t = a ∣ S̃(1)t = s, t ⩽ T̃ (1) − 1)) ∣ t ⩽ T (1) − 1]

= Eθ[1S(1)t =sEθ[1A(1)t =a − πθ(Ã
(1)
t = a ∣ S̃(1)t = s, t ⩽ T̃ (1) − 1) ∣S(1)t = s, t ⩽ T (1) − 1]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

∣ t ⩽ T (1) − 1].

C Convergence of the algorithm

The proof is similar to the proof of Theorem 2 of [13].
We replace θ by θ̃ to solve convergence issues: the distributions πθ(e) and πθ̃(e)

are the same when the elements of θ(e) are finite, but the limit of (πθ(e))e⩾1 may
not be well-defined when there exists t, s, a and a′ ≠ a such that θ(e)t,s,a and θ(e)t,s,a′
tend to +∞ at the same time. In contrast, for any sequence θ̃(e) Ð→ θ̃∞ ∈ Θ,
πθ̃(e) Ð→ πθ̃∞ .

An example where the gradient is zero is when #{a ∶ θ̃t,s,a = −∞} = ∣A(s)∣ − 1
for all t, s: in this case, the agent always makes the same choice when in state s at
time t. Any finite change of θ does not change the distribution of the trajectory
chosen, and hence does not change Eθ[X(1)].

Note that this theorem requires the step size to tend to zero, but not too
fast. This is a usual assumption in gradient descent, though how to choose αe
in practice is a delicate issue with no universal answer. In our algorithm and
Equation (2), we chose to take αe constant. Despite not being covered by the
above theorem, the simulations show that the algorithm does converge toward
the optimal solution.

Proof. Proposition 3 of [1] allows to prove the convergence of algorithms of the
form

θ(e+1) = θ(e) + αe(s(e) +w(e)),

where s(e) is an approximation of the gradient of a target function θ ↦ f(θ) in
θ(e) and w(e) is a perturbation of this gradient. In our case, f(θ) = Eθ[X(1)],
s(e) = ∇f(θ(e)) and

w(e) = (1
A
(e)
t =a − πθ(e)(A

(e)
t = a∣S

(e)
t = s, t ⩽ T (e) − 1))(X(e) −B(e)) − s(e).
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The assumptions of Proposition 3 of [1] on s(e) are clearly satisfied, and the
assumptions on w(e) are checked by Theorem 1 and by the fact that w(e) is
bounded by 4r.

Our addition to their result, that the limit points belong to the same convex
component, follows from the fact that ∥θ̃(e+1) − θ̃(e)∥∞ ⩽ 2rαe Ð→ 0. Thus, by
compactness of Θ, any two limit points of (θ̃(e))e⩾1 are connected by a continuous
path of limit points of (θ̃(e))e⩾1, and thus are in the same connex component.

D Additional figures

In this Section, we show the evolution of the policies REINFORCER and GAtACA
during the learning phase.

Fig. 5 shows the evolution of the policies over time along the greedy approxi-
mation (Tmax, Ŝ, Â) of the most likely trajectory, based on the policy whose credit
is the average of the credits returned at the end of the N = 30 realizations of the
algorithms. Note that there is no reason for the greedy approximation chosen
for REINFORCER and GAtACA to be the same, and indeed Ŝ2 is different for
REINFORCER and GAtACA in Fig. 5.

The GAtACA policies converge toward a Dirac distribution (since their
component probabilities tend to either 0 or 1), while the REINFORCER policies
remain hesitant at several time steps.



GAtACA with History-dependent Reward 19

(a) REINFORCER policy evolution. The bottom right graph shows all N = 30 realiza-
tions contributing to the red mean curve for time step t = 11, showing that the policy
did not converge.

(b) GAtACA policy evolution.

Fig. 5: Policy components πθ(a, Ŝt, t) ∶= πθ(A(1)t = a ∣S(1)t = Ŝt, t ⩽ T (1) − 1)
when in state Ŝt at time step t (only the first 14 time steps are shown) for
REINFORCER (a) and GAtACA (b). Ŝt is the greedy approximation of the
most likely trajectory, defined in Equation (3), following the policy based on the
final credit averaged over the N = 30 realizations. The full line is the mean policy
value, the diffuse region is the 95% confidence interval, defined in Section A. The
state of the trajectory at each time step is written at the top of each graph.
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