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ABSTRACT
This study explores the behavior of sound wave propagation across a micropolar plate at diverse
incident angles, specifically crafted from expanded polystyrene. Through a blend of theoretical
formulations and practical experimentation, we scrutinize the alterations in transmission
coefficients within the frequency spectrum, shedding light on the dynamic shifts in various
vibrational modes. Utilizing a comprehensive setup comprising a loudspeaker, microphone, and
National Instruments acquisition system, we meticulously discerned the initial trio of longitudinal
vibration modes across a broad frequency span extending up to 70kH z. Notably, despite the plate’s
inherent dispersion and attenuation traits, this experimental setup proved effective. A distinctive
facet of our approach lies in the deliberate incorporation of multiple incident angles, which yielded
crucial insights. Notable is the identification, within the experiments, of a critical angle θcr ,
marking a transitional zone. Below this threshold, distinct Lamb modes dominate, while beyond
it, the emergence of micropolar modes becomes apparent. These empirically validated findings, in
alignment with theoretical projections, substantially enrich our comprehension of these materials’
engineering applications.

1. INTRODUCTION

In 1909, the Cosserat brothers, Eugène and François, introduced a variant of continuum
mechanics, paving the way for models of polar continua that incorporate stress couples [1]. This
development led to the linear theory of polar continua, known as the mechanics of micropolar
continua, which accounts for microinertial effects [2–11]. Our focus in this study lies specifically
on linear elastic media with micropolar characteristics, where deformations are reversible under
the influence of microscale phenomena. This entails assigning a general intrinsic deformation to
each material point, augmenting the classical translational degree of freedom with six additional
ones, thus characterizing the medium as micromorphic according to Eringen’s classification.
Assuming the microstructure’s rigidity, we refer to it as a micropolar medium.The objective of
our research is to investigate acoustic transmission properties through a linear micropolar elastic
plate in air and examine resulting vibration modes. To achieve this, we derive transmission
and reflection coefficients to generalize expressions previously formulated for plates in classical

1meso@lma.cnrs-mrs.fr
2herve.franklin@univ-lehavre.fr
3ogam@lma.cnrs-mrs.fr
4fellah@lma.cnrs-mrs.fr

Permission is granted for the reproduction of a fractional part of this paper published in the Proceedings of INTER-NOISE
2024 provided permission is obtained from the author(s) and credit is given to the author(s) and these proceedings.



Proceedings of INTER-NOISE 2024

elasticity by Viktorov [12] and later elaborated by Fiorito, Madigosky, and Uberall [13, 14]. Their
work formalized these expressions and provided clear interpretations of transmission and
reflection coefficients. A similar formalism, albeit excluding resonance considerations, may prove
valuable for leveraging the S-matrix method [15] and comprehensively interpreting generalized
Lamb modes.
This paper enriches the field of micropolar mechanics by experimentally validating the existence
of Lamb and micropolar modes, which supports theoretical models describing how isotropic,
linear, elastic media react to acoustic waves. We introduce the governing equations for wave
propagation in a micropolar elastic medium in air in Section 2. This includes a detailed
mathematical expression of the transmission coefficient, alongside a case-specific analysis using
numerical simulations provided by Ogam et al. [16] in Section 3. By adjusting the incidence angle,
we investigate the emergence of micropolar modes beyond a certain threshold. The subsequent
sections, 4 and 5, outline our experimental approach and showcase findings that confirm the
theoretical predictions, bridging theory with experimental evidence.

2. WAVES PROPAGATION IN THE MICROPOLAR ELASTIC MEDIA

The section explores the complex dynamics of wave propagation through micropolar
elastic materials. Our objective is to investigate very briefly, how acoustic waves behave in these
media, uncovering the fundamental principles that govern their propagation and revealing their
distinctive characteristics.

Through this exploration, we gain valuable insights into the intricate relationship between
micropolar properties and wave phenomena, advancing our comprehension of elastic wave
propagation within these materials.

2.1. Phases velocities

Predictions by Parfitt and Eringen [9, 17] for such a medium anticipated a response
characterized by the propagation of four harmonic plane waves, each with distinct phase
velocities depending upon the angular frequency ω. These waves include :

– A longitudinal displacement wave at velocity v1(ω),
– A longitudinal micro-rotation wave at velocity v2(ω), featuring microrotation aligned with

the direction of propagation, and
– Two transverse displacement coupled to microrotation waves, each with velocities v3(ω) and

v4(ω) respectively.

The expressions for these different velocities can be written in the following form :
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Equations (1), (2), (3), and (4) involve several parameters. The mass density of the medium is
denoted by ρ. The symbols λ and µ represent Lamé moduli, while K corresponds to Cosserat’s
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couple modulus, which characterizes the micropolar state. The quantities α, β, and γ stand for
rotational micro-inertia constants. Dividing them by the microinertia constant J yields moduli,
with γ often referred to as the twist coefficient. Additionally, ω2

0 is defined as 2K
ρ J .

Singh and Kumar [18] conducted a comprehensive study on the reflection and transmission
of elastic waves at interfaces involving micropolar elastic half-spaces, while Parfitt and Eringen
[17] delved into the reflection phenomena of elastic plane waves [19] from flat boundaries of such
media.

2.2. Analysis of the elastic behavior of a micropolar plate

Let’s explore the intricate dynamics of how a micropolar plate reacts to external forces
and stimuli. Through an examination of the plate’s elastic behavior, our goal is to reveal the
fundamental principles that govern its mechanical response.

Let’s start by mathematically modeling a plate with a thickness of 2h and subject to the
constitutive equations of linear isotropic micropolar elasticity. This plate is in contact with
air through its outer faces Γa and Γb , as illustrated in Figure 1. The angles of incidence and
transmission are denoted by θa and θb , respectively.

Introducing scalar displacement potentials ψa for the air on the Γa side and ψb for the Γb

side, we describe the displacement and pressure on both sides, the expressions for which are given
in Equations 5 and 6. On Γa , the displacement in the z-direction and pressure are represented by
uaz = ∂ψa/∂z and Pa = −ρa∂

2ψa/∂t 2, respectively. Similarly, for Γb , we have ubz = ∂ψb/∂z and
Pb = −ρb∂

2ψb/∂t 2. Here, ∂ denotes differentiation with respect to either the spatial coordinate z
or time t . Inside the plate, we introduce q(y, z, t ) as a scalar potential function, andΠx ,Θy , andΘz

as the respective components of vector potential functions.

Figure 1: The geometry of the problem under oblique incidence

ψa = AaI e i kaz ze(y, t )+ AaR e−i kaz ze(y, t ) (5)

ψb = AbT e i kbz ze(y, t ) (6)

where

e(y, t ) = e
i
(
ω

ca
sinθa y−ωt

)
= e

i
(
ω
cb

sinθb y−ωt
)
, (7)

kaz = ω

ca
cosθa , kbz =

ω

cb
cosθb , (8)

ky = ka sinθa = kb sinθb , (9)
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and the velocities in the fluids in general on the Γa and Γb sides are represented by ca and cb ,
respectively.

Let’s define q ≡ q(y, z, t ) as the scalar potential displacement in the plate. The components
of interest in our analysis are those of the stress tensor σ and the couple stress tensor m. It’s worth
noting the comparison with Eqs. (5.17.2) in the reference [9], where Ū and φ̄ are employed instead
of Πx and Θz,y −Θy,z respectively. However, it’s important to highlight that this substitution does
not lead to an exact interpretation of plate vibration modes as observed in vacuum.

σzz = (q,zz −Πx,z y )(2µ+K )+∇2qλ (10)

σz y =−K (Θy,z −Θz,y )+q,y z(K +2µ)+ (µ+K )Πx,zz − (Πx,y y )µ, (11)

mzx =−γΘy,zz +γΘz,z y (12)

Below are expansions that could be considered for the aforementioned quantities :
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In the preceding equations, we can generalize the expressions for η along the y and z axes with
various wave numbers, and present them as follows (with p = 1,3,4) :
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To streamline the notation and enhance clarity, it’s advantageous to introduce terms denoted
byΠpx , which encapsulate a specific combination of the incident and reflected waves propagating
within the plate. This approach not only simplifies the mathematical expressions but also provides
a more intuitive understanding of the wave dynamics involved.

At this point, the attention should shift to the determination of the unknown amplitudes AaR

and AbT , while AaI remains predefined. These amplitudes represent the incident (I ), transmitted
(T ), and reflected (R) signals, respectively.

3. ANALYSIS OF THE THEORETICAL TRANSMISSION COEFFICIENT AT OBLIQUE INCIDENCE

In this section, the focus will be on establishing a comprehensive understanding of how
oblique incidence influences the transmission efficiency through theoretical frameworks.
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3.1. Analytical expression

To achieve this, our approach involves incorporating the boundary conditions Γa and Γb

into the relationships established in Section 2. These boundary conditions, encompass four key
aspects : σz y = 0, σzz =−Pp , uz = upz , and mzx = 0. Taking into account the condition mzx = 0 at
the boundaries z =+h and z =−h, we can find the following expressions :

4∑
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Analyzing the initial set of boundary conditions at Γa , the equations yield the following
expressions upon calculation :
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where :
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In the preceding expressions, terms Σp , Z−+aSp , Z++a Ap , Z−−aSp , and Z+−a Ap have been introduced for the
sake of simplification. Subsequently, upon calculation by identification, their expressions are as
follows :
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Using the same reasoning at boundary Γb , these equations yield the following expressions
upon calculation :
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To determine the transmission coefficient of a plane wave incident on the plate, we employ
Equations (21), (22), (32), (33), in conjunction with Equations (19) and (20). The resultant linear
system comprising six equations with six unknowns can be expressed in matrix format as :

M .x = s, (42)

Utilizing Cramer’s rule enables us to express the transmission coefficient as follows :

T (ω) = ∆N T

∆
, (43)

where ∆ represents the determinant of M , and ∆N T denotes a determinant of equivalent size
achieved by replacing the elements of the first column of ∆with the elements of vector s.
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3.2. Numerical study for a polystyrene plate

To observe the outcomes of these theoretical expressions, let’s consider an expanded
polystyrene (EPS) panel, denoted as such in reference [16], with a thickness of 2cm. This EPS panel
is consists of air-filled closed-cell rigid [20] foam (approximately 96% air). The physical properties
are detailed in Table 1, where E represents Young’s modulus, ν signifies Poisson’s ratio, and ρ

denotes mass density. The faces of this panel are in contact with air, which has a mass density of
1.29 kg/m3 and a sound phase velocity of 330 m/s. We represent the modulus of the transmission
coefficient, denoted as |T (ω)|, in the frequency and incident angle domain. This information is
illustrated in Figure 2 (a) where we could visualize the vibration modes in frequency domain,
distinguished by different colors. After that, we have incorporated a hysteretic model to represent
the inherent damping characteristics of the panel entails introducing a scalar-valued loss factor
into the equation for Young’s modulus. This is defined as Ed (ω) = Er (ω)+ i Ei (ω) = E(ω)(1+ iχ(ω)),
where Er (ω) represents the storage modulus and Ei (ω) indicates the loss modulus of the panel.
By employing the specified value of χ, set to 0.06 for EPS as provided in reference [16], the results
are depicted in Figure 2 (b), elucidating the absorption properties of the material.

Table 1: Physical properties of the micropolar elastic material.

Material ρ (kg/m3) E (Mpa) ν K (MPa) γ (MN) J (N/m)

EPS 12 1.2 0.45 0.037 0.87 3.9×10−5

L1
L2 L3 L4

m1

m2

m3

(a) Plate nonabsorbing

m1

(b) Plate absorbing

Figure 2: Theoretical modulus of the transmission coefficient of plate in air, in the frequency-angle
of incidence plane

As depicted in both figures, the critical angle delineates an upper limit beyond which the modes
Li (i = 1,2,3..) cease to appear. In the region where θ < θcr , the behavior of modes Li (i = 1,2,3..)
closely resembles that of generalized Lamb waves, hence the designation L (in vacuum, these
modes are real and referred to as Lamb modes). Conversely, in the region where θ > θcr , the
modes mi (i = 1,2,3..) emerge due to the micropolar properties of the material constituting the
plate, hence the designation m (for generalized micropolar modes). Both generalized Lamb and
micropolar modes indicate that waves propagating in the plate are subject to damping, as some
energy escapes from the plate to the surrounding fluid.
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4. EXPERIMENTAL METHOD AND SETUP

Figure 3 presents the equipment utilized for signal acquisitions. Initially, a pulse model with
a width of 15µs is generated from an Agilent Technologies generator (model 33220A, 20 MHz,
Loveland, Colorado, USA) via a Visaton MHT 12 loudspeaker. Signal acquisition involves capturing
both the incident signal and transmitted signals at various incidence angles (ranging from 0° to 70°
with a 5° increment) using a Brüel & Kjær type 4138-C-006 microphone connected to a National
Instruments acquisition system (model PXIe-1090). To enhance signal quality, a Brüel & Kjær type

Figure 3: Experimental setup

2706 power amplifier is inserted between the generator and the loudspeaker, while a Brüel & Kjær
type 2121 frequency analyzer is inserted between the microphone and the acquisition system.
The modulus of transmission coefficients is derived by calculating the estimated transfer function
between the incident acoustic pressure (when there are no samples between the loudspeaker and
the microphone) and the pressure obtained with the samples at different angles. This calculation
is performed using the tfestimate function in Matlab R⃝ with the acquired signals. To minimize
spectral leakage and ensure accurate spectral measurements, windowing techniques are initially
applied to the temporal signals.

5. RESULTS

Figures 4 (a) and 4 (b) showcase experimental incident and transmitted signals under
normal incidence, respectively, in both time and frequency domains. Notably, the signal passing
through the panel experiences significant attenuation. Moreover, the transmitted signal precedes
the incident signal in the time domain, suggesting a higher wave propagation velocity in the panel
compared to air. Additionally, temporal spreading is observed, leading to notable dispersion in
the frequency domain. Specifically, the spectrum of the media’s response exhibits a substantial
reduction in high-frequency components compared to the incident signal, as depicted in Figure 4
(b).

Figure 5 presents a comparison between the modulus of the transmission coefficient in the
frequency domain for our plate, utilizing both theoretical and experimental data. Specifically,
it compares data for angles below (0◦ and 5◦), where Li modes are observed, and above (50◦

and 55◦), where mi modes are observed. Clear observation of Li and mi modes is evident,
with experimental data closely following the theoretical trend. Resonance frequencies, both
theoretical and experimental, generally exhibit close proximity, with better alignment observed
for lower incidence angles. Indeed, with the experimental data at normal incidence for exemple,
we identified the modes L1, L2, and L3 at frequencies of 17 kHz, 32 kHz, and 50 kHz respectively;
and these results are interesting because they predict theoretical results that identify these modes
at frequencies of 15.44 kHz, 30.89 kHz, and 46.34 kHz as we can see on Figure 5.

For enhanced visualization and comprehension of vibration mode evolution, a graphical
representation was employed, showcasing variations in values across frequency and incidence
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(a) Temporal representation (b) Frequency spectrum

Figure 4: Illustration of pressure signals representing the incident and transmitted waves.

Figure 5: Modulus of the theoretical and experimental transmission coefficient of the 2cm - thick
- EPS plate

angle. This presentation, depicted in color on a grid in Figure 6, facilitates insights despite
significant attenuation within the media. Notably, the first three Li modes were discerned.

This graphical approach provides a distinct advantage by accentuating a transitional zone
between Li and mi modes around critical angles, as theoretically predicted in Section Section 2,
specifically 31.92◦ for the utilized plate. Above θcr = 31.92◦, the first m1 modes became clearly
identifiable. To further elucidate the evolution of L2 and L3 modes, we restricted the analysis to
specific frequency and angle bands, thereby facilitating improved visualization at an intensified
visual scale.

From T (ω), a complex quantity, we can easily deduce the phaseΦ(ω), as illustrated in Figure
7. The significance of this phase lies in the fact that it provides us with information about the
evolution of the phase velocity, not only in terms of frequency but also in terms of the angle of
incidence. Upon observing this data, we first notice a low phase value at the critical angle θcr

across the entire frequency band. Additionally, we observe that for the material used, the wave
propagates faster at a frequency of approximately 60 kHz with an angle of incidence of around
10◦, as shown in Figure 7, where the maximum value ofΦ(ω) is reached.
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Figure 6: Experimental representation of vibration mode evolution.

Figure 7: Experimental representation of phase.

6. CONCLUSIONS

In summary, this paper is based on the theory describing the propagation of acoustic waves
in a linear and isotropic elastic plate with micropolar behavior, while highlighting the associated
vibration modes. To achieve this, we utilized a polystyrene panel whose properties are referenced
in [16]. Through an experimental approach using a loudspeaker, a microphone, and a National
Instruments data acquisition system, we were able to explore a frequency range from 0 to 70 kHz.
This allowed us to identify, starting from normal incidence, at least the first three Lamb modes by
observing the modulus of the transmission coefficient, despite the significant attenuation of the
medium. We observed that the intensity of these modes decreases in the frequency domain with
increasing angle of incidence, reaching a critical transition zone where micropolar modes become
observable at angles of incidence greater than the critical angle. These results are consistent with
the theoretical predictions presented in the paper. Additionally, graphical analysis of the phase in
the frequency and angular domains provides insights into areas of strong medium propagation.
Overall, this research offers insights into the properties of these materials commonly employed in
industry and construction, especially regarding their role in thermal and acoustic insulation.
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