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ABSTRACT
This research examines ultrasonic wave propagation in air-saturated plastic foams used for noise
pollution reduction, questioning the effectiveness of current models such as the well known Johnson-
Champoux-Allard model at high frequencies. These foams present a challenge for existing models
to accurately depict visco-inertial and thermal interactions within their pores. The study highlights
the model’s failure to align experimental results with theoretical predictions. It introduces novel
parameters denoted as Σ and V for viscous effects, and Σ′ and V ′ for thermal effects, to improve the
representation of fluid-sturcture interactions. These parameters suggest a more significant boundary
layer effect within the pores than previously considered. This approach aims to provide additional
physical context for the principles governing the behavior of highly attenuating porous media and to
explore new avenues for material characterization that surpass the limitations of existing models.

1. INTRODUCTION

The study of linear wave propagation in homogeneous porous media saturated with a
viscothermal fluid, such as air, has been a topic of significant interest and comprehensive research
efforts [1, 2]. The macroscopic equations for a homogenized medium with a non-deformable
solid matrix are derived under the assumption that λ≫ l , wherein λ represents the wavelength,
and l is a typical pore size. This formulation is based on the so-called two-scale asymptotic
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homogenization method [3, 4]. In the context of a rigid solid matrix, the porous material is
conceptualized as an effective medium, wherein traditional medium properties are represented
by two linear response functions: one indicative of an effective density and the other reflective
of an effective bulk modulus [5]. These functions describe fluid-structure interactions at the
microscale, predominantly characterized by visco-inertial and thermal exchanges [6].
For the density response function, a widely recognized semi-phenomenological model is
articulated through the formula proposed by Johnson et al. [7], likewise Champoux and Allard [8],
and Lafarge et al. [9] provided a formula for the bulk modulus. These formulations are the result
of a precise description of both the high and low-frequency limits, grounded on the assumption
that relaxation processes (both viscous and thermal) are frozen at high frequencies — implying
insufficient time for development — and are relaxed at low frequencies, allowing ample time
for full development [10]. The proffered formulas for these limits are well verified across a wide
variety of porous materials, as long as the wavelength remains much larger than the pore size.
This paper primarily delves into the high-frequency domain, where factors such as the ideal
fluid tortuosity and the viscous and thermal characteristic lengths are paramount. Within
this limit, pore walls are perceived as locally plane, and the response functions are expanded
into integral power series of viscous and thermal skin depths [11, 12]. The expansion within
the Johnson-Champoux-Allard (JCA) model is confined to the second order, encapsulated by
terms Λ and Λ′. Third-order terms, denoted as Σ and Σ′, were introduced by Kergomard et
al. [11] and subsequently measured experimentally by Roncen et al. [13]. Recent investigation by
Bouchendouka et al. [12] into the transmission of ultrasonic waves through highly attenuating
foams emphasized the necessity of integrating fourth-order terms V and V ′ for accurate
dynamic tortuosity expansion characterizations. While the integration of these terms has
harmonized experimental observations with theoretical predictions, their nature remains to be
fully determined.
This paper aims to provide additional insight into the rationale behind including these terms
with a particular emphasis on viscous phenomena and a brief discussion of thermal effects. The
structure of this paper is as follows: Section 2 outlines the fundamental equations employed for
defining the various high-frequency parameters. Section 3 addresses the limitations of the JCA
model within the high-frequency limit, culminating with a comprehensive conclusion presented
in Section 5.

2. BASIC EQUATIONS

Under an excitation of a harmonic source of frequency ω, the dynamics of air within a
porous medium are fully charcterized at a microscopic scale by the excess temperature τ, excess
pressure p, and velocity v [9, 14]. Solving the microscopic equations that describe air movement
across complex frame geometries proves to be a difficult task. Nevertheless, employing the two-
scale asymptotic method facilitates notable simplifications. Following Zhou and Sheng [15], a
small parameter ϵ is introduced, enabling the computation of both dynamic viscous permeability
and dynamic thermal permeability. This parameter ϵ is represented as the ratio l/L, with
l representing a microscopic length akin to the scale of pores, and L a macroscopic length
determined by the product of the speed of sound in air c = √

Ka/ρ0 and the intrinsic viscous
relaxation time tν = l 2/ν, where ν is the kinematic viscosity [9]. It is assumed that ϵ ≪ 1, with
the wavelength λ aligning in order of magnitude with L, and significantly larger than l . This
small parameter ϵ is integrated into the analysis through the well-established homogenization
approach, which presumes that the fields describing air motion depend on both a slow scale x
and a fast scale y = ϵ−1x. These fields, which represent the solution to the visco-thermal problem,
are depicted as a series expansion fϵ(x,y) = f0(x,y)+ ϵf1(x,y)+ . . ., while the gradient operator is
devided into slow and fast components ∇ = ∇x + ϵ−1∇y , accommodating for variations on both
micro and macro scales [3, 16, 17]. The application of the two-scale asymptotic method yields
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significant insights: (i) the manifestation of an oscillating macroscopic pressure gradient Fp

(represented as −∇x p0 in references [9, 15]), which acts on the fluid in a specific direction e, (ii)
the fluid can be considered incompressible (divergence-free) at the microscopic level. While this
paper briefly adresses thermal effects, its primary focus is on investigating the viscous effects. As
such, the determination of dynamic permeability is achieved through addressing the canonical
problem:

1

ε2(ω)
v̄ =−∇p̄ +∇2v̄+e (1)

∇.v̄ = 0 (2)

v̄ = 0, on ∂V (3)

The velocity field v̄ is scaled as v̄ = ηv/Fp , where η is the dynamic viscosity, and v is the
velocity field. The term p̄ is related to the excess pressure as p̄ = p/Fp . The vector e is a unit vector
pointing to the direction of the applied external force, and ε(ω) = √

η/ jρω is the complex skin
depth with j = p−1. From darcy’s law [9], we can write a general expression defining the dynamic
permeability as:

k(ω) =φ< v̄.e >, (4)

where < . >= 1/V
∫

V .dV is the average operator. If we consider the velocity field v̄ to be
divergence-free and has zero normal components on the pore interface, an alternative useful
form of Equation (4) can be written as:

k(ω) =φ< v̄.E >, (5)

where the field E is the solution of an electrical problem, which will be discussed in more details
in the next section.

2.1. Ideal fluid problem

At extremely high frequencies, relaxation processes like viscous effects within the pores don’t
have time to express. Consequently, the saturating fluid may be regarded as an ideal fluid, leading
to the omission of the term that describes momentum diffusion compared to the inertial term [18].
Under these circumstances, the problem is similair to that of a conducting fluid permeating a
porous medium with an insulating solid matrix [18–20], and can be formulated as:

e = E+∇φ, (6)

∇.E = 0, (7)

E.n = 0, on ∂V. (8)

Equation (6) represents the so-called Hodge decomposition [19, 21], wherein the unit vector
e is a sum of a solenoidal field with vanishing normal component on the pore-surface interface
(E⊥ = 0), and the gradient of a potential. The field E can be intepreted as the local electrical field
devided by the macroscopic applied potential gradient. This local electrical field bears similarity to
the velocity in potential flow, with their relationship expressed as v̄p = ε2(ω)E [18], substituting the
velocity field v̄ in Equation (4) with v̄p . Leveraging the identity (4) or (5), the dynamic permeability
is thus characterized as:

k(ω) =φε2(ω)α−1
∞ , (9)

where

α∞ = 1

< E.e > = < E.E >
< E > . < E > , (10)
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is the ideal fluid tortuosity, which describes the tortuous path of the pores and is always greater
than 1, or equal to 1 for straight cylindrical pores.

2.2. Visco-inertial problem

The previous problem does not account for the no-slip condition at the pore wall due to
the assumption that momentum diffusion is neglected, given the insufficient interaction time
between the particles themselves and with the pore boundaries. Our focus now shifts to the
high-frequency behavior of dynamic permeability, specifically accounting for a small boundary
layer thickness (skin depth) near the pore walls. This boundary layer is assumed to be small
relative to the pore dimensions, with the pore wall surface appearing as locally flat [18]. The
real component of dynamic permeability is attributed to this boundary layer. Consequently, to
extract its behaviour, we consider a local coordinate ξ which spans from the pore wall at position
rw all into the bulk domain, defined as −ξn = r− rw all , where n represents a unit outward-facing
normal vector [15]. The influence of the momentum diffusion term, using this local coordinate, is
expressed as follows:

∂2v̄

∂ξ2
= 1

ε2(ω)
(v̄− v̄p ). (11)

Using the boundary conditions v̄ = 0 when ξ = 0, and v̄ = v̄p when ξ→ ∞, the solution to
Equation (11) is:

v̄ = v̄p (1−e−ξ/ε(ω)) = ε2(ω)E(1−e−ξ/ε(ω)). (12)

The scaled velocity field v̄ represents the summation of a potential part v̄p , and a small
contribution of the boundary layer −v̄p e−ξ/ε(ω). Assuming that there are no viscous effects except
in a small region in the vicinity of the wall, one can write:

<−v̄p .ee−ξ/ε(ω) >=− 1

V

∫
S

v̄p .edS
∫ ∞

0
e−ξ/ε(ω)dξ, (13)

=−ε(ω)

V

∫
S

v̄p .edS. (14)

Using Equations (5),(12), and (14), we obtain:

k(ω) =φε2(ω)α−1
∞

(
1− 2

Λ
ε(ω)+O(ε(ω)2)

)
, (15)

where,
2

Λ
=

∫
S v̄2

p dS∫
V v̄2

p dV
. (16)

Johnson et al. [7] defineΛ as the ratio of pore volume over pore surface area, weighted by the
potential flow velocity. The physical relevance of Λ diminishes at lower frequencies, as is evident
from its definition. Assuming the velocity field across the pore volume as well as the pore surface
to be that of a potential flow, this overlooks the minor effects of the boundary layer, an assumption
that introduces negligible error. This is particularly true at very high frequencies where the pore
surface is perceived as nearly flat. The error in Equation (15) is quantified as O(ε(ω)2), making
(15) reliably precise [22]. Nonetheless, it becomes apparent in later discussions that for certain
materials, this discrepancy cannot be disregarded. Dynamic permeability is expressed in terms of
dynamic tortuosity as follows:

k(ω) =φε2(ω)α(ω)−1, (17)
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where

α(ω) =α∞
(
1+ 2

Λ
ε(ω)+O(ε(ω)2)

)
, (18)

is the so called Johnson-Koplik-Dashen (JKD) model for describing the visco-inertial interactions
inside the porous medium.

2.3. High frequency bulk modulus

Champoux and Allard [8] provided an analogy for thermal interactions, which are accounted
for by the dynamic bulk modulus K (ω):

K (ω) = γP0

[
γ− (γ−1)

(
1− 2

Λ′ε
′(ω)

)−1]
, (19)

where γ is the adiabatic index, P0 air equilibrium pressure, and ε′(ω) = ε(ω)/
p

Pr , where Pr is
Prandtl number. The parameter Λ′ is analogoues to Λ, but the volume and surface elements are
not wheighted by the potential velocity:

2

Λ′ =
∫

S dS∫
V dV

. (20)

The parameterΛ′ is obtained by averaging the excess tempreture τ:

τ= τ0(1−e−(ξ/ε′(ω)), (21)

where τ0 is the tempreture of the fluid. For high frequencies, τ0 is the same everywhere in the pore
volume except in a small region near the pore walls. The ratio γP0/K (ω) is the so called dynamic
compressibility, often labeled as β(ω), which acts as a response function describing thermal
effects. Lafarge et al [9] provided an interesting relationship between the dynamic compressiblity
and a thermal dynamic tortuosity α′(ω) :

β(ω) = γ− γ−1

α′(ω)
. (22)

From Equation (19), it is easy to obtain the following expression for α′(ω):

α′(ω) =
(
1+ 2

Λ′ε
′(ω)+O(ε′(ω)2)

)
. (23)

From the above Equation we can see that the thermal analogy to the ideal fluid tortuosity
α∞ in the high frequency limit is equal to one. Equations (18) and (23) represent the Johnson-
Champoux-Allard (JCA) model which describes the visco-inertial and thermal interactions inside
the porous medium for high frequencies.

3. HIGHER ORDER TERMS FOR THE RESPONSE FUNCTIONS

In a recent publication, Bouchendouka et al. [12] highlighted the limitations of the JCA
model, in the high frequency limit, for accurately describing certain characteristics of graphite
polyurethane foams (and more generally very resistive porous materials). This investigation
involved analyzing the transmitted signals through these foams within the 70 kHz to 130 kHz
frequency spectrum (see Figure 1).

During the fabrication of these foams, graphite particles were incorporated to enhance
their fire resistance capabilities [23]. It was observed that these graphite particles not only altered
the pore size distribution but also increased the heterogeneity within the polyurethane foam
structure. The transmission measurements by these foams revealed an unuasual attenuation
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Figure 1: (a) Eperimental incident signal, (b) Spectum of the incident signal

phenomenon (see Figure 2), with a reduction in signal amplitude exceeding 99% [12], rendering
these foams highly effective as soundproofing materials. This significant attenuation is attributed
to complex physical mechanisms that remain largely unexplained and are not captured by the
existing JCA model, which does not match the experimental data. To address these discrepancies,
Bouchendouka et al. [12] proposed the integration of two new parameters, Σ and V , into the
expansion of the dynamic tortuosity α(ω), along with an additional two parameters, Σ′ and V ′, for
the dynamic thermal tortuosity α′(ω):

α(ω) =α∞
(
1+ 2

Λ
ε(ω)+ 3

Σ
ε(ω)2 + 4

V
ε(ω)3 +O(ε(ω)4)

)
, (24)

α′(ω) =
(
1+ 2

Λ′ε
′(ω)+ 3

Σ′ε
′(ω)2 + 4

V ′ε
′(ω)3 +O(ε′(ω)4)

)
. (25)

The terms Σ and V relate to viscous effects, with dimensions of surface and volume,
respectively. Similarly, Σ′ and V ′, associated with thermal effects, are dimensionalized as surface
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Figure 2: Transmitted signal by a graphite polyurethane foam

and volume. This model has been notably successful in simulating the transmission of signals
through the previously mentioned foams (refer to Figure 3). From a physical standpoint, the
introduction of surface and volume terms implies an enhancement of the effect of the boundary
layer, suggesting that δ(ω) is not sufficiently small relative to pore size. Consequently, the
applicability of Λ is questioned under circumstances where pore velocities cannot simply be
approximated by potential flow, rendering the error in Equation (16) significant. In this case, one
needs to raise the following question: Can these foams be accurately described by the divergence-
free, long wavelength, high frequency asymptotic models? A straightforward approach to answer
this question involves calculating the d/δ ratio, with d representing pore size. A significantly high
ratio is indicative of operating within the high-frequency domain, as required by assumptions
of the JCA high frequency model. In their thorough investigation into the microstructure of
these foams, Nguyen et al. [23, 24] estimated an average pore size of d = 360µm ±290µm. For a
frequency range of 70 kHz to 130 kHz, the results for this ratio are tabulated in Table 1.

f=70 kH z f=130 kH z

d=70 µm 12 16

d=360 µm 61 84

d=650 µm 111 151

Table 1: Summary of the ratio d/δ for f=70 kH z-130 kH z and for different statistical values of the
average pore size d .

Given the average pore dimension d=360 µm, the calculated ratios of 61 at 70 kH z and 84
at 130 kH z place us squarely within the high-frequency regime. Yet, these values alone may not
be sufficiently large to validate the comprehensive application of Equations (18) and (23), hence
the need to include higher order terms. Moreover, the wavelengths λ ≈ 4900 µm at 70 kH z and
λ≈ 2680 µm at 130 kH z significantly exceed the pore size, reinforcing the validity of assumptions
regarding divergence-free conditions and absence of scattering effects.
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Figure 3: Comparison between the JCA model in high frequencies, third order model, forth order
model, and an experimental transmitted signal of a highly attenuated foam.

4. EFFECTIVE RANGES OF HIGHER ORDER PARAMETERS

A practical approach for obtaining the effective ranges of Σ and V where they have a
pronounced effect involves representing the entire signal with a singular metric. For this purpose,
the peak-to-peak amplitude, referred to as App , is chosen as the ideal metric. The value of App is
calculated by taking the difference between the maximum and minimum values of the simulated
transmitted signal, which is obtained by using the transmission coefficient (provided in ref [12]),
the incident signal as seen in Figure 1, and computational processing with MATLAB.

In Figure 4, the data is displayed on a semi-logarithmic scale, plotting the derivative of App

for different values of Λ. These graphs illustrate the variability of (a) d App /dΣ with respect to Σ,
using the third-order model, (b) d App /dV with respect to V , in conjunction with a fourth-order
model while holding Σ constant at 4000 µm2, and (c) the parameter Σ is fixed at a value of 40,000
µm2. These plots are useful for delineating the effective ranges of Σ and V where they have a
pronounced effect on wave amplitude and for determining the threshold where increases in these
variables cease to have a significant impact.

AsΣ and V values increase, we observe that all three curves for Figure 4(a)-(c), seem to follow
a similar pattern: they start at lower values, peak around a specific value, and then decline. This
representation makes it easy to determine the ranges where Σ and V have the most influence on
signal amplitude. The effective range forΣ is identified ,approximately, between 80µm2 and 2×104

µm2, whereas V has an effective range from about 500 µm3 to 105 µm3. If we compare Figure 4(b)
and 4(c), it appears that the range for V is independent of Σ. These identified ranges can vary
slightly when Λ is altered. In examining the variations of App relative to Σ and V , it becomes
apparent that V exerts a significantly greater impact on the amplitude. This observation aligns
with expectations, given that ε(ω)2 pertains exclusively to viscous phenomena (the imaginary
component of α(ω)), while ε(ω)3 encompasses effects related to both inertia and viscosity (the
real and imaginary components of α(ω)).
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5. CONCLUSION

To summerize, this paper provided a concise overview on the delineation of high frequency
parameters predicated on the assumption that the momentum diffusion process remains frozen
at high enough frequencies. It has been shown that in the presence of a small boundary layer near
the pore walls, it is possible to expand the dynamic tortuosity into an integral power series of the
skin depth, denoted as ε(ω). The so-called Johnson-Champoux-Allard model, stops at the order
of ε(ω), yielding an error magnitude of O(ε(ω)2). This level of accuracy is deemed to be generally
satisfactory. Nonetheless, the highly attenuated transmitted signals of certain polydisperse
polymeric foams have necessitated the integration of two additional higher-order terms, Σ
and V for viscous effects, and Σ′ and V ′ for thermal effects, to enable their characterisation.
The requirement to incorporate these terms indicates a marginal increase of the boundary layer,
thereby warranting further theoretical and phenomenological research to ascertain the underlying
reasons for this augmentation. This investigation paves the way for additional theoretical and
experimental investigations, aimed at unravelling the fundamental factors contributing to the
high attenuation observed within these foams.
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Figure 4: Variation of (a) d App /dΣ with respect to Σ, (b) d App /dV with respect to V for Σ= 4000
µm2, (c) for Σ= 40000 µm2.
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