
HAL Id: hal-04695164
https://hal.science/hal-04695164

Submitted on 14 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Random generation of subgroups of the modular group
with a fixed isomorphism type

Frédérique Bassino, Cyril Nicaud, Pascal Weil

To cite this version:
Frédérique Bassino, Cyril Nicaud, Pascal Weil. Random generation of subgroups of the modular group
with a fixed isomorphism type. The Electronic Journal of Combinatorics, In press. �hal-04695164�

https://hal.science/hal-04695164
https://hal.archives-ouvertes.fr


Random generation of subgroups of the modular group with a

fixed isomorphism type

Frédérique Bassino, bassino@lipn.fr
Université Sorbonne Paris Nord, LIPN, CNRS UMR 7030, F-93430 Villetaneuse, France

Cyril Nicaud, cyril.nicaud@univ-eiffel.fr
LIGM, Univ Gustave Eiffel, CNRS, ESIEE Paris, F-77454, Marne-la-Vallée, France

Pascal Weil, pascal.weil@cnrs.fr
CNRS, ReLaX, IRL 2000, Siruseri, India

Université Sorbonne Paris Nord, LIPN, CNRS UMR 7030, F-93430 Villetaneuse, France

August 31, 2024

Abstract

We show how to efficiently count and generate uniformly at random finitely gen-
erated subgroups of the modular group PSL2(Z) of a given isomorphism type. The
method to achieve these results relies on a natural map of independent interest, which
associates with any finitely generated subgroup of PSL2(Z) a graph which we call its
silhouette, and which can be interpreted as a conjugacy class of free finite index sub-
groups of PSL2(Z).

Keywords Combinatorial group theory; subgroups of the modular group; exact enumera-
tion problems; random generation problems.

AMS Classification 05A15 (exact enumeration problems); 05E16 (combinatorial aspects of
groups and algebras); 05C30 (enumeration in graph theory).

1 Introduction

The modular group PSL2(Z) is a fundamental object in the field of modular forms and
hyperbolic geometry. It is well-known that PSL2(Z) is isomorphic to the free product of
two cyclic groups, of order 2 and 3 respectively. That is,

PSL2(Z) = 〈a, b | a
2 = b3 = 1〉.

1

bassino@lipn.fr
cyril.nicaud@univ-eiffel.fr
pascal.weil@cnrs.fr


The finitely generated subgroups of the modular group have been extensively studied
and classified, leading to deep connections with various areas of mathematics, including
number theory, algebraic geometry, and geometric group theory. Much work has been
devoted in particular to the combinatorial study of the finite index subgroups of PSL2(Z):
exact enumeration results for the index n subgroups (Dey, 1965 [5]; Stothers, 1978 [23])
and results on the asymptotic behavior of that number as n tends to infinity (Newmann,
1976 [18], Müller & Schlage-Puchta, 2004 [17] and others). Here, we deal instead with all
finitely generated subgroups of PSL2(Z), without index restriction. Our motivation here is
to advance the asymptotic study of finitely generated subgroups of PSL2(Z), irrespective
of their index; we refer the readers to [4] for first results in this direction. The asymptotic
study of subgroups of infinite groups in general has received much attention, at least since
Gromov’s work on hyperbolic groups, see Ollivier’s survey [19].

The main purpose of this paper is to present enumeration and random generation results
for finitely generated subgroups of PSL2(Z) of a given size and isomorphism type, where
both measures are natural parameters.

Let us first make the notions underlying these results more explicit. Since PSL2(Z)
is the free product of a copy of Z/2Z and a copy of Z/3Z, Kurosh’s theorem (see, e.g.,
[14, 15, 20]) states that any finitely generated subgroup H of PSL2(Z) is isomorphic to a
free product of ℓ2 copies of Z/2Z, ℓ3 copies of Z/3Z and r copies of Z: the isomorphism
type of H is the triple (ℓ2, ℓ3, r). It is a natural parameter, which generalizes the rank in
free groups.

Our results also refer to a notion of size for finitely generated subgroups of PSL2(Z),
that we now explain: each finitely generated subgroup H of PSL2(Z) can be represented
uniquely by a finite edge-labeled graph Γ(H), called its Stallings graph. Stallings graphs,
and their effective construction, were first introduced by Stallings [22] to represent finitely
generated subgroups of free groups. The idea of using finite graphs to represent subgroups
of infinite, non-free groups first appeared in work of Gersten and Short [8, 21], Arzhantseva
and Ol’shanskĭı [2, 1], Gitik [9] and Kapovich [11]. Markus-Epstein [16] gave an explicit
construction associating a graph with each subgroup of an amalgamated product of two
finite groups, which is very close to the one used here. Here we follow the definition
and construction of Kharlampovich, Miasnikov and Weil [12]. In a nutshell, the Stallings
graph of a subgroup H of PSL2(Z) is the fragment of the Schreier (or coset) graph of H,
spanned by the cycles at vertex H reading a geodesic representative of an element of H,
see Section 2.1 for more details. In particular, if H has finite index in PSL2(Z), then the
Stallings graph of H is its Schreier graph.

We take the number of vertices of Γ(H) to be the size of the subgroup H. As we just
saw, this parameter generalizes the index of finite index subgroups.

It is important to note that there are only finitely many subgroups of a given size and
we assume the uniform distribution on this finite set. Contrary to what happens with finite
index subgroups, PSL2(Z) has infinitely many subgroups of a given isomorphism type, see
Remark 2.6. So there can be no counting of subgroups of a given isomorphism type. Our

2



objective will be, therefore, to count and randomly generate subgroups of a given size and
isomorphism type.

In [3] the authors counted the finitely generated subgroups of PSL2(Z) by size and
they showed how to generate uniformly at random a subgroup of a given size. They also
computed the expected value of the isomorphism type of a random subgroup as a function
of its size and proved a large deviations theorem for this isomorphism type. It follows
that randomly generating a size n subgroup of PSL2(Z) will, with high probability, yield a
subgroup whose isomorphism type is close to the average value. In particular, this algorithm
may not be suitable to test certain conjectures which are sensitive to isomorphism type, and
it does not help generate uniformly at random subgroups of a given size and isomorphism
type.

The proof strategy to obtain the results in [3] was based on counting Stallings graphs
and using the classical tools of analytic combinatorics [6], in particular the notion of expo-
nential generating series. In this paper, we use a completely different enumeration method
for finitely generated subgroups of PSL2(Z), to get a polynomial time random generation
algorithm for subgroups of PSL2(Z) of a given size and isomorphism type. It turns out that
we can proceed with direct computations and we therefore avoid introducing generating
series. More precisely the proofs rely on a combination of graph decomposition techniques
and combinatorial methods. As is classical in the field, these methods are used on labeled
graphs (graphs equipped with a bijection from their vertex set to an initial segment of N).

A key construction which occurs naturally in this approach is what we call the silhou-
etting of the Stallings graph of a finitely generated subgroup of PSL2(Z). It consists in a
sequence of “simplifications” of the graph, leading (except in extremal cases) to a uniform
degree loop-free graph, which represents a conjugacy class of finite index, free subgroups
of PSL2(Z).

The operation of silhouetting is not just useful for our enumeration and random gen-
eration purpose: it also has very interesting algebraic and probabilistic properties. As an
example of the former, we establish that silhouetting preserves the free rank component
of the isomorphism type of a subgroup (Proposition 3.6). Probabilistic properties of the
silhouetting operation, and their use in proving asymptotic properties of finitely generated
subgroups of PSL2(Z), are discussed in a separate paper [4].

Organization of the paper Readers can find in Sections 2.1 and 2.2 the precise definitions
of the Stallings graph of a subgroup of PSL2(Z) and its combinatorial type, and results
from the literature relating this combinatorial information with algebraic properties of the
subgroup such as its isomorphism type, its index or its freeness.

Section 3 introduces combinatorial operations on Stallings graphs. Iterating these op-
erations leads to so-called silhouette graphs. The fine description of these operations is
first exploited in Section 4 to give exact counting formulas for the number of subgroups of
PSL2(Z) of a given combinatorial or isomorphism type.

In Section 3.3, we show that the iteration of the operations defined in Section 4 is a

3



confluent process (Proposition 3.4), which leads to defining the silhouette of a given graph
or subgroup. It is interesting to note that silhouetting preserves the free rank component
of the isomorphism type of a subgroup (Proposition 3.6).

Finally, Section 5 uses the operations from Section 3 in a different way to design an al-
gorithm (which includes a rejection algorithm component) to efficiently generate uniformly
at random a subgroup of a given size and isomorphism type.

2 Preliminaries

We work with the following presentation of the modular group:

PSL2(Z) = 〈a, b | a
2 = b3 = 1〉.

The elements of PSL2(Z) are represented by words over the alphabet {a, b, a−1, b−1}. Since
a−1 = a in PSL2(Z), we can eliminate the letter a−1 from this alphabet. Each element
of PSL2(Z) then has a unique shortest (or normal, or geodesic) representative, which is a
freely reduced word without factors in {a2, b2, b−2}. That is, the normal representatives
are the words of length at most 1 and the words alternating letters a and letters in {b, b−1}.

2.1 Stallings graph of a subgroup of PSL2(Z)

The Schreier graph (or coset graph) of a subgroupH of PSL2(Z) is the graph whose vertices
are the cosets Hg of H (g ∈ PSL2(Z)), with an a-labeled edge from Hg to Hga and a b-
labeled edge from Hg to Hgb, for every g ∈ G. We think of b-edges as 2-way edges, reading
b in the forward direction and b−1 in the backward direction. Since a = a2, there is an
a-edge from vertex v to vertex v′ if and only there is one from v′ to v: as a result, we
think of the a-edges as undirected edges, that can be traveled in either direction, each time
reading a. A path in such an edge-labeled graph is called a cycle if its initial vertex is
equal to its final vertex. The sequence of edge labels along a path p spells a word w over
alphabet {a, b, b−1}, and we say that w labels the path p, or that p reads w.

Note that a word is in H if and only if it labels a cycle at vertex v0 = H in the Schreier
graph of H. The Stallings graph of H, written (Γ(H), v0), is defined to be the fragment of
the Schreier graph of H spanned by the cycles at v0 reading the geodesic representatives of
the elements of H, rooted at v0: that is, the subgraph of the Schreier graph of H consisting
of all the edges participating in a cycle at v0 which reads a geodesic representation of an
element of H, and of all the vertices adjacent to these edges. In particular, a word is in H
if and only if its geodesic representative labels a cycle in Γ(H) at vertex v0. We refer the
reader to Remark 2.2 and to [12] for more details on these graphs. We note in particular
that H has a finite Stallings graph if and only if it is finitely generated, and that Γ(H) is
efficiently algorithmically computable if H is given by a finite set of generators (words on
the alphabet {a, b, b−1}) [12, 3].

4



Example 2.1 Figure 1 shows examples of Stallings graphs. To be more precise: the graphs
in Figure 1 are labeled graphs, meaning that their vertices are labeled by an initial segment
of N, see more details on this useful notion further down in Section 2.3. The definition of
Stallings graphs does not entail labeling vertices — only designating a base vertex. ⊓⊔

1

2

3

4

5

6

b

b

b

b

b

b

a

a

a

1

2

3

4

5

6

b

b

b

a

b

a

a

b

1 2 3 15

4

11

16

1712 14

10

13 18

5

6

7

8 9

b

bb

b

bb

b

bb

b

b

b

b

b

b

b

a a

a

a

a

a

a

a

a

b

a

Figure 1: Top: the Stallings graphs of the subgroups H = 〈abab−1, babab〉 and K =
〈abab, bab

−1
〉 of PSL2(Z), where gh stands for h−1gh. Bottom: the Stallings graph of

L = 〈bab
−1ab, abab, a(b

−1a)3 , ab−1abab−1, (ab)2(ab−1)3〉. In each case, the root is the vertex
labeled 1.

Remark 2.2 The definition of Stallings graphs given above is a generalization of that
introduced by Stallings in 1983 [22] for finitely generated subgroups of free groups, and a
particular instance of the definition first introduced by Gitik [9] in 1996 under the name
of geodesic core, and systematized by Kharlampovich, Miasnikov and Weil [12] in 2017.
Given a finitely presented group G = 〈A | R〉, a language L of representatives for G (a set
of words over the alphabet A∪A−1) and a subgroup H, one considers the fragment of the
Schreier graph of H spanned by the L-representatives of the elements of H. It is effectively
computable if G is equipped with an automatic structure [12] and H is L-quasi-convex.
In the particular case where G = PSL2(Z), we take L to be the language of geodesics. It

5



is well-known that G is automatic with respect to this language, and that every finitely
generated subgroup of PSL2(Z) is quasi-convex. The algorithm to compute the Stallings
graph of a subgroup, given a tuple of its generators, is quite straightforward, we refer the
reader to [3] for an outline. ⊓⊔

It is immediate from the definition of Stallings graphs that Γ(H) is connected and that
its a-edges (respectively, b-edges) form a partial, injective map on the vertex set of the
graph. Moreover, because a2 = b3 = 1, distinct a-edges are never adjacent to the same
vertex: we distinguish therefore a-loops and so-called isolated a-edges. Similarly, if we
have two consecutive b-edges, say, from v1 to v2 and from v2 to v3, then Γ(H) also has a
b-edge from v3 to v1. Thus each b-edge is either a loop, or an isolated b-edge, or a part of
a b-triangle. Finally, every vertex except maybe the root vertex is adjacent to an a- and
to a b-edge.

A rooted edge-labeled graph satisfying these conditions is called PSL2(Z)-reduced and
it is not difficult to see that every finite PSL2(Z)-reduced graph is the Stallings graph of a
unique finitely generated subgroup of PSL2(Z). That is, the mapping H 7→ (Γ(H), v0) is a
bijection between finitely generated subgroups of PSL2(Z) and PSL2(Z)-reduced graphs.

An edge-labeled graph is said to be PSL2(Z)-cyclically reduced if every vertex is adjacent
to an a- and a b-edge or, equivalently, if it is PSL2(Z)-reduced when rooted at every one of
its vertices. We also say that a finitely generated subgroup of PSL2(Z) is PSL2(Z)-cyclically
reduced if its Stallings graph is.

Note that these two definitions, of PSL2(Z)-reducedness and PSL2(Z)-cyclic reduced-
ness, are differently typed: PSL2(Z)-reducedness applies to rooted graphs, while the notion
of PSL2(Z)-cyclic reducedness is for unrooted graphs.

Example 2.3 The PSL2(Z)-cyclically reduced graphs Γ with 1 or 2 vertices are represented
in Figure 2.

∆1

a b

∆2

b

a

∆3

b

a a

∆4

a

b b

Figure 2: All PSL2(Z)-cyclically reduced graphs with at most 2 vertices.

There is only one with 1 vertex, and three with 2 vertices. ⊓⊔

2.2 Combinatorial type, isomorphism type of a subgroup of PSL2(Z)

The combinatorial type of a PSL2(Z)-reduced rooted graph Γ is the tuple (n, k2, k3, ℓ2, ℓ3)
where n is the number of vertices of Γ, k2 and k3 are the numbers of isolated a- and b-
edges, and ℓ2 and ℓ3 are the numbers of a- and b-loops. If Γ is a PSL2(Z)-cyclically reduced

6



(unrooted) graph, it has the same combinatorial type wherever we root it, and we loosely
talk of the combinatorial type of Γ. We also sometimes talk of the combinatorial type of
a subgroup to mean the combinatorial type of its Stallings graph, and we refer to n (the
number of vertices) as the size of the graph or even the size of the subgroup. See [3] for a
discussion of the possible combinatorial types.

Let us also record the following results (see, e.g., [3, Lemma 2.3, Propositions 2.7, 2.9,
8.18 and Section 8.2]).

Proposition 2.4 A subgroup H ≤ PSL2(Z) has finite index n if and only if its Stallings
graph is PSL2(Z)-cyclically reduced and has combinatorial type of the form (n, k2, 0, ℓ2, ℓ3).
It is free if and only if its combinatorial type is of the form (n, k2, k3, 0, 0).

Free PSL2(Z)-cyclically reduced subgroups have even size. Free and finite index sub-
groups are PSL2(Z)-cyclically reduced and their size is a multiple of 6. The combinatorial
type of a free and finite index subgroup is of the form (n, 12n, 0, 0, 0).

PSL2(Z)-cyclically reduced subgroups are conjugates if and only if the (unrooted) edge-
labeled graphs underlying their Stallings graphs are isomorphic.

By Kurosh’s classical theorem on subgroups of free groups (e.g., [15, Proposition
III.3.6]), a subgroup H of PSL2(Z) is isomorphic to a free product of r2 copies of Z/2Z, r3
copies of Z/3Z and a free group of rank r, for some non-negative integers r2, r3, r. The triple
(r2, r3, r), which characterizes H up to isomorphism (but not up to an automorphism of
PSL2(Z)) is called the isomorphism type of H. We record the following connection between
the combinatorial and the isomorphism types of a subgroup [3, Proposition 2.9].

Proposition 2.5 Let H be a subgroup of PSL2(Z) of size at least 2 and let (n, k2, k3, ℓ2, ℓ3)
be the combinatorial type of Γ(H).

If Γ(H) is PSL2(Z)-cyclically reduced, the isomorphism type of H is
(
ℓ2, ℓ3, 1 +

n− 2k3 − 3ℓ2 − 4ℓ3
6

)
.

If Γ(H) is not PSL2(Z)-cyclically reduced, the isomorphism type of H is
(
ℓ2, ℓ3,

1

3
+

n− 2k3 − 3ℓ2 − 4ℓ3
6

)
if the base vertex is adjacent to an a-edge

(
ℓ2, ℓ3,

1

2
+

n− 2k3 − 3ℓ2 − 4ℓ3
6

)
if the base vertex is adjacent to a b-edge.

Remark 2.6 In view of Propositions 2.4 and 2.5, we note that the size n of a finite index
subgroup of isomorphism type (ℓ2, ℓ3, r) is 6(r − 1) + 3ℓ2 + 4ℓ3. It follows that there are
only finitely many finite index subgroups of a given isomorphism type. In contrast, any
isomorphism type (ℓ2, ℓ3, r) with r 6= 0 can be achieved by subgroups of infinitely many
different sizes. ⊓⊔

7



2.3 Labeled graphs

One of our objectives in this paper is to count subgroups by isomorphism type or by
combinatorial type. Since subgroups are in bijection with PSL2(Z)-reduced graphs (their
Stallings graphs), it is equivalent to count these graphs. For technical reasons, it is easier to
count labeled graphs, that is, graphs whose vertex set is equipped with a (labeling) bijection
onto a set of the form [n] = {1, . . . , n}1. The graphs in Figure 1 are in fact labeled graphs.

Example 2.7 The PSL2(Z)-cyclically reduced graphs ∆2 and ∆3 in Example 2.3 admit
two distinct labelings, while ∆1 and ∆4 have only one. We record here what we call the
preferred labeling of ∆2, where the b-edge goes from 1 to 2, see Figure 3. ⊓⊔

1 2
b

a

Figure 3: The preferred labeling of ∆2

Since we are going to count graphs, rooted or not, labeled or not, it is important to
clarify that we consider these combinatorial objects up to isomorphism. Concretely, if Γ
and Γ′ are graphs, an isomorphism from Γ to Γ′ is a pair of bijections ϕ = (ϕV , ϕE) from
the vertex set of Γ to the vertex set of Γ′ and from the edge set of Γ to the edge set of Γ′,
respectively, which preserve the incidence relation (that is, if Γ has an edge e from vertex
v to vertex w, then ϕE(e) is an edge from ϕV (v) to ϕV (w). If Γ and Γ′ are rooted, then
ϕV must also map the root of Γ to the root of Γ′. If, finally, Γ and Γ′ are edge-labeled,
then ϕE must also preserve these labels.

It is important to note that, an n-vertex PSL2(Z)-reduced rooted graph admits exactly
n! distinct labeling functions. Let indeed v0 be the root of Γ and let us fix a total order
on the alphabet {a, b, b−1}. Assigning to each vertex v the lexicographically least geodesic
word labeling a path from v0 to v, yields a total order on the vertex set of Γ. A labeling of Γ
is therefore equivalent to a permutation of [n]. Another way of formulating this observation
is that a PSL2(Z)-reduced graph admits no non-trivial automorphism.

3 The silhouetting operation on PSL2(Z)-cyclically reduced graphs

We will see in Sections 4.1 and 5 that counting and randomly generating subgroups of
PSL2(Z) reduces to counting and randomly generating labeled PSL2(Z)-cyclically reduced
graphs. Before we embark on this task, we introduce a combinatorial construction on this
class of graphs.

1It is important to distinguish this notion of labeling, which injectively assigns an integer to each vertex,
from the edge labeling used so far, where each edge is labeled by either the order 2 generator a of PSL2(Z),
or by its order 3 generator b and each path is labeled by a word.

8



More precisely, we define in Section 3.1 certain moves on a labeled PSL2(Z)-cyclically
reduced graph, depending on its geometry. They are used in Section 4.2 to count subgroups
of PSL2(Z) and in Section 5 to randomly generate them. They also bring to the fore an
interesting structure associated with a PSL2(Z)-cyclically reduced graph, which we call its
silhouette. Some of its algebraic and combinatorial properties are discussed in Section 3.3.

Very roughly speaking, these moves “simplify” a labeled PSL2(Z)-cyclically reduced
graph by first iteratively removing all loops and the paths that lead to them, until we
are left (except in degenerate cases) with a graph which consists only of b-triangles and
paths connecting them. The process then “simplifies” these connecting paths so that the
resulting graph consists only of b-triangles connected by isolated a-edges. As we know, such
graphs represent conjugacy classes of free finite index subgroups (see Proposition 2.4).

For technical reasons, we use the notion of weakly labeled graphs [6, Definition II.1]:
if Γ is a PSL2(Z)-cyclically reduced graph of size m, a weak labeling of Γ is an injective
map from the vertex set of Γ to [n], where n is an integer at least equal to m. To lighten
up notation, we often abusively identify the vertices of a weakly labeled graph with their
labels. We also abusively write ∆i (i = 1, 2, 3, 4) for any weakly labeled version of the
graphs in Example 2.3.

Observe that a weak labeling α of Γ gives rise to a labeling of Γ by a uniquely defined
order-preserving bijection from the range of α to [m]. The labeled graph obtained this way
is called the normalization2 of Γ, denoted by norm(Γ).

3.1 Moves on a labeled PSL2(Z)-cyclically reduced graph

Here we define so-called λ3-, λ2,1-, λ2,2-, κ3- and exceptional moves on weakly labeled
PSL2(Z)-cyclically reduced graphs3. But for the exceptional moves, each of these moves
deletes vertices from the input graph without changing their label, so that the resulting
graph is, again, weakly labeled.

In the following, Γ is a weakly labeled PSL2(Z)-cyclically reduced graph with combina-
torial type τ = (n, k2, k3, ℓ2, ℓ3).

λ3-moves If Γ has a b-loop at vertex v (in fact, at the vertex labeled v) and there is an
isolated a-edge between v and a distinct vertex w, then the (λ3, v, w)-move consists in
deleting vertex v and the adjacent edges, and adding an a-loop at vertex w. The resulting
weakly labeled graph ∆ (see Figure 4) is PSL2(Z)-cyclically reduced and has combinatorial
type τ + λ3, where λ3 = (−1,−1, 0, 1,−1).

2This operation is called reduction in [6, Section II.2.1].
3The denomination of λ3-move is chosen because these moves deal with loops labeled by the order 3

generator b, which are counted by the parameter ℓ3. Similar justifications hold for the moves that deal with
a-loops (counted by ℓ2) and with isolated b-edges (counted by k3).

9



wv ab wa

Figure 4: (λ3, v, w)-move

Lemma 3.1 Suppose that n ≥ 2 and ℓ3 > 0. The λ3-moves establish a bijection from the
set of pairs (Γ, ℓ) with Γ a labeled PSL2(Z)-cyclically reduced graph of combinatorial type
τ and ℓ a b-loop in Γ, to the set of triples (∆, ℓ′, v) formed by a labeled PSL2(Z)-cyclically
reduced graph ∆ with combinatorial type τ + λ3, an a-loop ℓ′ in ∆ and an integer v ∈ [n].

Proof. Given a pair (Γ, ℓ) with Γ a labeled PSL2(Z)-cyclically reduced graph of combi-
natorial type τ and ℓ a b-loop in Γ, we associate to it the triple (∆, v, w) — and we
write (Γ, ℓ) 7−→ (∆, ℓ′, v) — defined as follows: v is the vertex carrying the loop ℓ in Γ;
since n > 1, v is adjacent to an isolated a-edge and we let w be the other end of that a-
edge; finally, we let ∆′ be the weakly labeled graph obtained from Γ by a (λ3, v, w)-move,
∆ = norm(∆′) and ℓ′ be the a-loop in ∆ at the vertex labeled w in ∆′.

Conversely, let ∆ be a labeled PSL2(Z)-cyclically reduced graph with combinatorial
type τ + λ3, let ℓ

′ be an a-loop in ∆ and let v ∈ [n]. Let ∆′ be the weakly labeled graph
obtained from ∆ by “making space for v”, that is, by incrementing the labels of all the
vertices greater than or equal to v. Finally, let w be the label of the vertex of ∆′ carrying
the loop ℓ′. Now let Γ be the graph obtained from ∆′ by deleting the loop ℓ′ and adding
vertex v, an isolated a-edge between v and w and a b-loop at v: it is directly verified that
Γ is properly labeled, of combinatorial type τ , and that (Γ, ℓ) 7−→ (∆, ℓ′, v). ⊓⊔

λ2-moves Let Γ be a weakly labeled PSL2(Z)-cyclically reduced graphs of size n ≥ 3 and
let v be a vertex carrying an a-loop. Two situations occur, depending on whether v sits on
a b-triangle or not, giving rise to two flavors of λ2-moves.

If v sits on a b-triangle, let w and w′ be the other extremities of the b-edges ending
and starting at v, respectively. Then w 6= w′ and Γ has a (non-isolated) b-edge from w′

to w. The (λ2,1, v, w
′)-move consists in removing from Γ vertex v and the adjacent edges

(the a-loop ℓ and two b-edges). The resulting graph ∆ (see Figure 5) is PSL2(Z)-cyclically
reduced, it has an isolated b-edge from w′ to w and combinatorial type τ + λ2,1, where
λ2,1 = (−1, 0, 1,−1, 0).

If instead v does not sit on a b-triangle, there exist vertices w,w′ such that v,w,w′

are pairwise distinct, there is an isolated a-edge between w and w′, and an isolated b-edge
between v and w (two directions are possible for that edge). The (λ2,2, v → w,w′)-move
(respectively, (λ2,2, v ← w,w′), depending on the orientation of the b-edge adjacent to v)
consists in deleting from Γ the vertices v and w and the edges adjacent to them, and adding

10



an a-loop ℓ′ at w′. The resulting graph ∆ (see Figure 5) is PSL2(Z)-cyclically reduced and
has combinatorial type τ + λ2,2, where λ2,2 = (−2,−1,−1, 0, 0).

w′

w

v

b

b

ba
w′

w
b

w′wv b aa w′a

Figure 5: Above: (λ2,1, v, w
′)-move. Below: (λ2,2, v ← w,w′)-move

Lemma 3.2 Suppose that n ≥ 3 and ℓ2 > 0.

1. The λ2,1-moves establish a bijection from the set of pairs (Γ, ℓ) with Γ a labeled
PSL2(Z)-cyclically reduced graph of combinatorial type τ and ℓ an a-loop adjacent to
a b-triangle in Γ, to the set of triples (∆, e, v) formed by a labeled PSL2(Z)-cyclically
reduced graph ∆ with combinatorial type τ + λ2,1, an isolated b-edge e in ∆ and an
integer v ∈ [n].

2. Similarly, the λ2,2-moves establish a bijection from the set of pairs (Γ, ℓ) with Γ
a labeled PSL2(Z)-cyclically reduced graph of combinatorial type τ and ℓ an a-loop
adjacent to an isolated b-edge in Γ, to the set of 4-tuples (∆, ℓ′, v, w, ε) formed by a
labeled PSL2(Z)-cyclically reduced graph ∆ with combinatorial type τ+λ2,2, an a-loop
ℓ′ in ∆, distinct integers v,w ∈ [n] and some ε ∈ {−1,+1}.

Proof. Given a pair (Γ, ℓ) with Γ a labeled PSL2(Z)-cyclically reduced graph of combina-
torial type τ and ℓ an a-loop in Γ adjacent to a b-triangle, we associate to it the triple
(∆, e, v) — and we write (Γ, ℓ) 7−→ (∆, e, v) — defined as follows: v is the vertex carrying
the loop ℓ in Γ; since v is adjacent to a b-triangle and we let e be the b-edge in that triangle
not adjacent to v (going from w′ to w); finally, we let ∆′ be the weakly labeled graph
obtained from Γ by a (λ2,1, v, w

′)-move, ∆ = norm(∆′) and e be the isolated b-edge in ∆
starting at the vertex labeled w′ in ∆′.

Conversely, let ∆ be a labeled PSL2(Z)-cyclically reduced graph with combinatorial
type τ +λ2,1, let e be an isolated b-edge in ∆ and let v ∈ [n]. Let ∆′ be the weakly labeled
graph obtained from ∆ by “making space for v”, that is, by incrementing the labels of all

11



the vertices greater than or equal to v. Now let Γ be the graph obtained from ∆′ by adding
a new vertex v, completing e to a b-triangle through vertex v: it is directly verified that Γ
is properly labeled, of combinatorial type τ , and that (Γ, ℓ) 7−→ (∆, e, v). This completes
the proof of the first statement.

The second statement is proved in a similar fashion. Given a pair (Γ, ℓ) with Γ a labeled
PSL2(Z)-cyclically reduced graph of combinatorial type τ and ℓ an a-loop adjacent to an
isolated b-edge in Γ, we associate with it a 4-tuple (∆, ℓ′, v, w, ε) as in the statement, where
v is the vertex carrying ℓ, w is the other extremity of the adjacent isolated b-edge and ε
records whether a (λ2,2, v → w,w′)-move or a (λ2,2, v ← w,w′) can be performed. The
converse mapping, reconstructing (Γ, ℓ) from (∆, ℓ′, v, w, ε) follows the same steps as for
λ2,1- or λ3-moves. ⊓⊔

κ3-moves Let Γ be a weakly labeled PSL2(Z)-cyclically reduced graph of size at least 4,
and let v,w, v′, w′ be pairwise distinct vertices such that there is an isolated b-edge from
v to w, and isolated a-edges connecting v and v′ on the one hand, and w and w′ on
the other. The κ3-move (κ3, v → w, v′, w′) consists in deleting vertices v and w and the
adjacent edges, and adding a new isolated a-edge between v′ and w′. The resulting graph
∆ (see Figure 6) is PSL2(Z)-cyclically reduced and has combinatorial type τ + κ3, where
κ3 = (−2,−1,−1, 0, 0).

v′

w′

v

w
b

a

a

v′

w′

a

Figure 6: (κ3, v → w, v′, w′)-move

Similarly to the other moves, we record the following lemma.

Lemma 3.3 Suppose that n ≥ 4, ℓ2 = 0 and k3 > 0. The κ3-moves establish a bijection
from the set of pairs (Γ, e) with Γ a labeled PSL2(Z)-cyclically reduced graph of combinatorial
type τ and e an isolated b-edge, to the set of triples (∆, e′, v, w, ε) formed by a labeled
PSL2(Z)-cyclically reduced graph ∆ with combinatorial type τ + κ3, an isolated a-edge e′

in ∆, distinct integers v,w ∈ [n] and some ε ∈ {−1,+1}.

Proof. The assumption that ℓ2 = 0 guarantees that every isolated b-edge is adjacent to
two isolated a-edges, and the fact that n ≥ 4 guarantees that these a-edges are distinct.

Now let (Γ, e) be a pair formed by a labeled PSL2(Z)-cyclically reduced graph Γ of
combinatorial type τ , and an isolated b-edge e in Γ, say, from vertex v to vertex w. Let v′

and w′ be the other extremities of the isolated a-edges adjacent to v and w, respectively.

12



We associate with it the tuple (∆, e′, v, w, ε) — and we write (Γ, e) 7−→ (∆, e′, v, w, ε)
— where ∆′ is the weakly labeled graph obtained from Γ by a (κ3, v → w, v′, w′)-move,
∆ = norm(∆′), e′ is the isolated a-edge in ∆ adjacent to the vertex labeled v′ in ∆′, ε = 1
if v′ < w′ and ε = −1 if v′ > w′.

Conversely, let ∆ be a labeled PSL2(Z)-cyclically reduced graph with combinatorial
type τ + κ3, let e′ be an isolated a-edge in ∆, connecting vertices v′ and w′, and let
v,w be distinct integers in [n]. Let ∆′ be the weakly labeled graph obtained from ∆ by
“making space for v,w”, that is, by incrementing the labels of all the vertices greater than
or equal to max(v,w)− 1 by 2 units, and those in [min(v,w),max(v,w)− 2] by 1 unit. Let
then Γ be the graph obtained from ∆′ by deleting the a-edge e′; adding new vertices v,w
and a b-edge from v to w; and adding a-edges between v and min(v′, w′) and between w
and max(v′, w′) if ε = 1 — between v and max(v′, w′) and between w and min(v′, w′) if
ε = −1. It is directly verified that Γ is properly labeled, of combinatorial type τ , and that
(Γ, e) 7−→ (∆, e′, v, w, ε). ⊓⊔

Exceptional moves Finally, we introduce three so-called exceptional moves. The first can
be applied only to a weakly labeled version of the 1-vertex graph ∆1 that does not use
label 1, turning it into ∆1 properly labeled.

The second can be applied only to a weakly labeled version of ∆3, turning it into
∆1 (with its only vertex labeled 1). This move can be seen as a degenerate version of
a λ2,2-move. Note that it modifies the combinatorial type by the addition of exc =
(−1, 0,−1,−1, 1), the difference between the combinatorial types of ∆1 and ∆3.

The last exceptional move can be applied to any weakly labeled version of ∆2 different
from the so-called preferred labeling (see Example 2.7), turning it to that preferred labeling.

3.2 Silhouette graphs

We can see the moves described in Section 3.1 as a rewriting system on weakly labeled
PSL2(Z)-cyclically reduced graphs, which we show to be confluent (Section 3.3 below). The
following definition will be convenient: we say that a PSL2(Z)-cyclically reduced graph
Γ (weakly labeled or not) is a silhouette graph if it is equal to ∆1 or ∆2, or if it has
combinatorial type (n, n/2, 0, 0, 0) (where n is a positive multiple of 6, see Proposition 2.4).
Observe that no move is defined on a silhouette graph of size at least 3, whichever way it
is weakly labeled.

Silhouette graphs play a foundational role in the recursive process for the random
generation of subgroups of PSL2(Z) described in Section 5. They also play a central role
in [4].

13



3.3 Silhouetting a labeled PSL2(Z)-cyclically reduced graph

In general, several moves can be applied to a weakly labeled PSL2(Z)-cyclically reduced
graph Γ. Our next proposition states that, however, the end result of a maximal sequence
of moves is independent of the choice of that maximal sequence.

Proposition 3.4 Let Γ be a weakly labeled PSL2(Z)-cyclically reduced graph Γ. If ∆ and
∆′ are weakly labeled graphs obtained from Γ, respectively, after maximal sequences of λ3-,
λ2,1-, λ2,2- and κ3- and exceptional moves, then ∆ = ∆′.

Proof. We proceed by induction on the number of vertices of Γ. The result is immediate
if no move is possible on Γ. If Γ has 1 or 2 vertices, either no move is possible, or only one
exceptional move is possible, and the result is again immediate.

Suppose now that Γ has n ≥ 3 vertices and that the sequences of moves leading from Γ
to ∆ and ∆′ start with the same move (the same type of move, with the same parameters),
taking Γ to Γ′. Since Γ′ is a weakly labeled graph with less than n vertices, the announced
result holds by induction.

Finally, suppose that the first moves from Γ to ∆ and Γ to ∆′, say m and m′, are
distinct. Note that since Γ has size at least 3, neither m nor m′ is an exceptional move.
Let Γ1 (resp. Γ′

1) be the weakly labeled graph obtained from Γ after the move m (resp.
m′), so that there exists a maximal sequence of moves from Γ1 to ∆ (resp. Γ′

1 to ∆′). Let
us consider the possible values of m and m′.

If m = (λ3, v, w) and m′ = (λ3, v
′, w′), there are two possibilities. If Γ is a weakly

labeled version of ∆4 (so that v = w′ and v′ = w), then Γ1 and Γ′
1 are weakly labeled

versions of ∆1, so ∆ = Γ1, ∆
′ = Γ′

1 and their normalizations are equal. If instead Γ is
not a weakly labeled version of ∆4, then v, v′, w,w′ are pairwise distinct, and the moves m
and m′ commute in the following sense: an m′-move is possible on Γ1, leading to a weakly
labeled graph Γ2; an m-move is possible on Γ′

1, leading to a weakly labeled graph Γ′
2, and

Γ2 = Γ′
2. Let ∆′′ be the graph obtained from Γ2 by a maximal sequence of moves. Since

Γ1 and Γ′
1 are weakly labeled graphs with n − 1 vertices, the induction hypothesis shows

that ∆ = ∆′′ and ∆′ = ∆′′, so that ∆ = ∆′.
We now verify that, similarly, other combinations of first movesm andm′ also commute,

leading to the same conclusion that the statement in the proposition holds, except in a few
degenerate cases that yield the same conclusion by other arguments.

It is readily verified that any λ3-move commutes with any λ2,1-move.
If m = (λ3, v, w) and m′ = (λ2,2, x → y, y′) (or m′ = (λ2,2, x ← y, y′)), we again

distinguish two cases. If y′ = v, then y = w and Γ consists of exactly three states x, y, y′,
with a b-edge between x and y, an a-edge between y and y′, an a-loop at state x and a
b-loop at state y′, see Figure 7. Any maximal sequence of moves from Γ leads to ∆1, where
the only vertex is labeled 1, and the announced statement holds. If instead y′ 6= v, then Γ
has more than three states and the moves m and m′ commute.

14



x y y′
b aa b

Figure 7: Case where a λ3- and a λ2,2-moves are possible

If m = (λ3, v, w) and m′ = (κ3, x → y, x′, y′) (or m′ = (κ3, x ← y, x′, y′)), there are
again two possibilities. If v 6= x′, y′, then m and m′ modify disjoint parts of Γ and they
clearly commute. If instead v = x′, then w = x — or if, symmetrically, v = y′ and w = y
—, see Figure 8, then a direct verification shows the following: m can be followed by a
(λ2,2, w → y, y′)-move (or a (λ2,2, w ← y, y′)-move, as the case may be), leading to a graph
where vertices v,w, y have been deleted and y′ carries an a-loop; and m′ can be followed
by a (λ3, v, y

′)-move, leading to that same graph.

v w y y′b
a b a

Figure 8: Case where a λ3- and a κ3-moves are possible

The only situation where two λ2-moves do not commute is when they are both λ2,1-
moves or both λ2,2-moves, modifying overlapping parts of Γ.

The first case arises if two a-loops sit on the same b-triangle, so that m = (λ2,1, v, w)
and m′ = (λ2,1, v

′, w) are possible, see Figure 9. If w also carries an a-loop (so that Γ has

v

v′

w

v

v′

w w′

a

a

a

a

a

b

b

b

b

b

b
a

Figure 9: Cases where λ2,1-moves interfere with each other

3 vertices), then ∆ = ∆′ = ∆1. Otherwise, an isolated a-edge connects w and a vertex
w′, distinct from v, v′, w, a (λ2,2, v

′ → w,w)-move is possible (or some other orientation of
a b-edge between v′ and w) after carrying out the m-move and, together these two moves
amount to deleting vertices v, v′ and w, and adding an a-loop at w′.

In the second case, we have, say, m = (λ2,2, x → y, z) and m′ = (λ2,2, x
′ → y′, z′) (or

any other combination of directions for the b-edges between x and y on one hand, and
x′ and y′ on the other) satisfying y′ = z and z′ = y. Then Γ has exactly 4 vertices, see
Figure 10, and applying either move to Γ yields a weakly labeled version of ∆3, on which
one can only apply an exceptional move. It follows that ∆ = ∆′ = ∆1.

It is directly verified that any λ2,1-move commutes with any κ3-move. Consider now the
case where m = (λ2,2, v → w,w′) and m′ = (κ3, x → y, x′, y′) (or any other combination

15



x y z x′a ab a b

Figure 10: Case where λ2,2-moves interfere with each other

of directions for the b-edges between v and w, and between x and y). If w 6= x′ (and
hence w′ 6= x), then m and m′ modify disjoint parts of Γ and clearly commute. If instead
w = x′ and w′ = x (see Figure 11), a direct verification shows that after applying either

v w w′ y y′a b a b a

Figure 11: Case where a λ2,2- and a κ3-moves are possible

m or m′, a λ2,2-move can be applied (a (λ2,2, x → y, y′)-move can be applied to Γ1 and a
(λ2,2, v → w, y′)-move to Γ′

1), leading to the same weakly labeled graph with an a-loop at
vertex y′: again m and m′ commute.

Similarly, suppose that m = (κ3, v → w, v′, w′) and m′ = (κ3, x → y, x′, y′) (or
any other combination of directions for the b-edges). We distinguish three cases. If
x, x′, y, y′ /∈ {v, v′, w,w′}, then m and m′ clearly commute. If (w,w′) = (x′, x) and y 6= v′

(see Figure 12), then a (κ3, x→ y, v′, y′)-move can be applied to Γ1 and a (κ3, v → w, v′, y′)-
move to Γ′

1, leading to the same weakly labeled graph (with an a-edge between v′ and y′,
and no vertices labeled x, y, v, w). If now (w,w′) = (x′, x) and y = v′ (so that y′ = v),

v′ v w w′ y y′
a ab b a

v′ v

ww′

a

a

bb

Figure 12: Cases where two κ3-moves are possible

then Γ has exactly four vertices, both Γ1 and Γ′
1 are weak labelings of ∆2, on which only

an exceptional move is defined, so that ∆ = ∆′.
This concludes the proof of the proposition. ⊓⊔

If Γ is a labeled PSL2(Z)-cyclically reduced graph, we define the silhouette silh(Γ) of
Γ to be the labeled graph resulting from the application of a maximal sequence of moves,
followed by a normalization: Proposition 3.4 guarantees that silh(Γ) is well defined.

16



Example 3.5 Consider the three (labeled) Stallings graphs in Figure 1. The first is equal
to its own silhouette, and is also equal to the silhouette of the third. The silhouette of the
second graph is ∆2 (with its preferred labeling). ⊓⊔

The silhouetting operation preserves some important algebraic information about a
subgroup, namely the free rank component of its isomorphism type.

Proposition 3.6 Let H be a PSL2(Z)-cyclically reduced subgroup of PSL2(Z), with Stallings
graph Γ and isomorphism type (ℓ2, ℓ3, r). Then silh(Γ) = ∆1 if and only if r = 0, and
silh(Γ) = ∆2 if and only if r = 1. In all other cases, r ≥ 2 and silh(Γ) has isomorphism
type (0, 0, r).

Proof. Let τ be the combinatorial type of Γ. Proposition 2.5 shows that the free rank r
in the isomorphism type of H is a function of τ ; more precisely, if τ = (n, k2, k3, ℓ2, ℓ3),
then 6(r − 1) = n− 2k3 − 3ℓ2 − 4ℓ3 = ϕ(τ ), and we observe that ϕ is a linear map.

By construction, silh(Γ) is obtained from Γ by a succession of λ3-, λ2,1-, λ2,2-, κ3-moves
and maybe one exceptional move (followed by normalization). Each of these moves modifies
the combinatorial type by adding to it the vector λ3, λ2,1, λ2,2, κ3 or exc. Every one of
these vectors lies in the kernel of ϕ, so the free rank component of the isomorphism types
of Γ and silh(Γ) coincide.

It is immediate that this free rank component is 0 for ∆1, 1 for ∆2 and 1+n/6 ≥ 2 for
each silhouette graph of size n > 2. The proposition follows immediately. ⊓⊔

4 Counting subgroups by isomorphism and by combinatorial type

Our aim in this section is to count subgroups of a given size, under some additional con-
straint: with a fixed isomorphism type or with a fixed combinatorial type. Since each
subgroup is uniquely represented by its Stallings graph, i.e., by a PSL2(Z)-reduced graph,
this is equivalent to counting these graphs (up to isomorphism).

As noted in Section 2.3, an n-vertex PSL2(Z)-reduced graph admits exactly n! distinct
labelings. As a result, our strategy to count n-vertex PSL2(Z)-reduced graphs will be to
count labeled n-vertex PSL2(Z)-reduced graphs, and then divide that count by n!. The
same applies for the counting of n-vertex PSL2(Z)-reduced graphs of a particular combina-
torial type, or for n-vertex rooted PSL2(Z)-cyclically reduced graphs. Note that there is no
such easy correlation between the number of labeled and unlabeled (non-rooted) cyclically
reduced graphs, as counting is perturbed by the existence of symmetries (automorphisms).

Thus our task reduces to counting labeled PSL2(Z)-reduced graphs. It further reduces
to counting labeled PSL2(Z)-cyclically reduced graphs, as we explain below.

17



4.1 Reduction to the count of labeled PSL2(Z)-cyclically reduced graphs

If τ = (n, k2, k3, ℓ2, ℓ3) is a tuple of integers, we let H(τ ) (respectively, L(τ ), s(τ )) be
the number of subgroups (respectively, labeled PSL2(Z)-reduced graphs, labeled PSL2(Z)-
cyclically reduced graphs) of combinatorial type τ .

Example 4.1 In view of Example 2.3, the non-zero values of H, L and s for tuples
(n, k2, k3, ℓ2, ℓ3) where n = 1, 2 are as follows:
• H(τ ) = L(τ ) = 1 for τ = (1, 0, 0, 0, 0), (1, 0, 0, 1, 1), (1, 0, 0, 1, 0), (1, 0, 0, 0, 1) and

s(τ ) = 1 for τ = (1, 0, 0, 1, 1);
• L(τ ) = 4 and H(τ ) = s(τ ) = 2 for τ = (2, 1, 1, 0, 0), (2, 0, 1, 2, 0);
• L(τ ) = 2 and H(τ ) = s(τ ) = 1 for τ = (2, 1, 0, 0, 2);
• L(τ ) = 2 and H(τ ) = 1 for τ = (2, 0, 1, 1, 0), (2, 1, 0, 0, 1); ⊓⊔

We first establish the connection between the parameters H(τ ), L(τ ) and s(τ ).

Proposition 4.2 Let τ = (n, k2, k3, ℓ2, ℓ3) be a combinatorial type with n ≥ 2. The num-
bers H(τ ), L(τ ) and s(τ ), respectively of subgroups, labeled PSL2(Z)-reduced graphs and
labeled PSL2(Z)-cyclically reduced graphs of combinatorial type τ are related as follows.

L(τ ) = n · s(n, k2, k3, ℓ2, ℓ3)+ (ℓ2+1) · s(n, k2, k3, ℓ2+1, ℓ3)+ (ℓ3+1) · s(n, k2, k3, ℓ2, ℓ3+1)

H(τ ) =
1

n!
L(τ ).

Proof. Let (Γ, v) be a PSL2(Z)-reduced graph with n ≥ 2 vertices, such that Γ is not
PSL2(Z)-cyclically reduced. Then v is adjacent to an a-edge but no b-edge, or the opposite.
Adding a b-loop at v in the first case, an a-loop in the second case, yields a rooted PSL2(Z)-
cyclically reduced graph (Γ′, v). Conversely, if Γ′ is PSL2(Z)-cyclically reduced, we get
PSL2(Z)-reduced graphs either by rooting Γ′ at any one of its vertices, or by rooting Γ′ at
a vertex that carries a loop and deleting that loop. The first equality follows directly.

The second equality follows from the first since a size n PSL2(Z)-reduced graph has n!
distinct labelings (see Section 2.3). ⊓⊔

Based on Proposition 2.5, which relates the isomorphism type and the combinatorial
type of a subgroup, we get the following statement.

Proposition 4.3 Let σ = (ℓ2, ℓ3, r) be an isomorphism type and let k2 =
1
2(n − ℓ2).

The number of PSL2(Z)-cyclically reduced subgroups of size n and isomorphism type σ

is n · s(n, k2, k3, ℓ2, ℓ3), where k3 =
1
2(n− 3ℓ2 − 4ℓ3 − 6r + 6).

The number of non-PSL2(Z)-cyclically reduced subgroups of size n and isomorphism
type σ, where the base vertex is adjacent to an a-edge, is (ℓ3 + 1) · s(n, k2, k

′
3, ℓ2, ℓ3 + 1),

where k′3 =
1
2(n− 3ℓ2 − 4ℓ3 − 6r + 2).

18



The number of non-PSL2(Z)-cyclically reduced subgroups of size n and isomorphism
type σ, where the base vertex is adjacent to a b-edge, is (ℓ2 + 1) · s(n, k2, k

′′
3 , ℓ2 + 1, ℓ3),

where k′′3 = 1
2(n− 3ℓ2 − 4ℓ3 − 6r + 4).

Propositions 4.2 and 4.3 effectively reduce the counting of subgroups to the count-
ing of labeled PSL2(Z)-cyclically reduced graphs of a given combinatorial type, which is
investigated in Section 4.2 below.

4.2 Counting labeled PSL2(Z)-cyclically reduced graphs

Let τ = (n, k2, k3, ℓ2, ℓ3) be a combinatorial type. We give (multi-)recurrence relations to
compute s(τ ) when n > 2. For n ≤ 2, see Example 4.1.

The bijections established in Lemmas 3.1, 3.2 and 3.3 show the following.

Proposition 4.4 Let τ = (n, k2, k3, ℓ2, ℓ3) be a combinatorial type such that n ≥ 2 and
ℓ3 > 0. Let ∆ be a PSL2(Z)-cyclically reduced graph of combinatorial type τ + λ3. Then
the set of labeled PSL2(Z)-cyclically reduced graphs Γ of combinatorial type τ , such that a

λ3-move takes Γ to ∆, has n·(ℓ2+1)
ℓ3

elements. More generally,

s(τ ) =
n · (ℓ2 + 1)

ℓ3
s(τ + λ3), that is:

s(n, k2, k3, ℓ2, ℓ3) =
n · (ℓ2 + 1)

ℓ3
s(n− 1, k2 − 1, k3, ℓ2 + 1, ℓ3 − 1). (1)

Proposition 4.5 Let τ = (n, k2, k3, ℓ2, ℓ3) be a combinatorial type such that n ≥ 3 and
ℓ2 > 0. Let ∆ be a PSL2(Z)-cyclically reduced graph of combinatorial type τ + λ2,1 (resp.
τ +λ2,2). Then the set of labeled PSL2(Z)-cyclically reduced graphs Γ of combinatorial type

τ , such that a λ2,1-move (resp. a λ2,2-move) takes Γ to ∆, has n·(k3+1)
ℓ2

(resp. 2n · (n− 1))
elements. More generally,

s(τ ) =
n · (k3 + 1)

ℓ2
s(τ + λ2,1)

+ 2n · (n− 1) s(τ + λ2,2), that is:

s(n, k2, k3, ℓ2, ℓ3) =
n · (k3 + 1)

ℓ2
s(n− 1, k2, k3 + 1, ℓ2 − 1, ℓ3)

+ 2n · (n− 1) s(n− 2, k2 − 1, k3 − 1, ℓ2, ℓ3). (2)

Proposition 4.6 Let τ = (n, k2, k3, ℓ2, ℓ3) be a combinatorial type such that n ≥ 4, ℓ2 = 0
and k3 > 0. Let ∆ be a PSL2(Z)-cyclically reduced graph of combinatorial type τ + κ3.
Then the set of labeled PSL2(Z)-cyclically reduced graphs Γ of combinatorial type τ , such

19



that a κ3-move takes Γ to ∆, has 2n·(n−1)(k2−1)
k3

elements. More generally, if ℓ2 = 0, we
have

s(τ ) = 2
n · (n− 1)(k2 − 1)

k3
s(τ + κ3), that is:

s(n, k2, k3, 0, ℓ3) = 2
n · (n− 1)(k2 − 1)

k3
s(n− 2, k2 − 1, k3 − 1, 0, ℓ3). (3)

We can use Equations (1), (2) and (3) to compute the coefficient s(n, k2, k3, ℓ2, ℓ3),
where n ≥ 3: if one of k3, ℓ2 or ℓ3 is greater than zero, we can apply at least one of these
equations, thus reducing the first argument of the coefficients to compute by 1 or 2.

More precisely, one may first iterate the use of Equation (1) until n ≤ 2 or ℓ3 = 0.
One can then use repeatedly Equation (2), thus reducing the computation of s(τ ) to
the computation of a number of smaller coefficients, until n ≤ 2 or ℓ2 = 0 (note that
Equation (2) never increases ℓ3). Finally, if n ≥ 3 and ℓ2 = ℓ3 = 0, then in fact n ≥ 4 and
one can use repeatedly Equation (3) until n ≤ 2 or k3 = ℓ2 = ℓ3 = 0. The computation of
the coefficients when n ≤ 2 was done in Example 4.1. As for the coefficients of the form
s(n, k2, 0, 0, 0) (n > 2), we note that they count the size n labeled silhouette graphs.

The latter numbers were computed in [3, Appendices A.3 and A.4] (see also the com-
putation by Stothers [24] of the number of finite index, free subgroups of PSL2(Z), that is,
of subgroups whose Stallings graph is a silhouette graph of size at least 3).

Proposition 4.7 Let t2 (respectively, t3) be given, for n ≥ 1, by4

t2(2n) =
(2n)!

2n n!
=

∏

1≤i≤n

(2i − 1), and t3(3n) =
(3n)!

3n n!
=

∏

1≤i≤n

(3i− 1)(3i − 2).

Then the number s(6n, 3n, 0, 0, 0) of size 6n labeled silhouette graphs (n ≥ 1) satisfies the
following recurrence relation:

s(6n, 3n, 0, 0, 0) = t2(6n) t3(6n)−
n−1∑

m=1

t2(6m) t3(6m) s
(
6(n−m), 3(n −m), 0, 0, 0

)
.

5 Random generation of subgroups of PSL2(Z)

Our objective in this section is to produce an algorithm which generates uniformly at
random subgroups of PSL2(Z) with a given size and isomorphism type.

As we saw in Example 4.1, there are exactly four size 1 subgroups, with pairwise distinct
combinatorial and isomorphism type: the trivial subgroup, the subgroups generated by a

4What is written t2(2n) (respectively, t3(3n), s(6n, 3n, 0, 0)) here, is written t
(0)
2 (2n) (respectively,

tfr-fi3 (3n), gfr-fipr (6n)) in [3].

20



and b, respectively, and PSL2(Z) itself. We now concentrate on generating subgroups of
size at least 2, and we assume that the parameters L(τ ) and s(τ ) have been pre-computed
for all types of sufficient size.

Like in Section 4, generating uniformly at random a subgroup of a given combinatorial
or isomorphism type reduces to randomly generating a labeled PSL2(Z)-reduced graph of
a given combinatorial type and, before that, to randomly generating a labeled PSL2(Z)-
cyclically reduced graph of a given type. Indeed, the label-forgetting map, from the set of
labeled PSL2(Z)-reduced graphs of combinatorial type τ = (n, k2, k3, ℓ2, ℓ3) to the set of
PSL2(Z)-reduced graphs of type τ , is such that the inverse image of each PSL2(Z)-reduced
graph of type τ contains exactly n! elements (see the discussion at the end of Section 2.3).

As we saw in Proposition 2.5, the isomorphism class of a PSL2(Z)-reduced graph is
determined by its combinatorial type, and a given size and isomorphism type arises for a
finite number of combinatorial types only. As a result, we only need to randomly generate
a PSL2(Z)-reduced graph with a given combinatorial type, and this starts with randomly
generating a labeled PSL2(Z)-cyclically reduced graphs of a given combinatorial type.

We first deal with the particular case of labeled silhouette graphs, then proceed to the
general case of labeled PSL2(Z)-cyclically reduced graphs and, finally, to labeled PSL2(Z)-
reduced graphs.

5.1 Random labeled silhouette graphs

If s, t are permuations of [n], we denote by Γ(s, t) the labeled graph with vertex set [n]
and, for each i ∈ [n], an a-labeled edge from i to s(i) and a b-labeled edge from i to t(i).

Let n be a positive multiple of 6. The procedure random silhouette graph(n) to
generate a size n labeled silhouette graph, summarized below, is well known (see [3] for
instance). If s is a permutation on n elements, we denote by shuffle(s) the permutation
t−1st where t is a random permutation on n elements.

Algorithm 1: random silhouette graph(n)

1 do

2 s2 = shuffle((1 2) (3 4) . . . (n− 1 n))
3 s3 = shuffle((1 2 3) (4 5 6) . . . (n − 2 n− 1 n))

4 while Γ(s2, s3) is not connected
5 return Γ(s2, s3)

Note that the random permutations s2 and s3 may well determine a disconnected graph,
but the proof of [3, Proposition 8.18] shows that this happens with vanishing probability
(precisely: with probability 5

36n
−1 + o(n−1)). Therefore this algorithm (a rejection algo-

rithm) produces a silhouette graph after k iterations, with E(k) ∼ 1.

21



5.2 Random PSL2(Z)-cyclically reduced graphs

We exploit, again, the bijections established in Section 3.1, which we already used to derive
the recurrence relations in Section 4.2. This yields Algorithm 2, to randomly generate a
PSL2(Z)-cyclically reduced graph of combinatorial type (τ ).

In the description of this algorithm, we use the following notation: if v is an integer,
shiftv is the map defined on integers by shiftv(x) = x if x < v and shiftv(x) = x+1 if x ≥ v;
if v,w are distinct integers, shiftv,w is the map defined on integers by shiftv,w(x) = x if
x < min(v,w), shiftv,w(x) = x+1 if min(v,w) ≤ x < max(v,w)−1, and shiftv,w(x) = x+2
if x ≥ max(v,w) − 1. Note that shiftv “pushes” all integers greater than or equal to v by
one unit, so that the range of shiftv misses v; similarly, the range of shiftv,w misses v and
w.

We extend this notation to any graph ∆ labeled by integers: if v is an integer, the
graph shiftv(∆) is a relabeling of the vertices of ∆ using shiftv on each vertex label; if v
and w are two distinct integers, the graph shiftv,w(∆) is a relabeling of the vertices of ∆
using shiftv,w on each vertex label.

Theorem 5.1 Algorithm 2, random cyclically reduced graph, produces, on input a
combinatorial type τ , a random PSL2(Z)-cyclically reduced graph of type τ .

Proof. Let τ = (n, k2, k3, ℓ2, ℓ3). We proceed by induction on n. Note that Algorithm
random cyclically reduced graph is recursive, and that, for any τ , only one of the outer
if statements (Lines 1, 3, 5, 7, 9, 14 and 26) holds. Moreover, the algorithm stops
immediately after the if statements of Lines 1, 3, 5, 7, and strictly decreases the value of
n for the other ones. As a result, Algorithm random cyclically reduced graph stops on
any input τ (which is a proper combinatorial type).

The statement of the theorem holds trivially if n ≤ 2. Let us now assume that n > 2.
If ℓ3 > 0 (that is, if the condition of Line 9 holds), Lemma 3.1 describes a bijection be-

tween the set of pairs (Γ, ℓ), where Γ is a PSL2(Z)-cyclically reduced graph of combinatorial
type τ and ℓ is a b-loop in Γ, and the set of triples (∆, ℓ′, v) where ∆ is a PSL2(Z)-cyclically
reduced graph of type τ +λ3, ℓ

′ is an a-loop in ∆ and v ∈ [n]. This bijection, between two
finite sets, preserves uniformity. Thus the first steps in this case (selecting uniformly at
random ∆, ℓ′ and v) translate into the selection, uniformly at random, of a pair (Γ, ℓ) where
Γ has combinatorial type τ and ℓ is one of the ℓ3 b-loops in Γ (a number that depends
on τ but not on Γ). Forgetting the ℓ-component of this pair yields a randomly chosen
PSL2(Z)-cyclically reduced graph of type τ .

The reasoning is exactly similar if the condition of Line 26 holds, relying on Lemma 3.3.
For the condition of Line 14, we need to handle the two options, corresponding to λ2,1-

and λ2,2-moves. The set of pairs (Γ, ℓ), where Γ is a PSL2(Z)-cyclically reduced graph of
combinatorial type τ and ℓ is an a-loop in Γ, is partitioned in two subsets S1 and S2:
(Γ, ℓ) ∈ S1 if ℓ is adjacent to a b-triangle, and (Γ, ℓ) ∈ S2 if ℓ is adjacent to an isolated
b-edge. Lemma 3.2 describes the sets S1 and S2 are in bijection with. This determines the

22



Algorithm 2: random cyclically reduced graph(τ )

1 if τ = (1, 0, 0, 1, 1) then
2 return the unique labeled ∆1

3 if τ = (2, 1, 1, 0, 0) then
4 return any one of the two labeled ∆2

5 if τ = (2, 0, 1, 2, 0) then
6 return any one of the two labeled ∆3

7 if τ = (1, 0, 0, 1, 1) then
8 return the unique labeled ∆4

// At this stage n is necessarily greater than 2

9 if τ = (n, k2, k3, ℓ2, ℓ3) and ℓ3 > 0 then

10 ∆ = random cyclically reduced graph(τ + λ3)
11 w = uniform random vertex with an a-loop ℓ′ in ∆
12 v = uniform random integer in {1, . . . , n}
13 return Γ constructed from ∆ by relabeling its vertices using shiftv, removing the

a-loop ℓ′ at shiftv(w), adding a new vertex labeled v and a b-loop at v, and adding an
a-edge between v and shiftv(w)

14 if τ = (n, k2, k3, ℓ2, 0) and ℓ2 > 0 then

15 x = uniform integer in [s(n, k2, k3, ℓ2, 0)]
16 if x ≤ n · (k3 + 1) · s(n− 1, k2, k3 + 1, ℓ2 − 1, 0) then
17 ∆ = random cyclically reduced graph(τ + λ2,1)

18 (w
b
−→ w′) = uniform random isolated b-edge in ∆

19 v = uniform random integer in {1, . . . , n}
20 return Γ constructed from ∆ by relabeling its vertices using shiftv, adding a new

vertex labeled v and an a-loop at v, and adding b-edges from shiftv(w
′) to v and

from v to shiftv(w)

21 else

22 ∆ = random cyclically reduced graph(τ + λ2,2)
23 w′ = uniform random vertex with a a-loop ℓ′ in ∆
24 (v, w) = uniform random pair of distinct integers in {1, . . . , n}
25 return Γ constructed from ∆ by removing the a-loop ℓ′, relabeling the vertices of

∆ using shiftv,w, adding new vertices labeled v and w, an a-edge between w and
shiftv,w(w

′), a b-edge between v and w (choosing orientation uniformly at
random) and an a-loop at v

26 if τ = (n, k2, k3, 0, 0) and k3 > 0 then

27 ∆ = random cyclically reduced graph(τ + κ3)

28 (v′
a
− w′) = uniform random isolated a-edge in ∆

29 (v, w) = uniform random pair of distinct integers in {1, . . . , n}
30 return Γ constructed from ∆ by removing the the a-edge e′, relabeling the vertices

using shiftv,w, adding a b-edge between v and w (choosing its orientation uniformly at
random) and a-edges between v and shiftv,w(v

′), and between w and shiftv,w(w
′),

respectively

// At this stage ℓ2 = ℓ3 = k3 = 0
31 return random silhouette graph(n) 23



cardinalities of S1 and S2, which correspond precisely to the probability tested at Line 16.
The reasoning is then identical to Lines 9 and 26.

Finally, if none of these conditions holds (so that τ is the combinatorial type of a
silhouette graph), the algorithm uses the return command on Line 31 to produce a random
silhouette graph, see Section 5.1. ⊓⊔

5.3 Random subgroups of PSL2(Z)

We show how to randomly generate subgroups of a given combinatorial type, and then of
a given size and isomorphism type.

Random generation for a given combinatorial type

Let τ = (n, k2, k3, ℓ2, ℓ3) be a combinatorial type. The formula for the number L(τ ) of
labeled PSL2(Z)-reduced graphs of type τ , in Proposition 4.2 above, suggests the following
algorithm to draw uniformly at random a labeled PSL2(Z)-reduced graph of combinatorial
type τ .

(1) Draw an integer 0 ≤ p < L(τ ) uniformly at random.

(2) If p < n · s(τ ) and q is the quotient of p by s(τ ) (so that 0 ≤ q < n), draw uniformly
at random a labeled PSL2(Z)-cyclically reduced graph with combinatorial type τ and
root it at vertex q + 1.

(3) If n · s(τ ) ≤ p < n · s(τ ) + (ℓ2 + 1) · s(n, k2, k3, ℓ2 + 1, ℓ3) and q is the quotient of
p−n · s(τ ) by s(n, k2, k3, ℓ2+1, ℓ3) (so that 0 ≤ q ≤ ℓ2), draw uniformly at random a
labeled PSL2(Z)-cyclically reduced graph with combinatorial type (n, k2, k3, ℓ2+1, ℓ3)
(as in Section 5.2), delete the (q + 1)st a-loop (following the order of vertex labels)
and root the graph at the vertex where that loop used to be.

(4) If n · s(τ ) + (ℓ2 + 1) · s(n, k2, k3, ℓ2 + 1, ℓ3) ≤ p and q is the quotient of p− n · s(τ )−
(ℓ2 + 1) · s(n, k2, k3, ℓ2 + 1, ℓ3) by s(n, k2, k3, ℓ2, ℓ3 + 1) (so that 0 ≤ q ≤ ℓ3), draw
uniformly at random a labeled PSL2(Z)-cyclically reduced graph with combinatorial
type (n, k2, k3, ℓ2, ℓ3 +1) (as in Section 5.2), delete the (q+1)st b-loop (following the
order of vertex labels) and root the graph at the vertex where that loop used to be.

To draw uniformly at random a subgroup of combinatorial type τ , we first draw a
labeled PSL2(Z)-reduced graph of type τ , and then forget the labeling.

Remark 5.2 To draw uniformly at random a PSL2(Z)-cyclically reduced subgroup of com-
binatorial type τ , the algorithm is modified as follows: in step (1), one draws an integer p
between 0 and n · s(τ )− 1; one then applies only step (2). ⊓⊔

24



Random generation for a given size and isomorphism type

Now let n be a positive integer and let σ = (ℓ2, ℓ3, r) be an isomorphism type. Let
k2 = 1

2 (n − ℓ2), k3 = 1
2(n − 3ℓ2 − 4ℓ3 − 6r + 6), k′3 = 1

2(n − 3ℓ2 − 4ℓ3 − 6r + 2) and
k′′3 = 1

2(n− 3ℓ2 − 4ℓ3 − 6r + 4).
Proposition 4.3 suggests the following algorithm to draw uniformly at random a sub-

group of size n and isomorphism type σ.

(1) Draw uniformly at random an integer p between 0 and

n ·s(n, k2, k3, ℓ2, ℓ3)+(ℓ3+1) ·s(n, k2, k
′
3, ℓ2, ℓ3+1)+(ℓ2+1) ·s(n, k2, k

′′
3 , ℓ2+1, ℓ3)−1.

(2) If p < n · s(n, k2, k3, ℓ2, ℓ3), draw uniformly at random a labeled rooted PSL2(Z)-
cyclically reduced graph with combinatorial type (n, k2, k3, ℓ2, ℓ3).

(3) If n·s(τ ) ≤ p < n·s(τ )+(ℓ3+1)·s(n, k2, k′3, ℓ2, ℓ3+1) and q is the quotient of p−n·s(τ )
by s(n, k2, k

′
3, ℓ2, ℓ3 + 1) (so that 0 ≤ q ≤ ℓ3), draw uniformly at random a labeled

PSL2(Z)-cyclically reduced graph with combinatorial type (n, k2, k
′
3, ℓ2, ℓ3+1), delete

the (q + 1)st b-loop (following the order of vertex labels) and root the graph at the
vertex where that loop used to be.

(4) If n · s(τ ) + (ℓ3 + 1) · s(n, k2, k
′
3, ℓ2, ℓ3 + 1) ≤ p and q is the quotient of p− n · s(τ )−

(ℓ3 + 1) · s(n, k2, k
′
3, ℓ2, ℓ3 + 1) by s(n, k2, k

′′
3 , ℓ2 + 1, ℓ3) (so that 0 ≤ q ≤ ℓ2), draw

uniformly at random a labeled PSL2(Z)-cyclically reduced graph with combinatorial
type (n, k2, k3, ℓ2 + 1, ℓ3), delete the (q + 1)st a-loop (following the order of vertex
labels) and root the graph at the vertex where that loop used to be.

This algorithm can be modified as in Remark 5.2 to draw uniformly at random a
PSL2(Z)-cyclically reduced subgroup of a given isomorphism type.

5.4 Implementation and complexity remarks

Two models of computation to measure complexity

For the complexity analysis, we consider two classical models: the unit-cost model (also
known as RAM model) where each elementary operation, including operations on integers,
takes O(1) time; and the bit-cost model where an integer N is encoded using O(logN)
space, the number of bits of its representation, and where arithmetic operations are not
performed in constant time anymore. This is more realistic in our settings because we are
led to handling large integers. For instance, O(n log n) bits are required to represent the
number of size n silhouette graphs (see [3, Proposition 8.18]). To simplify the discussion
below, we use the following classical notation: for any α ≥ 0, a non-negative sequence un is
in Õ(nα) if there exist constants C, β > 0 such that un ≤ C nα logβ n for all n sufficiently

25



large. Informally, it means that un is in O(nα) “up to a poly-logarithmic factor”. Note
that, in the bit-cost model, adding or multiplying two numbers encoded with at mostN bits
costs Õ(N) time. It is elementary for addition and a consequence of, for instance, Harvey
and van der Hoeven’s result [10] for multiplication. Comparing two numbers encoded with
at most N bits costs O(N) time.

In the unit-cost model, we consider that, for any positive integer n, we can generate
uniformly at random an integer in [n] in O(1) time. In the bit-cost model, we consider
that we can generate uniformly at random a bit value of {0, 1} in O(1) time. If n is a
positive integer encoded with N bits, we can therefore produce an element of [n] uniformly
at random using a rejection algorithm consisting in repeatedly generating a number made
of N independent random bits until the result is in [n]. The expected running time of this
algorithm is O(N) as the expected number of attempts is at most 2.

Precomputing

Since the parameters n, ℓ2, ℓ3, k2 and k3 are non-negative and satisfy n = 2k2 + ℓ2 and
n ≥ 2k3+ ℓ3, there are at most n4 non-zero values for s(n, k2, k3, ℓ2, ℓ3) for a given positive
integer n. They can be computed recursively using Equations (1), (2) and (3), the base
cases being either trivial (for n ≥ 2) or given by Proposition 4.7. This yields an O(n4)
time and space algorithm in the unit-cost model and Õ(n5) time and space algorithm in
the bit-cost model.

Random generation

We assume in this section that all the required values of s(n, k2, k3, ℓ2, ℓ3) have been pre-
computed and are accessible in time O(1) in the unit-cost model, Õ(1) in the bit-cost
model.

Algorithm random cyclically reduced graph was written with the proof of Theo-
rem 5.1 in mind. This is the reason why, in particular, it calls for randomly choosing an
integer v, or integers v and w. One can also choose v = n, or v = n and w = n− 1, that is,
disregard the randomness of the labeling of the graph we constuct, and add a very last step
to the algorithm, which relabels Γ by a random permutation. This is a classic trick in the
literature on the random generation of labeled combinatorial objects (see for instance [7,
footnote on p. 12]).

In the unit-cost model, random silhouette graph runs in O(n) average time, using
the Fisher-Yates shuffling algorithm [13, p.145] and the fact that the number of itera-
tions in random silhouette graph is bounded in expectation, see Section 5.1. If we use
the trick mentioned above (relabeling the graph at the end), every call of the function
random cyclically reduced graph is performed in O(1). As each call decreases the value
of n by at least 1, Algorithm random cyclically reduced graph runs in O(n) expected
time.

26



In the bit-cost model, observe that n is encoded using O(log n) bits, so that all arith-
metic operations on n, ℓ2, ℓ3, k2, k3 are performed in Õ(1) time. The bottleneck for the
running time of the algorithm lies therefore in Lines 15-16, as generating x and comparing
x with the threshold in Line 16 both cost Õ(n) time. The overall expected running time
of the algorithm in the bit-cost model is therefore Õ(n2).

This process (generating x and comparing it with a theshold) can be improved using
the following idea. Assume that we have two large integers s and t, and the sum s+ t has
already been computed. Let z0 · · · zN−1 be the binary encoding of s+ t (with z0 = 1). Let
also s0 · · · sN−1 be the binary encoding of s (here s0 may be 0). Generating x in [s + t]
and comparing it to s, amounts to simulating a Bernoulli law of parameter s

s+t
(in the

bit-cost model). This is performed using Algorithm bernoulli attempt, which generates
a uniform random integer, say x, between 0 and 2N − 1 bit by bit, halting as soon as we
are guaranteed that one of the three possible situations holds : x ≥ s + t (Failure), x < s
(True) and s ≤ x < s+ t (False).

Algorithm 3: bernoulli attempt(x, y,N)

1 smallers+t = ∅
2 smallers = ∅
3 for i ∈ {0, . . . , N − 1} do
4 bit = Uniform({0, 1})
5 if smallers+t = ∅ then
6 if bit > zi then return Failure
7 if bit < zi then smallers+t = True

8 if smallers = ∅ then
9 if bit > si then smallers = False

10 if bit < si then smallers = True

11 if smallers+t 6= ∅ and smallers 6= ∅ then
12 return smallers

13 if smallers+t = ∅ then
14 return Failure // the generated number is ≥ s+ t

15 return False // the generated number is equal to s

The main algorithm to simulate the Bernoulli law of parameter s
s+t

consists in repeat-
edly calling bernoulli attempt until the result is not Failure. The analysis of the expected
number of bits generated in the process is straightforward, as smallers+t and smallers are
determined with probability 1

2 at each iteration of the first loop: the number of iterations
required to determine each one of them is bounded above by a geometric law of parameter
1
2 . Since s + t > 2N−1, the expected number of calls to bernoulli attempt is bounded
above by a constant. Hence the expected bit-cost complexity of our procedure to simulate
the Bernoulli law is Õ(1).

27



To implement the announced improvement, we modify the precomputation step by
storing not only the values of s(n, k2, k3, ℓ2, ℓ3), but also their bit-lengths and the values
n·(k3+1)·s(n−1, k2, k3+1, ℓ2−1, 0) (used Line 16). Simulating a Bernoulli law of parameter
n · (k3 + 1) · s(n − 1, k2, k3 + 1, ℓ2 − 1, 0)/s(n, k2, k3, ℓ2, ℓ3) instead of performing Lines 15
and 16, lowers the expected time complexity of random cyclically reduced graph to
Õ(n).

Remark 5.3 When ℓ3 > 0, one can directly choose ℓ3 a-loops of the graph ∆ built at
Line 10 to apply the inverse of a λ3-move ℓ3 times directly. This does not change the
overall complexity of random cyclically reduced graph in both models of computation.
Similarly, if ℓ2 = ℓ3 = 0 and k3 = n/2, the generated graph is a cycle made of an alternation
of a-transitions and b-transitions, which could be generated directly without making several
recursive call. Again, this does not change the complexity. ⊓⊔

References

[1] G. N. Arzhantseva. Generic properties of finitely presented groups and Howson’s theorem.
Comm. Algebra, 26(11):3783–3792, 1998.

[2] G. N. Arzhantseva and A. Y. Ol’shanskĭı. Generality of the class of groups in which subgroups
with a lesser number of generators are free. Mat. Zametki, 59(4):489–496, 1996.

[3] F. Bassino, C. Nicaud, and P. Weil. Statistics of subgroups of the modular group. Int. J.
Algebra Comput., 31(8):1691–1751, 2021.

[4] F. Bassino, C. Nicaud, and P. Weil. Silhouettes and generic properties of subgroups of the
modular group. arXiv:2311.08021, 2023.

[5] I. M. S. Dey. Schreier systems in free products. Proc. Glasgow Math. Assoc., 7(2):61–79, 1965.

[6] P. Flajolet and R. Sedgewick. Analytic combinatorics. Cambridge University Press, 2009.

[7] P. Flajolet, P. Zimmermann, and B. Van Cutsem. A calculus for the random generation of
labelled combinatorial structures. Theor. Comput. Sci., 132(2):1–35, 1994.

[8] S. M. Gersten and H. B. Short. Rational subgroups of biautomatic groups. Ann. of Math.,
134(1):125–158, 1991.

[9] R. Gitik. Nielsen generating sets and quasiconvexity of subgroups. J. Pure Appl. Algebra,
112(3):287–292, 1996.

[10] D. Harvey and J. van der Hoeven. Integer multiplication in time O(n log n). Annals of Math-
ematics, 193(2):563–617, 2021.

[11] I. Kapovich. Detecting quasiconvexity: algorithmic aspects. In Geometric and computational
perspectives on infinite groups (Minneapolis, MN and New Brunswick, NJ, 1994), volume 25
of DIMACS Ser. Discrete Math. Theoret. Comput. Sci., pages 91–99. Amer. Math. Soc., Prov-
idence, RI, 1996.

28



[12] O. Kharlampovich, A. Miasnikov, and P. Weil. Stallings graphs for quasi-convex subgroups.
J. Algebra, 488:442–483, 2017.

[13] D. E. Knuth. The Art of Computer Programming, Volume II: Seminumerical Algorithms (third
edition). Addison-Wesley, 1989.

[14] A. G. Kurosh. The theory of groups. Vol. II. Chelsea Publishing Company, New York, N.Y.,
1956. Translated from the Russian and edited by K. A. Hirsch.

[15] R. C. Lyndon and P. E. Schupp. Combinatorial group theory. Springer-Verlag, 1977.

[16] L. Markus-Epstein. Stallings foldings and subgroups of amalgams of finite groups. Internat.
J. Algebra Comput., 17(8):1493–1535, 2007.

[17] T. W. Müller and J.-C. Schlage-Puchta. Classification and statistics of finite index subgroups
in free products. Adv. Math., 188(1):1–50, 2004.

[18] M. Newman. Asymptotic formulas related to free products of cyclic groups. Math. Comp.,
30(136):838–846, 1976.

[19] Y. Ollivier. A January 2005 invitation to random groups, volume 10 of Ensaios Matemáticos
[Mathematical Surveys]. Sociedade Brasileira de Matemática, 2005.

[20] J. J. Rotman. An introduction to the theory of groups, volume 148 of Graduate Texts in
Mathematics. Springer-Verlag, New York, fourth edition, 1995.

[21] H. Short. Quasiconvexity and a theorem of Howson’s. In Group theory from a geometrical
viewpoint (Trieste, 1990), pages 168–176. World Sci. Publ., River Edge, NJ, 1991.

[22] J. R. Stallings. Topology of finite graphs. Invent. Math., 71(3):551–565, 1983.

[23] W. W. Stothers. The number of subgroups of given index in the modular group. Proc. Roy.
Soc. Edinburgh Sect. A, 78(1-2):105–112, 1977/78.

[24] W. W. Stothers. Free subgroups of the free product of cyclic groups. Math. Comp.,
32(144):1274–1280, 1978.

29


	Introduction
	Preliminaries
	Stallings graph of a subgroup of PSL2(Z)
	Combinatorial type, isomorphism type of a subgroup of PSL2(Z)
	Labeled graphs

	The silhouetting operation on PSL2(Z)-cyclically reduced graphs
	Moves on a labeled PSL2(Z)-cyclically reduced graph
	Silhouette graphs
	Silhouetting a labeled PSL2(Z)-cyclically reduced graph

	Counting subgroups by isomorphism and by combinatorial type
	Reduction to the count of labeled PSL2(Z)-cyclically reduced graphs
	Counting labeled PSL2(Z)-cyclically reduced graphs

	Random generation of subgroups of PSL2(Z)
	Random labeled silhouette graphs
	Random PSL2(Z)-cyclically reduced graphs
	Random subgroups of PSL2(Z)
	Implementation and complexity remarks

	References

