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Abstract—Assessing the intensity of a epidemic, such as the COVID-
19 pandemic, during the epidemic outbreak, constitutes a significant
technical challenge with high societal stakes. Elaborating on classical
epidemiological models, this work aims to define a hierarchical Bayesian
model that permits the robust estimation of the temporal evolution of the
pandemic intensity despite highly corrupted daily new infection counts.
It also outputs uncertainty assessment, in the form of credibility intervals
robust to the priors choice, accounting for uncertainties on model
parameters. The estimation is performed by carefully designed Monte
Carlo samplers. The relevance of the proposed estimation procedure is
illustrated on real COVID-19 pandemic data for several countries and
periods, made available from the Johns Hopkins University repository.

Index Terms—Bayesian statistics, Epidemiology, COVID-19, Monte
Carlo Sampling

I. INTRODUCTION

Context. The COVID-19 pandemic stroke heavily societies world-
wide and over the long term. Assessing pandemic intensity from
highly corrupted daily new infection counts turned critical, notably
for designing sanitary policies and countermeasures [1], [2], and
prompted several statistical signal processing approaches, e.g., [3]–
[5]. This work aims to address this technical challenge by inves-
tigating the relevance of hierarchical Bayesian procedures for the
estimation of the pandemic intensity temporal evolution, robust to
both the limited quality of available pandemic data and uncertainties
in model parameters, while providing credibility intervals.

Related works. Compartmental models, such as the classical
Susceptible-Infectious-Recovered reference, are uneasy to use during
epidemic outbreaks, as they heavily rely on accurate information
matching precisely social realities (social groups, contact, etc.) [6]–
[11]. Instead, during epidemic outbreaks or within active epidemic
phases, the time-varying reproduction number, Rt, is considered a
relevant proxy for quantifying pandemic intensity [12]–[15]. Classical
epidemiological models rely on time-varying Poisson distributions or
negative binomial distributions for daily new infection counts [14],
[16], [17]. Though, some of these models yield estimates, such as the
straightforward maximum likelihood estimators derived in [16], that
may be statistically non-consistent and might not provide confidence
assessment. In addition, they may prove insufficiently robust given
the limited quality (missing counts, misreports, pseudo-seasonalities,
etc.) of available epidemic data [14]. The Bayesian-inspired estimator
proposed in [14, Web appendix 1] significantly gained robustness
by enforcing a smooth temporal behavior, making it an essential
reference for viral epidemic monitoring, but at the price of a lack
of statistical soundness. Recently, both consistency and robustness
against the low quality of COVID-19 data have been achieved by
solving inverse problems stemming from regularizing the likelihood
model, yet requiring arbitrarily parameter selection and lacking
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confidence assessment [18], [19]. Another approach that also provides
confidence assessment in estimation has been intended via Bayesian
models, at the price of arbitrary a priori assumptions on the pandemic
temporal dynamics and model parameters choice [17], [20], [21]. To
explore the intractable a posteriori distribution, Bayesian samplers
have been derived in [21]–[23], still based on arbitrarily chosen
model parameters. This allows to derive an automated data-driven
model parameter selection through the Expectation-Maximization
(EM) algorithm [24]. Achieving jointly parameters selection with
uncertainty quantification is the main challenge addressed here.

Goals, contributions and outline. The overarching goal of this work
is to study the relevance of the hierarchical Bayesian framework,
proposed to perform pandemic intensity estimation, with jointly con-
fidence assessment and robustness against, at the same time, available
low-quality pandemic data and unknown model parameters. To that
end, Section II briefly recalls the classical epidemiological models
and estimators, serving as a base for this work. Then, Section III
devises, as a first contribution, the proposed hierarchical model,
detailing the constraints ensuring robustness to low-quality data as
well as the choice of priors enabling robustness to unknown model
parameters. In Section IV, as a second contribution, the proposed
strategy is illustrated at work on real COVID-19 data, extracted
from the Johns Hopkins University repository, for several countries.
The convergence of the resulting Monte Carlo algorithm exploiting
the proposed model is illustrated and its outcome and performance
are compared against other estimation procedures proposed in the
literature, that did not ensure robustness against arbitrary choices
pertaining to unknown model parameters. Matlab codes implementing
the proposed robust estimation procedure will be shared publicly at
the time of publication.

II. COVID-19 EPIDEMIOLOGICAL MODEL

To model the propagation of viral epidemics, such as the COVID-
19 pandemic, it has been proposed in [14] to consider the daily
new infection count at day t, Zt, as a Poisson random variable
conditionally to past counts Z1:t−1 := (Z1, . . . ,Zt−1), and to initial
values (Z−τϕ+1, . . . ,Z0). The conditional distribution writes:

Zt | Z−τϕ+1:t−1;Rt ∼ P(RtΦ
Z
t ). (1)

The time-varying Poisson parameter, RtΦ
Z
t , combines the reproduc-

tion number at day t, Rt, defined as the expected number of secondary
infections stemming from one typical contagious individual, with
ΦZ

t :=
∑τϕ

s=1 ϕ(s)Zt−s that accounts for the global infectiousness in
the population, computed as a weighted sum of past counts involving
the serial interval distribution ϕ, modeling the random delay between
primary and secondary infections. For the COVID-19 pandemic, we
model ϕ as a Gamma distribution of mean and standard deviation



of respectively 6.6 and 3.5 days [25], [26], with temporal support
truncated to τϕ = 25. Fig. 2 (first and third rows, solid and dashed
black curves) displays counts Z1:t−1 and global infectiousness ΦZ

t

for different countries and pandemic stages.

Maximum Likelihood Estimator (MLE) of Model (1). A straight-
forward estimator of the reproduction number Rt is obtained by
maximizing the likelihood of Z := Z1:T associated to the model (1):

RMLE (1)
t := Zt/Φ

Z
t if ΦZ

t > 0, RMLE (1)
t := 0 otherwise; (2)

see [16]. Fig 2 (second and fourth rows) displays RMLE (1) (gray
curve). First, RMLE (1) := RMLE (1)

1:T is not consistent as there are as
many unknown parameters as observations. Second, the low quality
of COVID-19 data induces far too large and rapid fluctuations over
time, making it unusable by epidemiologists [14].

Reference epidemiological estimator. To tackle robustness against
low quality data, the widely used EpiEstim software1 implements
the Bayesian-inspired framework devised in [14, Web appendix 1].
To estimate each Rt, a local Poisson likelihood model is introduced,
involving Rt,τ , assumed constant over τ days, together with a conju-
gate Gamma prior Γ(a, 1/b); Γ(α, β) denotes a Gamma distribution
with shape parameter α and rate parameter β. Hence, the a posteriori
distribution of Rt is a Gamma distribution with explicit parameters.
This yields a point estimate defined as the a posteriori mean:

REpiEstim
t,τ :=

∑t
s=t−τ+1 Zs + a∑t

s=t−τ+1 Φ
Z
s + 1/b

, (3)

together with credibility intervals (CIs). Examples of t 7→ REpiEstim
t,τ ,

with the classical choice of τ = 7 days, and CIs are displayed in
Fig. 2 (second and fourth rows, solid green curves, and light green
areas). They are smoother than RMLE (1), and hence more acceptable
from an epidemiological point of view. The main bottleneck in the
practical use of EpiEstim for emerging epidemics is the choice
of the parameters a, b and τ . In the literature, they are chosen
by experts with a × b large enough to prevent underestimation
of the reproduction number at the onset of an epidemic [14].
Furthermore, assuming a locally constant model excludes rigorous
statistical ground. In the following, this estimator is referred to as
REpiEstim := (REpiEstim

1,τ , . . . ,REpiEstim

T,τ ), omitting the dependence in τ .

III. ROBUST HIERARCHICAL BAYESIAN MODEL

This section aims to derive a novel Bayesian statistical model
and to explain how the a posteriori distribution of R := R1:T is
numerically investigated. This new, hierarchical, model will provide
uncertainty quantification while taking into account the self-selection
of some parameters of the model. Point estimates and credibility
intervals will be derived from empirical expectations and empirical
quantiles of the derived a posteriori distributions.
Throughout this section π(X|Y) stands for the density distribution of
the random vector X given the random vector Y, with respect to the
Lebesgue measure.

Penalized Poisson model. To increase robustness against the low-
quality data, it was proposed in [18], [19], [21] to model daily new
infection counts Zt as a Poisson distribution of intensity RtΦ

Z
t +Ot,

where Ot denotes errors, unknown by construction. For consistency,
we set O := O1:T hereafter.
Following [24], we consider the extended model where, on the
set (Rt,Ot) ∈ Dt :=

{
(Rt,Ot) : Rt ≥ 0 and RtΦ

Z
t + Ot ≥ 0

}
1https://github.com/mrc-ide/EpiEstim

and conditionally to Rt,Ot, past counts Z1:t−1 and initial values
I := (R−1,R0,Z−τϕ+1, . . . ,Z0), Zt follows a Poisson distribution:

Zt | Rt,Ot,Z1:t−1, I ∼ P
(
RtΦ

Z
t + Ot

)
; (4)

by convention P(0) is a Dirac mass at 0. Conditionally to the past,
Rt and Ot are independent. The Rt are modeled through a second
order autoregressive process with Laplace noise:

π(Rt|Rt−1,Rt−2, λR) ∝ λR e
−λR

4
|Rt−2Rt−1+Rt−2|. (5)

Such an a priori distribution favors limited changes in the (second
order differences) of t 7→ Rt [18], [19], [21]. The Ot are assumed to
be independent and distributed according to a Laplace distribution:

π(Ot|λO) ∝ λO e−λO|Ot|. (6)

Denote λ := (λR, λO) and D ∈ RT×T the discrete-time second order
derivative matrix acting on R ∈ RT as

∀t ∈ {2, . . . , T}, (DR)t :=
1

4
(Rt − 2Rt−1 + Rt−2) , (7)

with initial conditions (DR)1 := 1/4R1, (DR)2 := 1/4R2 − 1/2R1.
This description implies that the logarithm of the joint distribution
of (R,O) given (Z, I, λ) is, up to an additive constant,

lnπ(R,O|Z, I, λ) = −λR∥DR+ δ∥ − λO∥O∥+ T lnλR

+ T lnλO −
T∑

t=1

(
(RtΦ

Z
t + Ot)− Zt ln(RtΦ

Z
t + Ot)

)
, (8)

where 4δ :=
(
R−1 − 2R0, R0, 0, . . . 0

)⊤ ∈ RT and where
∥·∥ denotes the 1-norm. Estimators R̂Mean (8)

t and ÔMean (8)
t are defined

as the empirical means of the distribution π(R,O|Z, I, λ) defined
in (8), which is intractable. A Metropolis-within-Gibbs sampler (See
[27, Section 10.3]) using a proximal Langevin proposal mechanism
targeting π(R,O|Z, I, λ) has been designed in [21] (See also [22],
[23]). Hereafter, a one-step iteration of this Gibbs sampler starting
from (r, o) is denoted PGdual(r, o;λ).

Understanding the role of parameters λ. Eq. (8) suggests that
λ plays a balancing role between a data fidelity term and penalty
terms on R and O. Therefore, particular attention must be paid to the
choice of λ. The function (R,O) 7→ lnπ(R,O|Z, I, λ) is concave
and admits a maximizer (RMAP (8),OMAP (8)) under conditions [19], [21],
which is the maximum of the a posteriori distribution (8) (MAP). It
satisfies from the Fermat’s rule [28, Theorem 16.3]:

∀t,
∣∣∣∣ Zt

RMAP (8)
t ΦZ

t + OMAP (8)
t

− 1

∣∣∣∣ ≤ min

(
λR

ΦZ
t

, λO

)
. (9)

Upon noting that the MLE of model (4) satisfies for all t

Zt = RMLE (4)
t ΦZ

t + OMLE (4)
t ,

Eq. (9) shows that λO and λR/ΦZ
t quantify how much (RMAP (8),OMAP (8))

is allowed to differ from (RMLE (4),OMLE (4)), thus avoiding overfitting
and providing consistency of the estimators. Furthermore, small
values of λ imply that the a priori distributions for Ot and (DR)t
are Laplace distributions with large variance. Such a choice allows
a broader range of possible values for Ot and the second order
derivatives of t 7→ Rt. Finally, Eq. (9) also suggests that λO and
λR/ΦZ

t scale one with the other. Examples of RMAP (8) and corrected
counts Z − OMAP (8), with selected parameters fixed to (See [19],
[21])

λR = 3.5× std(Z), λO = 50× 10−3, (10)



Algorithm 1 MCMC sampler targeting π(R,O, λ|Z, I; θ) (See (12))

Input: Z,ΦZ, I; Parameters: (αR, βR, αO, βO), kmax

Initialize: (R(0),O(0), λ(0))
for k = 0, 1, . . . , kmax − 1 do

# Sample R,O at fixed λ(k)

R(k+1),O(k+1) ∼ PGdual(R(k),O(k);λ(k))
# Sample λ at fixed R(k+1),O(k+1)

λ
(k+1)
R ∼ Γ(T + αR, ∥DR(k+1) + δ∥+ βR)

λ
(k+1)
O ∼ Γ(T + αO, ∥O(k+1)∥+ βO)

end for
Output: {R(k),O(k), λ(k)}k=1,...,kmax

std(Z) denoting the standard deviation of the observations Z, are
provided for different countries and pandemic stages in Fig. 2
(second and fourth rows, yellow curves, most of the time covered
by red curves). The computation of this MAP relies on a primal-dual
algorithm, suited to nonsmooth convex objective functions [19].

A novel hierarchical Bayesian model. In [24], a Stochastic Approx-
imation of the EM algorithm was derived to perform an automated
data-driven selection of λ. Yet, estimating R and O given a fixed
value of λ does not yield robustness quantification with respect to
this choice. Instead, the novel model proposed below addresses this
issue. Since the Gamma distribution is the conjugate prior for the
Laplace distribution [29], we assume Gamma prior on both λR and
λO: Γ(αR, βR) and Γ(αO, βO). Set θ := (αR, βR, αO, βO).
This yields a novel a posteriori distribution for R and O, denoted
π(R,O|Z, I; θ) and which satisfies:

π(R,O|Z, I; θ) =
∫
R+×R+

π(R,O, λ|Z, I; θ) dλ, (11)

where, on the set
⋂T

t=1 Dt × R+ × R+,

lnπ(R,O, λ|Z, I; θ) := lnπ(R,O|Z, I, λ)
− βRλR + (αR − 1) lnλR − βOλO + (αO − 1) lnλO. (12)

Novel point estimates and CIs are defined as expectations and quan-
tiles of the distribution π(R,O|Z, I; θ) (See (11)). Unfortunately,
this distribution is intractable: we derive hereafter a novel Markov
Chain Monte Carlo (MCMC) sampler (See Alg. 1) and replace exact
expectations and quantiles by their empirical counterpart. We denote
the new point estimates by R̂

Mean(H)
and Ô

Mean(H)
.

Sampling from π(R,O|Z, I; θ) with MwG-Hierarchical. This
distribution (11) is not explicit, and must be approximated by
points (R(k),O(k))k, produced by a Monte-Carlo sampler. From
Eq. (11), such points are obtained from the first two components
of (R(k),O(k), λ(k))k themselves produced by a Metropolis-within-
Gibbs sampler targeting π(R,O, λ|Z, I; θ). A draw approximating
the first conditional distribution π(R,O|Z, I, λ), is obtained from
a call to PGdual. From (8) and (12), the second conditional
distribution π(λ|Z,R,O, I; θ), are independent Gamma distributions:

Γ(T + αR, ∥DR+ δ∥+ βR) and Γ(T + αO, ∥O∥+ βO). (13)

The sampling algorithm is sketched in Alg. 1 and hereafter, it is
named MwG-Hierarchical.

IV. REPRODUCTION NUMBER ESTIMATION

COVID-19 data. From the early stages of the COVID-19 pan-
demic, the Johns Hopkins University set up an impressive reposi-

Fig. 1: Convergence of Alg. 1 on French dataset monitoring
(max log π − π(k))/π(0) where π(k) := π(R(k),O(k), λ(k)|Z, I; θ)
(See Eq. (12)). The maximum is computed across three Markov
chains generated by Alg. 1 with three different intializations.

tory2 by collecting on a daily basis new infection counts reported
by National Health Authorities worldwide and organizing them to
be shared with the research community. In the present work, we
make use of these data for several different countries and peri-
ods of time, spanning T = 70 days, and chosen as represen-
tative of various pandemic phases: India (2020/08/09-2020/10/17),
Germany (2021/02/21-2021/05/01), France (2022/02/20-2022/04/30),
South Korea (2022/06/22-2022/08/30).

MCMC algorithms setup. For each dataset, considering the standard
choice τ = 7 days, the reported infection counts during the two days
before the monitored time period are temporarily included to compute
REpiEstim

−1,τ , REpiEstim

0,τ , so that PGdual and MwG-Hierarchical use as
past values (stored in I in Alg. 1):

R−1,τ = REpiEstim

−1,τ , R0,τ = REpiEstim

0,τ .

Setting kmax = 5 × 107, R̂
Mean (8)

, Ô
Mean (8)

(resp. R̂
Mean(H)

, Ô
Mean(H)

)
are estimated from kmax iterations of PGdual (resp. by running the
MwG-Hierarchical Alg. 1 for kmax iterations). Then, in both
cases, the empirical means and quantiles are computed after discard-
ing a burnin phase of 3 · 107 iterations, ensuring the convergence of
the Markov chains (See Fig. 1 for MwG-Hierarchical Alg. 1).
The R,O Markov chains are initialized at:

R
(0)
t := (REpiEstim

t,τ + 1)/2, O
(0)
t := (Zt − REpiEstim

t,τ ΦZ
t )/2,

which constitutes an average between the EpiEstim estimate and
the raw initialization Rt = 1,Ot = 0 used in [21]. The design
parameters of PGdual are chosen as in [21] and the estimates
R̂

Mean (8)
, Ô

Mean (8)
are computed with a fixed λ, set as in Eq. (10).

For MwG-Hierarchical, the hyperparameters θ are set so that

αR/βR = 3.5× std(Z), αO/βO = 50× 10−3,

thus imposing that the expectations of the Gamma priors on λ coin-
cide with the values of (10), but letting the MwG-Hierarchical
sampling scheme explore around these values by fixing the standard
deviations of the priors to a preset percentage of their expectations:

√
αR/βR = 0.02× αR/βR,

√
αO/βO = 0.015× αO/βO.

λ is initialized at the historical parameters (See Eq. (10)).

Robust epidemiological indicator estimations. Fig. 2 compares, for
all countries and periods, the reproduction number point estimates
RMLE (1), RMAP (8), and REpiEstim, R̂

Mean (8)
, R̂

Mean(H)
accompanied with

95% CIs, and the corrected counts point estimates Z − OMAP (8) and
Z− Ô

Mean (8)
, Z− Ô

Mean(H)
with 95% CIs. The (RMAP (8),Z−OMAP (8))

estimates (yellow) are barely visible as they superimpose almost
perfectly with the (R̂

Mean (8)
,Z − Ô

Mean (8)
) estimates obtained with

PGdual (blue). This shows that the PGdual sampling scheme
complements the estimates RMAP (8) and OMAP (8) with CIs at fixed

2https://coronavirus.jhu.edu/



(a) India (b) Germany (c) France (d) South Korea

Fig. 2: Compared reproduction number estimations: RMLE (1) (Eq. (2), gray); REpiEstim and 95% CIs (Eq. (3), green); RMAP (8) and Z−OMAP (8)

(Eq. (8), yellow); R̂
Mean (8)

, Z− Ô
Mean (8)

and 95% CIs (Eq. (8), blue); R̂
Mean(H)

, Z− Ô
Mean(H)

and 95% CIs (Eq. (12), red). First and third rows:
COVID-19 daily new infection counts and infectiouness (solid and dashed black curves respectively). Second and fourth rows: estimated
reproduction number. Top rows: T = 70-day whole period. Bottom rows: zoom on the ten-day period shaded in gray on top rows.

Mean; CI λR/std(Z) λO × 103

India 2.6; [2.5, 2.7] 19.6; [19.1, 20.2]
Germany 3.4; [3.3, 3.6] 14.7; [14.4, 15.1]
France 1.9; [1.9, 2.0] 3.2; [3.1, 3.3]
South Korea 2.8; [2.7, 2.9] 4.9; [4.8, 5.0]

Historical, Eq. (10) 3.5 50

TABLE I: Empirical a posteriori mean estimates of λ and 95% CIs,
computed from the MwG-Hierarchical sampler, Alg. 1.

λ, without modifying much the pointwise estimates. For India and
Germany, in which the reporting errors correspond to a limited
fraction of the true counts, Figs 2a and 2b, (R̂

Mean(H)
,Z− Ô

Mean(H)
)

(red) is also in very good agreement with (RMAP (8),Z−OMAP (8)). To
the contrary, when the reporting errors are of the order of magnitude
of true counts, as in the France and South Korea datasets, Figs 2c
and 2d, (R̂

Mean(H)
,Z − Ô

Mean(H)
) (red) show significantly smoother

dynamics than (R̂
Mean (8)

,Z− Ô
Mean (8)

) (blue). Tab. I further reports a
Monte-Carlo approximation deduced from Alg. 1 of the expectation
and CIs of λ under the distribution π(R,O, λ|Z, I; θ) (See (12)),
which are observed to significantly depart from the historical initial
values (See (10)), thus illustrating the benefit of considering λ as a
random variable with a nontrivial prior distribution, described jointly
with the quantities of interest R, O.

Accurate uncertainty quantification. In all the examples of Fig. 2,
the CIs given by the novel hierarchical model (R,O)|Z, I; θ (in
red) are larger than the CIs in the EpiEstim model (in green) and
the CIs in the model (R,O)|Z, I, λ (in blue) notably for India,
Germany and France in Figs. 2a, 2b and 2c, demonstrating that
accounting for uncertainty on λ yields a wider exploration, leading to
more accurate uncertainty assessment. In a pandemic context when
drastic sanitary measures with high social and economic impact
are to be decided based on estimated epidemiological indicators,
avoiding underestimation of the CIs on the time-varying reproduction
number Rt, and hence overconfidence, is a critical concern. To
further quantify how accounting for uncertainty on λ impacts the
a posteriori uncertainty on the estimation of Rt, Tab. II reports the

EpiEstim Hierarchical
Eq. (3) Eq. (8) Eq. (12)

India 0.42 0.40± 0.01 0.58± 0.01
Germany 1.09 1.56± 0.02 2.13± 0.01
France 0.36 0.46± 0.01 1.35± 0.07
South Korea 0.82 0.79± 0.03 0.89± 0.01

TABLE II: Area covered by the CIs for the estimation of the
reproduction number R within the whole T = 70 days time period.

area covered by the estimated 95% CIs given by the hierarchical
model (R,O)|Z, I; θ compared to the area of those obtained with
EpiEstim and with the model (R,O)|Z, I, λ, computed from the
trapezoidal numerical integration method [30, Section 5.1] with
one-day step size. For the two estimators computed from MCMC
samplers, these areas are averaged over 5 runs and accompanied by
associated confidence intervals. Tab. II shows that the CIs obtained
with the hierarchical model are consistently larger compared to those
from both other models. The size of the CIs strongly depends on
the dataset, supporting the conclusion that the novel Hierarchical
approach leverages the designed hierarchical Bayesian model (See
(12)) to capture accurately intrinsic uncertainty contained in real
COVID-19 infection counts.

V. CONCLUSIONS AND PERSPECTIVES

In the present work, we have constructed a hierarchical Bayesian
epidemiological model, and devised a sampling scheme that permits
the estimation of the reproduction number, quantifying the intensity of
a pandemic. The achieved estimation benefits jointly from confidence
assessment in terms of credibility intervals and from robustness
against both the corrupted nature of the available COVID-19 pan-
demic data and the unknown values of parameters of the model.
The relevance of the procedure is assessed on real pandemic data
for several countries. Future investigations include exploring online
estimation schemes and better-suited models for data corruption and
missing data, focusing on aggregated count models [31]–[33]. Matlab
codes implementing the proposed robust estimation procedure will be
shared publicly at the time of publication.
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