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ABSTRACT

The search for new exoplanets by direct imaging is a very active research topic in astronomy. The detection
is particularly challenging because of the very high contrast between the host star and the companions. They
thus remain hidden by a nonstationary background displaying strong spatial correlations. We propose a new
algorithm named PACO (for PAtch COvariances) for reduction of differential imaging datasets. Contrary to
existing approaches, we model the background correlations using a local Gaussian distribution that locally
captures the spatial correlations at the scale of a patch of a few tens of pixels. The decision in favor of the
presence or the absence of an exoplanet in then performed by a binary hypothesis test. The method is completely
parameter-free and produces both stationary and statistically grounded detection maps so that the false alarm
rate, the probability of detection and the contrast can be directly assessed without postprocessing and/or Monte-
Carlo simulations. We describe in a forthcoming paper its detailed principle and implementation. In this
paper, we recall the principle of the PACO algorithm and we give new illustrations of its benefits in terms of
detection capabilities on datasets from the VLT/SPHERE-IRDIS instrument. We also apply our algorithm on
multi-spectral datasets from the VLT/SPHERE-IFS spectrograph. The performance of PACO is compared to
state-of-the-art algorithms such as TLOCI and KLIP-PCA.

Keywords: direct imaging, angular and spectral differential imaging, data reduction, processing algorithm,
statistical method

1. INTRODUCTION

Direct imaging1 is a recent and very effective technique for the characterization of young and massive objects.2

The very high contrast (typically higher than 105 in the near infrared) between the host star and its companions
makes the detection particularly challenging.3,4 In addition to the use of an extreme adaptive optics system and
a coronagraph to strongly attenuate the flux from the star,5,6 dedicated processing methods that combine images
taken while the field of view is rotated (i.e. in angular differential imaging mode) and at several wavelengths are
required. The different temporal behaviors of the remaining stellar leakages and of the signal originating from
the exoplanets make it possible to recover them separatly, and thus detect the exoplanets and estimate their
astrometry and photometry.

The cutting-edge planet-finder SPHERE7 (Spectro-Polarimetry High-contrast Exoplanet REsearch) currently
operating at the VLT (Very Large Telescope) provides 4D spatio-temporo-spectral datacubes. Its differential
imager IRDIS8 (InfraRed Dual Imaging Spectrograph) is optimized for imaging exoplanets at two different wave-
lengths. A finer characterization of the exoplanet candidates can be made with the integral fields spectrographs
(IFS). From a signal processing point of view, a major difficulty in the data analysis comes from the strong spa-
tial and temporal fluctuations of the background that are due to (i) the speckle patterns (originating from the
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residual phase aberrations), and (ii) the detection noise and other noise sources (thermal background, flat field
error, bad pixels) that are correlated by the interpolations performed by conventional prereduction pipelines.9

Generally, images are combined following a particular strategy based on angular and/or spectral differ-
ences10,11 such as in the TLOCI-type algorithms12–16 or by splitting the data into different components (or
subspaces) such as in the KLIP-PCA17 standard or in the LLSG18 algorithm. In all these techniques, it is in
practice difficult to set detection threshold at a given probability of false alarms (more false alarms are observed
than expected using a conventional 5σ threshold). Another family of methods is based on a more rigorous
statistical framework using maximum likelihood approach such as in the ANDROMEDA19,20 and MOODS21

algorithms. A more recent method22 exploits supervised machine learning algorithms to detect the typical signa-
ture of an exoplanet in science data. However, in all of these techniques the number of tuning parameters stays
important making the optimality difficult to reach. The intervention of an expert is thus mandatory to conclude
on the confidence level of potential detections.

We propose to follow a different statistical approach with our algorithm PACO (for PAtch COvariances): we
model the correlations of the background signal (noise+speckles) in the data with a local Gaussian distribution
that captures the spatial correlations at the scale of a patch of a few tens of pixels. The decision in favor of
the presence or the absence of an exoplanet is then performed by a binary hypothesis test. This local modeling
accounts for the spatial variations of the background fluctuations and leads to a detection method that is
completely parameter-free. Moreover, we perform a joint estimation of the flux of each detected source and of
the background statistics to provide an intrinsically unbiased photometric estimation.

Based on our forthcoming methodological paper,23 we recall in section 2 the principle of PACO for angular
differential imaging. Section 3 illustrates PACO on datasets from the VLT/SPHERE-IRDIS instrument empha-
sizing its automatic adaptativity regardless of the considered dataset. In section 4, we extend PACO to spectral
datacubes by independently processing each spectral channel of a VLT/SPHERE-IFS dataset. The detection
maps from each spectral channel can then be combined into a single detection map. Section 5 concludes the
paper.

2. PACO: EXOPLANET DETECTION IN ANGULAR DIFFERENTIAL IMAGING
BASED ON PATCH COVARIANCES

2.1 Exoplanet Detection and Flux Estimation with the PACO Algorithm

We consider ADI datasets made of T N–pixels temporal frames in which the field of view undergoes a known
motion with respect to background speckles. PACO is based on locally learning a model of the background from
the collection of T spatial patches extracted at a given spatial location.

By denoting φ0 the initial 2D location of an exoplanet in a reference frame and φt = Ft(φ0) its location in
frame t (φt 6= φ0 due to field-of-view rotation in ADI), we model the intensity rθk,t` at the 2D angular location θk
and a the time t` by the superimposition a background component and an off-axis point spread function (PSF):

rθk,t` = fθk,t` + αhθk(φt`) , (1)

with α > 0 the flux of the source located at φ0 (e.g., an exoplanet) and α = 0 in the absence of source at φ0,
hθk(φt`) = h(θk − φt`) the off-axis PSF, centered on the location φt` of the exoplanet at time t` and sampled at
pixel location θk. The background fθk,t` at spatio-temporal index (k, `) accounts for the stellar leakages and for
the different sources of noise. Using a maximum likelihood approach, the estimator of the flux α of an exoplanet
located at φ0 in the reference frame is:

α̂ = arg max
α

pf ({rθk,t` − αhθk(Ft`(φ0))}k=1:N, `=1:T ) , (2)

where pf denotes the likelihood of the background term f . Within this statistical framework, the detection can
be expressed by the binary hypothesis test:{

H0 : {rθk,t`}`=1:T, k=1:N = {fθk,t`}`=1:T, k=1:N

H1 : {rθk,t`}`=1:T, k=1:N = {fθk,t`}`=1:T, k=1:N + α {hθk(φt`)}`=1:T, k=1:N .
(3)



Literally, under H0 hypothesis, the observed intensity is only pure background while an exoplanet of flux α > 0
is present under H1 hypothesis. The detection can be made via the generalized likelihood ratio test (GLRT):24

log
pf ({rθk,t` − α̂ hθk(φt`)}k=1:N, `=1:T )

pf ({rθk,t`}k=1:N, `=1:T )

H1

≷
H0

η . (4)

A statistical model of the background is then necessary to decide if a detection is relevant or not and
estimate the potential exoplanet flux using equations (2) and (4). Contrary to existing approaches13,17,20 aiming
to whiten the background samples using dedicated preprocessings, the PACO modeling takes into account the
spatial correlations of the data. Given the nonstationarity of the background in the field of view, the random
fluctuations of the background at location θk are captured using a multi-variate Gaussian model N (mθk ,Cθk)
from the patches collection {fθk,t`}`=1:T centered at the location θk. The mean and covariance can be estimated
from the observed patches using the maximum likelihood estimators:

Ŝθk =
1

T

T∑
`=1

(
rθk,t` − m̂θk

)
·
(
rθk,t` − m̂θk

)t
with m̂θk =

1

T

T∑
`=1

rθk,t` , (5)

However, due to the limited number of frames T with respect to the number of pixels K in a patch (several

tens), the sample covariance estimator Ŝθk is either rank deficient or displays a prohibitively large variance.
Several regularized covariance estimators were compared23 and the shrinkage estimator25 was found to be the
most appropriate. Following the work of Y.Chen et al.,26 the shrinkage estimator Ĉθk is given by the convex
combination:

Ĉθk = (1− ρ̂) Ŝθk + ρ̂ F̂θk , (6)

where Ŝθk is the low-bias/high-variance sample covariance matrix given in Eq. (5) and F̂θk is the high-bias/low-
variance diagonal matrix formed from the sample variances. The tradeoff between the two terms of the convex
combination is balanced in a data-driven fashion by the estimated factor ρ̂:23,26

ρ̂
(
Ŝθk
)

=
tr
(
Ŝ2
θk

)
+ tr2

(
Ŝθk
)
− 2

∑K
i=1

[
Ŝθk
]2
ii

(T + 1)
(

tr
(
Ŝ2
θk

)
−
∑K
i=1

[
Ŝθk
]2
ii

) , (7)

Once the background statistics (mθk ,Cθk) are computed, the flux of the potential exoplanet (equation 2)
and the GLRT can be expressed by: 

α̂+ = max(b, 0)/a

(GLRT
+

)
max(b, 0)2

a

H1

≷
H0

η .
(8)

with {
a =

∑T
`=1 hbφt`e(φt`)

t · Ĉ−1bφt`e ·hbφt`e(φt`)

b =
∑T
`=1 hbφt`e(φt`)

t · Ĉ−1bφt`e ·
(
rbφt`e,t` − m̂bφt`e

)
,

(9)

where hbφt`e(φt`) is the off-axis PSF for a source at subpixelic location φt` sampled over a patch whose center is

bφt`e, the nearest pixel to φt` .

We note that when η ≥ 0, the latter test is equivalent to:

(SNR) α̂/σ̂α
H1

≷
H0

τ (10)

where σ̂α = 1/
√
a is the standard deviation of α̂ (see our journal article23 for details) and τ =

√
η. It can be

interpreted as the signal-to-noise ratio (SNR) of the estimation of the flux α of the source. This test follows



a normal distribution with a zero mean and a unit variance so that its thresholding at a given value τ can be
directly converted into a probability of false alarm (PFA) and probability of detection (PD):PFA(τ) = Pr(α̂/σ̂α > τ | H0) =

∫ +∞
τ

1√
2π

exp
(
−x

2

2

)
dx = 1− Φ(τ)

PD(τ, α) = Pr(α̂/σ̂α > τ | H1) =
∫ +∞
τ

1√
2π

exp
(
−[x−α/σ̂α]2

2

)
dx = 1− Φ(τ − α/σ̂α)

where Φ is the cumulative distribution function of the standard normal distribution. The minimal flux α of a
source ensuring its detection with given probabilities of detection PD and false alarm PFA is:

α =
(
Φ−1(1− PFA)− Φ−1(1− PD)

)
× σ̂α . (11)

We have shown23 on VLT/SPHERE-IRDIS datasets that the probability of false alarm estimated with PACO is
reliable, contrary to most of the state-of-the-art methods that produce many more false alarms in practice than
theoretically expected.

In the case of an integral field spectrograph with L spectral channels, each wavelength can be processed inde-
pendently leading to L SNR maps that can be combined. By denoting SNRλ the SNR at wavelength λ, the
combined SNR for λ ∈ {1, ..., L} is:

combined-SNRλ=1:L =

√√√√ L∑
λ=1

max(SNRλ, 0)2 =

√√√√ L∑
λ=1

GLR+
λ (12)

2.2 Astrometric and Photometric Accuracies

2.2.1 Unbiased Astrometric and Photometric Estimation

In the presence of an exoplanet, the collection of patches {rθk,t`}`=1:T used to compute the background statistics
around the 2D-location θk do not contain pure background but background contaminated by the exoplanet. The
resulting flux estimator would be biased should the flux of the background and the fux of the source be estimated
separately. An unbiased flux estimation is obtained by joint estimation of the fluxes. In practice, this is done
by alternating between the estimation of the background statistics and the estimation of the exoplanet flux.
At iteration n + 1, after a flux α̂(n) has been estimated assuming background statistics Ĉ(n), the background
statistics can be improved by computing:

m̂
(n+1)
θk

= 1
T

∑T
`=1

(
rθk,t` − α̂(n)hθk(φt`)

)
Ŝ
(n+1)
θk

= 1
T

∑T
`=1

(
rθk,t` − m̂

(n+1)
θk

)
·
(
rθk,t` − m̂

(n+1)
θk

)t[
F̂

(n+1)
θk

]
ii

=
[
Ŝ
(n+1)
θk

]
ii

ρ̂(n+1) = ρ̂
(
Ŝ
(n+1)
θk

)
Ĉ(n+1) = (1− ρ̂(n+1)) Ŝ(n+1) + ρ̂(n+1) F̂(n+1) .

(13)

An unbiased estimation of the position of the source is provided by the maximum likelihood location, which
requires to identify the solution of a non-convex optimization problem. We solve this problem by performing
an exhaustive search at a finite (subpixel) resolution, refined by a local optimization step. In our forthcoming
conference paper,27 each detected source is removed from the data following an orthogonal matching pursuit
strategy allowing a complete automatization of the detection and flux estimation steps at a controlled false alarm
rate. Contrary to existing approaches,13,16,17 an unbiased flux estimation is thus obtained without postprocessing
or fake companion injections.



2.2.2 Theoretical Analysis of the Astrometric and Photometric Accuracies

Under our statistical model, the astrometric and photometric estimators, based on maximum likelihood es-
timators, are asymptotically unbiased (i.e., unbiased when the number of measurements tends to infinity).
Their accuracy asymptotically reaches the Cramér-Rao lower bounds (CRLBs).24 The standard deviations
δθk = {δα, δx0 , δy0} on the estimated parameters Ω = {α, x0, y0} (with φ0 = {x0, y0}) at the 2D-location θk are
obtained from the diagonal of the inverse of the Fisher information matrix:

[δθk ]i =
√[

IFθk(Ω)−1
]
i,i

with
[
IFθk(Ω)

]
i,j

=
∂αhθk(Ω)

∂Ωi

t

· C−1θk ·
∂αhθk(Ω)

∂Ωj
. (14)

3. APPLICATION OF PACO TO ADI SEQUENCES FROM THE
VLT/SPHERE-IRDIS INSTRUMENT

3.1 Datasets Description and Reduction Strategies

In the following, in order to decrease the computational cost of the reduction step using PACO, we use a fast
approximate version of our algorithm (algorithm Fast PACO described in our article23 for more details). The
acceleration is based on a precomputation and hard-storage of the terms appearing multiple times in the sums of
equations 9 for the different tested positions of the field of view. The results from this fast algorithm can be refined
using the complete detection strategy describes in section 2.1 at the cost of an increase of the computational
complexity by a factor T . The number K of pixels in a patch should be large enough to emcompass the core of
the off-axis PSF. Since the PSF varies marginally from one observation to another, K is almost constant for a
given instrument, so that PACO is completely parameter-free. For example, we have found using Monte-Carlo
injections of fake exoplanets that K = 49 pixels in a patch was optimal for SPHERE-IRDIS instrument at
λ1 = 2.110µm (K1 Johnson band). We compare the performance of PACO with TLOCI and KLIP standards
(see section 1 for a short description) as implemented in the ESO–SPHERE reduction pipeline SpeCal.28 In order
to reduce the potential high stellar leakages and the impact of false detections due to defective pixels, SpeCal
applies an unsharp filtering as postprocessing on its resulting detections maps. With PACO, no processing (other
than the conventional prereduction pipeline9) is applied on the science data or on the resulting detection maps.

We illustrate and compare the performance of PACO in terms of detection capability on two ADI datasets
from the VLT/SPHERE-IRDIS instrument at λ1 = 2.110µm. The observed target is the HD95086 star located
in the Carina constellation and hosting a 5–Jovian mass exoplanet (HD95086-b) orbiting about 0.62 arcsecond
from its star. This known exoplanet was discovered and confirmed using direct imaging with the SPHERE
instrument.29,30 The dataset from the first epoch is made of 52 temporal frames acquired under the 2015-05-05
– 095.C-0298(A) ESO program with a total apparent rotation of the field of view of 18.2°. The dataset from
the second epoch is made of 80 temporal frames acquired under the 2016-01-17 – 096.C-0241(G) ESO program
with a total apparent rotation of the field of view of 28.1°. Since several background faint point sources and
background stars are visible in the projected field of view of the instrument, we limit the study to a region of 3.5
arcseconds of radius around the host star. The HD95086-b exoplanet plus two background faint point sources
are visible in the considered field of view.

3.2 Signal-to-Noise Maps and Achievable Contrasts

Figure 1 shows the SNR maps obtained with TLOCI, KLIP and PACO algorithms on the two considered datasets.
The detections above a conventional threshold at τ = 5 (theoretically leading to PFA ≤ 2.87×10−7) are classified
as true or false detections. PACO is the only tested algorithm able to detect the three known faint sources without
false alarm in the whole field of view. At the first epoch, the fourth highest SNR values from PACO (the first
one which is not a real known faint point source) is about 3.6 to compare with 119 for TLOCI and 8.3 for KLIP,
emphasizing the ability of PACO to distinguish without ambiguity the faint point sources from the speckles.
Contrary to other methods, the detection maps from PACO are also almost stationary even in the vicinity of
the host star without postprocessing. KLIP outperforms TLOCI algorithm because the number of false alarms
is limited (but still higher than expected at the chosen threshold). However, only one of the three known faint
point sources is detected at SNR ≥ 5.
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Figure 1. SNR maps obtained with TLOCI, KLIP and PACO algorithms around the HD95086 star at two epochs (2015
and 2016). The detections above a conventional threshold at τ = 5 are classified as true or false detections directly on
the SNR maps using square patterns. The 60 first detections are plotted as bar charts below each SNR map, ordered by
decreasing SNR values, with true detections in pink (true faint point sources) and false detections in blue.

Equation (11) provides an estimate of the minimum flux of a source required to detect the fraction PD of the
total number of sources under a given probability of false alarm. As stated before, the conventional threshold
of the SNR maps at τ = 5 corresponds to a probability of alarm PFA(τ = 5) = 2.87× 10−7. Injecting this PFA
in equation (11) leads to a minimal contrast α = 5σα to detect half of the sources. Figure 2 gives the contrast
maps for PACO at 5σ for a probability of detection PD = 50% for the two considered datasets on the whole
field of view. These maps are directly derived from equation (11) so that the contrast is assessed without Monte-
Carlo simulations and/or fake exoplanets injections. They emphasize that the contrast at 5σ is not constant
throughout the field of view. As expected, it is higher (performance is worse) at smaller separations due to the
proximity of the host star. Farther from the host star, some areas are locally less fovarable than others due



Figure 2. 1st line: PACO contrast maps at 5σ for a probability of detection PD = 50%. 2nd line: Contrast curves at
5σ obtained with PACO, TLOCI and KLIP algorithms. The results are obtained on the HD95086 datasets at the two
considered epochs on the whole field of view offered by the SPHERE-IRDIS instrument.

to the presence in the field of view of very bright background stars which are not masked by the coronagraph.
Figure 2 also gives contrast curves at 5σ for the different algorithms tested. The contrast curves for PACO
are directly derived from equation (11). In practice, they are obtained by performing a radial average of the
contrast maps. The achieavable contrast with PACO is better than the one from TLOCI and KLIP. We have
shown in our article23 that it is a reliable estimate of the achievable contrast for angular separations higher than
2.5 arcseconds. For shorter angular separations, the actual contrast that can be achieved in practice is worse
(typically at the level of contrast obtained for PD = 80%, which is also given in figure 2), since we assume in the
derivation of the contrast curves that the background statistics are perfectly known while in practice they must
be estimated in the presence of a source. For this reason, we refer to the contrast curves as “oracle” contrast
(achievable should an oracle provide the background statistics even in the presence of a source).

Figure 3 gives the CRLB (minimal standard-deviation) maps on the estimated parameters Ω = {α, x0, y0}
for the two considered datasets. These maps can be directly exploited to predict the standard deviation of
the flux estimate and source location. For example, far from the host star, {δα, δx0 , δy0} ' {1 × 10−6, 3 ×
10−6/α pixels, 3×10−6/α pixels} at the first epoch. It means that the standard-deviation on the flux estimate is



about 1×10−6 and about 1 pixel for the localization of a source of flux α = 3×10−6. These maps also emphasize
that the estimation accuracy is not constant all over the field of view. Particularly, it is worse near very bright
sources and telescope spiders.

Figure 3. Cramér-Rao lower bounds (minimal standard-deviation) δ = {δα, δx0 , δy0} computed on the estimated param-
eters Ω = {α, x0, y0}. δx0 and δy0 are normalized by the inverse of the flux α of the exoplanet and expressed in pixels
unit. The results are obtained on the HD95086 datasets at the two considered epochs on the whole field of view offered
by the SPHERE-IRDIS instrument.

A more complete study via additional detection maps, receiver operating curves and contrast curves is
conducted in our journal article23 using injection of faint point sources at challenging level of contrast on others
VLT/SPHERE-IRDIS datasets.

4. APPLICATION OF PACO ON ADI+SDI SEQUENCES FROM THE
VLT/SPHERE-IFS INSTRUMENT

In this section, we test PACO on multi-spectral datasets from the VLT/SPHERE-IFS instrument. As for
TLOCI and KLIP algorithms, each spectral channel is processed independently from the others. A joint spectral
processing using PACO would improve the detection limit but requires some refinements which are detailed in
a paper in preparation. The tested target is the HR8799 star located in the Pegasus constellation. The star
hosts four known exoplanets which were confirmed using direct imaging.31 Three of them (HR8799-c-d-e) can



be visible within the field of view offered by the SPHERE-IFS imager. The fourth one (HR8799-b) orbits about
1.72 arcsec from its host star and is outside the SPHERE-IFS field of view. The considered dataset is made of
46 temporal frames acquired under the 2015-07-04 – 095.C-0298(C) ESO program with a total apparent rotation
of the field of view of 16.4°.

Figure 4 shows the SNR maps from TLOCI, KLIP, and PACO at the four wavelenghts λ = 1.39µm, 1.50µm,
1.54µm and 1.65µm. Figure 5 gives the combined SNR as defined in equation 12 on the L = 39 available
wavelenghts (0.96µm ≤ λ ≤ 1.64µm) and on the 10 spectral channels part of the H-Johnson band (1.49µm ≤
λ ≤ 1.64µm) in which the exoplonet signal is the strongest. As in section 3, an unsharp filtering is applied as
postprocessing by the SPHERE reduction pipeline on the TLOCI and KLIP SNR maps. At λ = 1.39µm, the
exoplanetary signal is too weak to be detected by the three tested algorithms. However, PACO is the only tested
algorithm producing a stationary map (except near the cononagraph), without false detections since the highest
SNR values (corresponding to a speckle) is about 2.8 for PACO to compare with 228 for TLOCI and 7× 105 for
KLIP. The false alarms are particularly important in the corner of the field of view using the tested state-of-the-
arts techniques. This is particularly problematic when an exoplanet (such as HR8799-c) is present in this area
since it cannot be easily distinguished from the background. PACO seems significantly less sensitive to this kind
of effects since aberrant and/or saturated pixels in the science data are considered as missing data in PACO and
do not impact the background statistics. Figure 6 illustrates that PACO can lead to the location of exoplanets at
a subpixel resolution. In practice, this refinement decreases the residual negative bias on the SNR of a source due
to the regular sampling of the criteria grid. We also evaluated the fraction E(SNR(Gs(φ0) | φ0))/E(SNR(φ0 | φ0))
of SNR lost due to the sampling grid Gs under consideration, with Gs(φ0) = arg minφ∈Gs ‖φ−φ0‖

2, showing that
it is unlikely that a faint source be missed due to sampling the SNR map at integer pixel locations rather than at
the true subpixel location of the source. Figure 7 gives the contrast maps derived from PACO and the contrast
curves from the three tested algorithms. Figure 8 gives the CRLB (minimal standard deviation) maps on the
estimated parameters Ω = {α, x0, y0} for the four considered wavelenghts. It shows that the minimal contrast
of a source to be detected at SNR = 5 as well as the astrometric and photometric accuracies depend both on the
location and on the spectral channel.

5. CONCLUSION

We illustrated our recent exoplanet detection algorithm PACO on angular differential imaging datasets from the
VLT/SPHERE-IRDIS instrument. PACO learns a statistical model of the background capturing the average
stellar speckles and the spatial correlations. The decision in favor of the presence or absence of an exoplanet is
performed by a binary hypotheses test. PACO differs from the standard reduction algorithms by the absence
of differential image subtraction leading to an intrinsically unbiased photometry. PACO is also completely
parameter-free and produces stationary detection maps which can be thresholded at a controlled probability
of false alarm without any postprocessing step. The expected contrast at 5σ as well as the astrometric and
photometric accuracies can be straightforwardly assessed without Monte-Carlo injections. In this paper, we also
applied PACO to multi-spectral datasets from the VLT/SPHERE-IFS instrument. Each channel is processed
independently and the resulting SNR maps are then combined. A joint processing of the data at different
wavelengths is expected to improve the detection maps (in particular, improve the detection limit). This is the
subject of on-going work.
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[13] Marois, C., Correia, C., Véran, J.-P., and Currie, T., “Tloci: A fully loaded speckle killing machine,”
Proceedings of the International Astronomical Union 8(S299), 48–49 (2013).

[14] Marois, C., Correia, C., Galicher, R., Ingraham, P., Macintosh, B., Currie, T., and De Rosa, R., “Gpi psf
subtraction with tloci: the next evolution in exoplanet/disk high-contrast imaging,” in [Adaptive Optics
Systems IV ], 9148, 91480U, International Society for Optics and Photonics (2014).

[15] Currie, T., Debes, J., Rodigas, T. J., Burrows, A., Itoh, Y., Fukagawa, M., Kenyon, S. J., Kuchner, M.,
and Matsumura, S., “Direct imaging confirmation and characterization of a dust-enshrouded candidate
exoplanet orbiting fomalhaut,” The Astrophysical Journal Letters 760(2), L32 (2012).

[16] Wahhaj, Z., Cieza, L. A., Mawet, D., Yang, B., Canovas, H., De Boer, J., Casassus, S., Ménard, F.,
Schreiber, M. R., Liu, M. C., et al., “Improving signal-to-noise in the direct imaging of exoplanets and
circumstellar disks with mloci,” Astronomy & Astrophysics 581, A24 (2015).

[17] Soummer, R., Pueyo, L., and Larkin, J., “Detection and characterization of exoplanets and disks using
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Figure 5. Combined-SNR maps obtained with TLOCI, KLIP and PACO algorithms around the HR8799 star with the
SPHERE-IFS instrument. 1st column: the L = 39 spectral channels are combined (λ ∈ {0.96; 1.64}µm). 2nd colums:
only the 10 available spectral channels part of the H-Johnson band are combined (λ ∈ {1.49; 1.64}µm).
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Figure 6. SNR maps from PACO obtained at λ = 1.64µm around the HR8799 star. The maps are computed by evaluating
the detection criteria on the original pixel grid (corresponding to s = 1), and by considering a subpixel resolution by a
factor s = 2 and s = 4.



Figure 7. Left: PACO contrast maps at 5σ for a probability of detection PD = 50%. Right: Contrast curves at 5σ
obtained with PACO, TLOCI and KLIP algorithms. The results are obtained around the HR8799 star for the wavelenghts
λ ∈ {1.39; 1.50; 1.54; 1.65}µm.



Figure 8. Cramér-Rao lower bounds (minimal standard-deviation) δ = {δα, δx0 , δy0} computed on the estimated param-
eters Ω = {α, x0, y0}. δx0 and δy0 are normalized by the inverse of the flux α of the exoplanet and expressed in pixels
unit. The results are obtained on the HR8799 dataset at λ ∈ {1.39; 1.50; 1.54; 1.65}µm.
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