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Abstract—The detection of faint sources is a key step in
several areas of signal and image processing. The reliability of
the detection depends on two key components: (i) the detection
criterion used to derive detection maps in which the signature of
a source takes the form of a detection peak, and (ii) the extraction
procedure identifying the meaningful detections.

In this work, the expected false discovery rate guides the
selection of meaningful detections. A procedure is designed to
account for correlations in the detection maps. This prevents
the issue of the multiple detections of a single source and
corrects the number of effective independent tests performed. The
proposed approach is evaluated on an astrophysical application:
the detection of exoplanets by high-contrast imaging.

Index Terms—detection, FDR, correlated data, matched filter

I. INTRODUCTION

Many applications require detecting and localizing a pattern
of known shape in a signal or an image, for example, the echo
of a modulated wave to estimate the time-of-flight in radar
[1], the point spread function of the microscope to perform
super-resolution in fluorescence microscopy, or an unresolved
exoplanet [2]. Under the assumption of additive Gaussian
background noise, the detection and localization are typically
performed with a matched filter. This matched filter can be
interpreted as a binary test assessing the absence or presence
of a pattern centered at any of the possible sample locations.

Controlling the false alarm rate, i.e., the proportion of
wrongful detections of the pattern solely due to noise is often
crucial. Since not only one location is tested at a time but all
possible locations are considered, false alarms must be studied
in the context of multiple hypothesis testing.

To control the false alarms when multiple hypotheses are
tested, several approaches are possible. First, the probability
of reporting at least a false alarm in one of the many tests
performed can be controlled (the so-called family-wise error
rate: FWER). However, as the number of tests increases, this
requires setting increasingly restrictive detection thresholds. A
more relevant target is the proportion of erroneous detections
(the so-called false discoveries) relative to the total number
of reported detections: the false discovery rate (FDR). The
seminal paper [3] shows that the application of a linear step-up
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(LSU) procedure, based on the analysis of the ranked p-values
associated with each detection, guarantees the FDR to match a
target value, in expectation. The application of this procedure
to detection maps obtained by matched filtering is however
not straightforward because of the spatial correlations in the
maps [4].

Our contributions: this paper describes a procedure to
identify meaningful detections from a signal or an image,
based on two key ingredients:
• a greedy detection technique based on a variant of match-

ing pursuit,
• an estimation of the effective number of independent

tests to adapt an LSU procedure and decide how many
detections are meaningful according to a target FDR.

We illustrate that our method effectively controls the FDR in
an astrophysical application: the detection of exoplanets and
background sources in high-contrast imaging.

II. BACKGROUND ON MULTIPLE HYPOTHESIS TESTING

The problem of detecting the presence of a pattern can
be expressed, in its most simplified form, as the binary
hypothesis:

(P1)
{
H0 : s = b (pure background)
H1 : s = b+m , (background + pattern)

where s corresponds to an observed signal, b is the back-
ground, i.e. a random realization of a stochastic model of the
signal in the absence of the pattern, and m is the (determin-
istic) pattern whose presence is sought. In this formulation of
the detection problem, the background noise is assumed not to
depend on the presence of the pattern, which is often the case
when considering the detection of weak signals relatively to a
much stronger background. The pattern m is also considered
to be known beforehand so that the only difficulty is to decide
whether the noisy observed signal s corresponds to a random
realization of pure background or to the superimposition of
background and the sought pattern.

Under a pdf of the background pB(b), the likelihood ratio
test is the most powerful test for the binary hypothesis (P1),
as shown by Neyman and Pearson [5]:

L (s) =
pS(s|H1)

pS(s|H0)
=

pB(s−m)

pB(s)

H1

≷
H0

η . (1)



Fig. 1. Ordered p-values versus their rank of detection.

The probability of false alarm PFA (aka type I error), cor-
responds to the probability P of wrongfully deciding for H1

while H0 was true: PFA(η) = PB(L (b) ≥ η). The p-value
associated to an observed signal s corresponds to PFA(L (s)),
i.e. the probability to observe by chance deviations in the
background leading, in the absence of pattern, to likelihood
ratio values greater or equal to L (s), the actual value of the
likelihood ratio for the signal s.

Let us now consider a multiple hypothesis test built by
running in parallel the binary hypothesis test (P1) on signals
s1, s2, . . . , sn. Out of these n signals, an unknown number
n1 of signals contain the pattern. Random realizations of
the background in each of these signals are assumed to be
independent.

To select the detection threshold η, one may consider the
probability that at least one false alarm occurs when the n
tests are conducted, i.e. the FWER. Under our assumption of
independent realizations of backgrounds, FWER = 1 − (1 −
PFA(η))n. To control the FWER at a prescribed level q, the
detection threshold must be set according to η = PFA−1[1−
(1−q)1/n]. When the number n of tests increases, this leads to
tests with very limited power: ∀q < 1, limn→∞ η =∞ (very
high detection thresholds must be set to guarantee that the
probability of experiencing one or more false alarms remains
small, at the cost of a drop of the probability of detection).

To address the issue of a loss of statistical power when n
is large, several data-adaptive procedures have been proposed
in the literature to set the detection threshold η. Rather than
controlling the probability of committing at least one false
detection, Benjamini and Hochberg [3] describe a method to
control the FDR defined by:

FDR = E
[

V

max(R, 1)

]
, (2)

where V is the random variable corresponding to the number
of false alarms and R is the random variable for the total num-
ber of detections, i.e. the number of positive tests L (si) ≥ η.

Benjamini-Hochberg’s method is an LSU procedure that
first sorts the p-values of the test statistics in increasing order
p(1) to p(n). The largest rank k such that p(i) ≤ i qn for all i ≤ k
is iteratively identified. If no k > 0 exists, H0 is accepted for
each of the n tests, otherwise, the hypothesis H1 is accepted

Algorithm 1: Estimation of n̂0 – see [7]

1 Calculate ∀k ∈ J1;nK , Sk = (1− p(k))/(n+ 1− k),
the kth slope estimate.

2 Start with k = 2, proceed towards larger k, stop when
Sk < Sk−1, and use: n̂0 = min(1/Sk + 1, n) .

for the tests corresponding to the first k p-values p(1) to p(k).
It is shown in [3] that this procedure controls the FDR at a
level FDR = n0

n q in the case of independent backgrounds,
where n0 is the number of true H0 hypotheses and n the total
number of independent tests. To reach a prescribed FDR level,
it is therefore necessary to estimate n0.

The estimation of n0 can be performed by an analysis of
the ordered p-values versus their rank of detection. A change
of slope is expected between the n1 (respectively n0) tests
under the H1 (respectively H0) hypothesis, see Figure 1. An
estimate n̂0 of n0 is obtained through the inverse of the
slope of the linear part associated with the largest p-values.
Several adaptive methods have been proposed (see e.g. [6] for
a review) to detect the change of slope and to estimate n0.
These strategies are generally based on the seminal procedure
of [7], see Algorithm 1. Once the estimate n̂0 is obtained,
the LSU procedure is then applied at level q′ = q nn̂0

≥ q to
control the FDR at the prescribed level q, where the n tests
are independent.

When the tests are not independent, these procedures no
longer control the FDR in the sense that the actual FDR
can exceed the prescribed level q. Benjamini and Hochberg
have shown that performing an LSU procedure at level q′′ =

q′∑n
k=1 k

−1 provides an FDR that never exceeds the prescribed
level q [8]. In practice, this rule is very conservative and the
prescribed level q is rarely reached, causing an unnecessary
loss of power.

In the context of a joint detection and localization problem
in signal processing, the family of hypotheses covers a set of
possible locations of the pattern:

(P2)


H0 : s = b (pure background)
H1 : s = b+ α1m1 , (background + pattern at loc. 1)
. . .

Hn : s = b+ αnmn , (background + pattern at loc. n)

where mi represents the pattern centered at the ith location
and where the amplitude α of the pattern is not known in
advance and must thus be estimated to perform the detection.
The likelihood of a given hypothesis Hi can be approximated
by replacing α by the maximum likelihood estimate under Hi:
p(s|Hi) ≈ maxα pB(s− αmi).

Under the assumption of a Gaussian background, pB(b) =
N (µ,Σ) where µ and Σ are respectively the mean and
the covariance matrix of the background. The generalized
likelihood ratio (i.e. the likelihood ratio when the unknown
α is replaced by its maximum likelihood estimate) is then:

2 logGLRTi :
(mt

iΣ
−1s)2

mt
iΣ
−1mi

H1

≷
H0

τ2 , (3)



Fig. 2. Example of a detection map obtained with the PACO algorithm [2].

where τ is a detection threshold. When the amplitude α of the
pattern is known a priori to be non-negative, the test takes the
form:

S/Ni :
mt
iΣ
−1s√

mt
iΣ
−1mi

H1

≷
H0

τ , (4)

which can be interpreted as the signal-to-noise ratio of the
pattern amplitude, i.e. the ratio α̂/σα where σα is the standard
deviation of the estimator of α. The test in equation (4) also
corresponds to the matched filter for detecting m.

If the pattern mi has a limited extension (in the sense that
most elements of m are 0 except close to the ith location) and
if the correlation length in the covariance matrix Σ is also
small, tests Hi and Hj can be considered almost independent
at locations i and j that are far apart. In contrast, tests at two
close locations are not independent and thus require to adapt
the standard procedure to control the FDR. Figure 2 shows a
detection map obtained by computing a criterion of the form
of equation (4) from astronomical high-contrast observations.
We describe in more detail this application in Section IV.
Spatial correlations can be observed: the two detection peaks
are not limited to single pixels but are spread over a larger
area, outside those two peaks, tests are correlated which is
visible by the grainy aspect of the detection map.

To extract meaningful detections from a detection map, it
is therefore necessary to automatically set a relevant detection
threshold τ , using a method that is adapted to the presence
of correlations between tests, and to extract a single detection
at each detection peak (although several neighboring pixels
might simultaneously reach values above the threshold).

III. PROPOSED ALGORITHM

There exist strong connections between multiple hypothesis
testing in signal processing and sparse representations, see
for example [9] for an application in synthetic aperture radar
imaging. Let M be the matrix whose n columns are the
patterns m1 to mn. The multiple detection problem, when
expressed under the form of a sparse decomposition problem,
takes the form:

arg min
α

‖Mα− s‖2Σ−1 + τ2‖α‖0 , (5)

where α is the vector of the n amplitudes related to each
one of the n patterns m1 to mn and ‖α‖0 is the `0 pseudo-
norm, i.e. the number of non-zero entries in vector α. The
solution to this minimization problem is equivalent to running
the tests GLRTi defined in equation (3) in parallel with the
same threshold τ2 if the non-zero values in α correspond to
indices of patterns that do not overlap. In the case of pattern
overlapping, the superimposition of patterns is considered with
this latter formulation.

A slightly different form is often used, where meaningful
detections are controlled via the total number of detections K:

arg min
α

‖Mα− s‖2Σ−1 s.t. ‖α‖0 ≤ K . (6)

Formulation (6) is typically (approximately) solved using
greedy algorithms that iteratively build the solution, starting
from a zero amplitude vector α, until K patterns are selected.

While the `0 formulation lends itself to the design of
algorithms adapted to the extraction of patterns in both the
non-overlapping and partially overlapping cases, it remains to
solve the issue of the automatic selection of the total number
of detections K. We propose in this paragraph an extension
of the Benjamini-Hochberg procedure to address this issue.

We suggest that an equivalent number neq of “independent”
tests (roughly corresponding to the number of spatially cor-
related peaks of a detection map) can be estimated from an
incomplete representation of the diagram p-values versus rank
of detection, in the case of dependent tests. For this purpose,
problem (6) is solved with a greedy approach. The number
of patterns K to detect is set to a value much larger than the
expected number of sources in order to exhibit the expected
change of slope between the tests of the two hypotheses in the
diagram, see Figure 1. If no prior on the number of sources
is known, the greedy iterative procedure can be run until no
more source of positive flux is detected. Given the K detected
sources, the K available p-values are sorted in increasing order
and the estimate n̂1 = K − n̂0 of sources is obtained with
Algorithm 1. Then, an estimate n̂eq of the equivalent number
of independent tests is computed (see Figure 1):

n̂eq =
1− p(n̂1)

p(K) − p(n̂1)
(K − n̂1) + n̂1 . (7)

Given the estimates n̂1 and n̂eq, the LSU procedure is applied
at a level q′ = q n̂0

n̂eq
= q

n̂eq−n̂1

n̂eq
to control the FDR at level q.

IV. RESULTS

In this section, we evaluate the performance of the proposed
procedure both on synthetic and real data. For all tests, we
consider K = 300 detections for the estimation of neq and
n1, which seems reasonable given the number of sources we
expect to detect.

A. Application on synthetic data

We first test the proposed procedure on simulated data to
evaluate its ability to control the FDR of dependent tests. We
have numerically injected 100 synthetic sources (mean S/N
of detection about 4) in each of 100 centered random fields
of 1000× 1000 pixels with unit variance. Detection maps are



Fig. 3. Influence of the typical length of correlation. (a) FDR as a function
of the prescribed level q; (b) example of spatially correlated images.

obtained by evaluating the criterion (4) in each point of the
field of view, and the meaningful detections are extracted with
the procedure proposed in Section III to control the FDR.

Figure 3 represents the resulting mean FDR as a function of
the prescribed level q for various typical lengths of correlation
in the detection maps. The FDR is well controlled for low and
moderate lengths of correlation while it exceeds the prescribed
level q when the length of correlation is higher than about
15 pixels. An interesting feature is that the FDR is well
controlled for the typical length of correlation (about 9 pixels)
encountered on the detection maps from high-contrast imaging
of exoplanets, see zoom insets in Figure 2.

B. Application to real data

We now test the proposed procedure on real data in the
context of the detection of exoplanets by high-contrast imag-
ing [10]. High-contrast imaging consists in observing a star
and its close environment hosting potential exoplanets and
background stars on short temporal exposures. While the
observations are conducted with a coronagraph to mask most
of the light from the star, the detection of the exoplanets
remains extremely difficult due to very high-contrast between
the host star and the exoplanets (typically greater than 103

in the recorded images). In this context, we have recently
proposed a processing algorithm, named PACO (for PAtch
COvariances), dedicated to the detection of exoplanets in
high-contrast imaging [2], [11]. PACO follows the general
detection framework presented in Section II since it includes
whitening the spatial correlations of the data and a matched
filter approach. PACO also implements several features to
deal with the specificities of the data. The distribution of the
underlying detection criterion in the absence of exoplanets is
well controlled: it follows closely a centered Gaussian law with
unit variance. We have shown on hundreds of datasets from
the European SPHERE instrument operating at the Very Large
Telescope that PACO offers a significantly better detection
sensitivity than existing processing methods.

In this section, we illustrate how the detection of the
exoplanets can be conducted using the procedure proposed in
section III to control the FDR. To quantify the performance,
we first perform a numerical experiment: we inject realis-
tic exoplanet signatures in a real dataset obtained from the
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Fig. 4. Detection and false alarm rates as a function of the number of sources
and their S/N of detection with a detection procedure controlling the PFA.

SPHERE instrument where no real source was ever detected.
The number of synthetic sources added to the data varies
between 3 and 240 and their detection S/N in the detection
maps produced by PACO varies between 3 and 7.

We first consider a detection strategy based on a control
of the PFA. Sources are detected successively in decreasing
S/N order by a matching pursuit algorithm until a fixed
detection threshold τ (corresponding to a prescribed PFA) is
reached. Figure 4 reports the detection and false alarm rates for
each tested case and emphasizes the limitation of a detection
procedure based on the control of the PFA. While there is no
gain to decrease the detection threshold when the sources are
rare and bright, it could be beneficial to adapt the detection
threshold when sources of weak intensity are numerous. For
example, the detection rate goes from about 5% to 55% when
the detection threshold is set to 3.5 instead of 5 in the case
with 240 very faint sources in the field of view (leftmost green
bars). At the same time, the increase of the false alarm rate is
limited: from 0% to 10%.

We then perform the detection by controlling the FDR with
the proposed procedure. Figure 5 represents the achieved FDR
as a function of the prescribed level q for different numbers of
sources and for two levels of source intensities. An example
of the graph p-values versus rank of detection is also given
for a fixed value of q. This shows that the FDR is relatively
well controlled in the sense that it almost never exceeds the
prescribed level q. The conservative discrepancy (between 5%
and 10%) can be attributed to the non-stationarity of the
correlation structures of the detection maps: the typical length
of correlation at the center of the field of view is quite different
from farther from the star. Using a single equivalent number



Fig. 5. (a,c): FDR as a function of the prescribed level q for different numbers of sources injected in real data. (b,d): Examples of the graph p-values versus
rank of detection for q = 0.158, the detections are classified as true/false positives/negatives. The tests fulfilling p(i) ≤ iq n̂0

n̂2
eq

(i.e. p-values below the green
curve) are declared significant. The results are given for two levels of intensity: the mean S/N of detection of the sources in the PACO detection maps is about
4 (a,b) and 6 (c,d), see the insets in (a,c).

Fig. 6. (a,b) Detection map obtained with PACO, controlling the FDR (a) or
the PFA (b). The detection map obtained with the widely used method TLOCI
(c) displays an unexpected number of false alarms due to a mismodeling of
outliers and spatial correlations in the data (false alarms were labeled by an
expert), the FDR procedure (d) understandably fails in this case.

n̂eq of independent tests is only a simplified consideration for
these correlations. The estimate n̂1 of the number of sources
is also satisfactory since it is between 0.78n1 and 1.05n1
depending on the level of intensity of the sources.

Given the successful validation of our procedure, we now
consider another dataset from the SPHERE instrument that
contains many real sources. Figure 6(a,b) gives the detection
results obtained with the PACO algorithm under control of
either the PFA or the FDR. This shows the benefit of the
proposed procedure to control the number of errors among
the number of discoveries instead of the number of errors
among the total number of tests that are wrongfully assumed
independent. Beyond the design of the procedure extracting

the meaningful detections, the modelization of the background
noise of the data also plays a critical role in the global
performance of a detection method. As illustrated by Figure
6(c,d), a widely used algorithm for the processing of high-
contrast data (TLOCI) produces many more false alarms than
expected. This is due to a mismodeling of the correlations
and outliers in SPHERE observations, thus preventing the
automatic and reliable identification of the sources, whatever
the extraction procedure.

V. CONCLUSION
In this paper, we have investigated the extraction of mean-

ingful detections from spatially correlated detection maps by
controlling the FDR. We have shown that an estimate of the
equivalent number of independent tests and of the number
of sources led to the accurate control of the FDR both in
simulated cases and on experimental data.

REFERENCES

[1] O. Besson, E. Chaumette, and F. Vincent, “Adaptive detection of a
Gaussian signal in Gaussian noise,” in IEEE CAMSAP, 2015.
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