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Abstract

We develop the information geometry of scaled Gaussian distributions for
which the covariance matrix exhibits a Kronecker product structure. This
model and its geometry are then used to propose an online change detection
(CD) algorithm for multivariate image times series (MITS). The proposed
approach relies mainly on the online estimation of the structured covariance
matrix under the null hypothesis, which is performed through a recursive
(natural) Riemannian gradient descent. This approach exhibits a practi-
cal interest compared to the corresponding offline version, as its computa-
tional cost remains constant for each new image added in the time series.
Simulations show that the proposed recursive estimators reach the Intrinsic
Cramér-Rao bound. The interest of the proposed online CD approach is
demonstrated on both simulated and real data.

Keywords: Online covariance matrix estimation, Riemannian Geometry,
Scaled Gaussian, Change Detection

1. Introduction

Synthetic Aperture Radar (SAR) Multivariate Image Times Series (MITS)
have lately been made widely available thanks to various Earth monitoring
missions such as Sentinel-1, TerraSAR-X, or UAVSAR. This modality offers
significant advantages over the optical and multispectral ones, notably when
the area of interest is observed at night, or covered by clouds. As for op-
tical images, the pixel of SAR images can be multivariate when exploiting

Preprint submitted to Elsevier December 6, 2023

ar
X

iv
:2

31
2.

02
80

7v
1 

 [
st

at
.A

P]
  5

 D
ec

 2
02

3



the polarimetric diversity, or the spectro-angular properties of the scatter-
ers through a wavelet decomposition [1]. Hence, the analysis of multivariate
SAR-MITS has become an active topic of research over the past years, with
numerous applications such as change detection and crop classification.

In this paper, we focus on change detection applications for SAR-MITS [2].
Notably, when the local patches of the images are used instead of single pixels,
the detection algorithms are mainly based on the analysis of the statistical
properties of the patch over the time. In this framework, a popular approach
is based on testing the change of the covariance matrix along the time series
[3]. An appropriate matrix distance [4, 5, 6] is then used to take a decision.
For time series with more than two images, a prominent class of methods
builds this distance upon the Generalized Likelihood Ratio Test (GLRT),
usually constructed under the assumption that the multivariate pixels follow
a Gaussian distribution [7, 8]. In practice, the radar returns makes the data
distribution heavy-tailed [9, 10]. A popular family to model non Gaussian
radar data is the Complex Elliptically Symmetric (CES) distributions frame-
work [11], that encompasses a significant number of well-known distribution
(e.g., Weibull, Student-t, and K-distribution). Scaled Gaussian (SG) distri-
butions are a major sub-family of CES, that model each sample as Gaussian
conditionally to a scale factor called the texture. The choice of the texture
distribution allows then for accurately modeling the tails of the distribution.
Conversely, assuming that the texture is unknown and deterministic for each
sample offers a more robust model, as it is distribution-free [12, 13]. This
particular model has been used in [14] to extend the classical GLRT of [7, 8],
which improved the detection performance when using high resolution SAR
images.

The performance of the aforementioned change detection methods is gen-
erally improved when the input data reflects the spectro-angular diversity
of the scatterers. Such diversity can be accounted for through an appro-
priate wavelet transformation [1]. This pre-processing incidentally increases
the pixel dimension p compared to the native polarimetric SAR pixels (for
which p = 3). As a result, the spatial resolution of covariance-based change
detectors is reduced, as the tested local patches should include a number
of pixel n that scales with p. This issue can be mitigated by assuming an
additional structure for the covariance matrix and derive the corresponding
change detection algorithm. This approach was successfully leveraged by
considering low-rank structures of the covariance matrix in [15, 16]. A lim-
itation regarding these methods is that the rank of the covariance matrix is
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an extra parameter that needs to be estimated. Moreover, this rank often
changes with respect to the studied pixel and the images which leads to com-
plicated strategies for the change detection process. This motivates the use
of alternate low-dimensional covariance matrix structures.

In this work, we remark that the transformation proposed in [1] combined
with polarization channels naturally leads to have an inherent Kronecker
product structure. This structure is interesting since it does not involve
any nuisance parameter: the dimensions of the sub-matrices are fixed by
the number of polarization channels. It also greatly reduces the number of
parameters to be estimated, which allows for preserving a thin spatial resolu-
tion. The Kronecker product structure has been extensively leveraged in the
radar community and for MIMO systems. For example, several algorithms
have been developed for the estimation of Kronecker product structured co-
variance matrices when the distribution is assumed to be Gaussian [17, 18].
Their extensions to Scaled Gaussian (SG) model, have been developed in
[19, 20]. To the best of our knowledge, this structure was not considered in
change detection for SAR-MITS. Hence, building upon the aforementioned
works, the first main contribution of this paper is thus to derive the GLRT
for the change detection problem when the data follows a SG distribution
with a Kronecker structure for the covariance matrix.

We then address important issues regarding the computational load of
robust change detection methods. Indeed, the computational cost of robust
change detection [14, 16] becomes prohibitive when the number of images
T increases, which limits their practical use for large SAR-MITS. The main
computational bottleneck is the computation of a robust covariance matrix
estimate, that needs to be re-evaluated under the null hypothesis for each
new image. This issue can be mitigated by replacing the estimate by one
computed online (i.e., in a one pass streaming process). In this scope, the
Riemannian optimization framework [21] offers an interesting lead since the
covariance matrix is a parameter that belongs to a smooth manifold: the
manifold of Hermitian Positive Definite (HPD) matrices. Especially, a Rie-
mannian gradient based online procedure proposed in [22] allows for obtain-
ing a statistically efficient estimate in a computationally efficient manner
(as the gradient steps do not require any grid search). This method has
already been successfully leveraged for scaled Gaussian models in [23] and
t-distributed data in [24]. The second main contribution of this paper is to
leverage this framework for reducing the computational load of the proposed
change detection method. This requires to study the information geometry of
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scaled Gaussian models with Kronecker product structured covariance matri-
ces. As a side result of this analysis, we also obtain the intrinsic Cramér-Rao
bound [25, 26] for the corresponding estimation problem. This bound is then
used to validate the proposed online estimation method on simulated data.

Finally, we demonstrate the interest of the proposed approach on a real
dataset provided by UAVSAR (courtesy of NASA/JPL-Caltech). The SAR-
MITS is referenced as SDelta 28518 02, Segment 1, which shows the evolution
of a river delta in the USA with cycle of droughts and flood.

The rest of the article is organized as follows: Section 2 presents the
data model and the GLRT adapted to a Kronecker product structured co-
variance matrix. Section 4 studies the information geometry of this model,
and presents the derivation of the corresponding online estimation algorithm.
Section 5 illustrates the performance of the proposed method on simulated
and real data. Notations: italic indicates a scalar quantity, lower case bold-
face indicates a vector quantity, and upper case boldface a matrix. The
transpose conjugate operator is H and the conjugate one is ∗. tr(·) and | · |
are respectively the trace and the determinant operators. H++

p is the mani-
fold of HPD matrices of size p× p. For x ∈ Cp, the notation x ∼ CN (ν,Σ)
stands for a complex-valued random Gaussian vector of mean ν ∈ Cp and
covariance matrix Σ ∈ H++

p .

2. A framework for robust covariance matrix change detection

2.1. Setup

Within a SAR-MITS, we consider detecting a change within a local (spa-
tial) patch of pixel. Given a set of T co-registered images, this means pro-

cessing T sets of n pixels of dimension p, denoted {{x(t)
i }i∈J1,nK}t∈J1,T K. The

corresponding setup is displayed in Figure 1. A change detection procedure
can then be derived by: i) expressing a relevant statistical model and corre-
sponding likelihood function for the dataset; ii) deriving a change detection
test (such as the GLRT) to assess whether the parameters of the statistical
model change over time, or not. In the context of SAR-MITS, such proce-
dures usually test for a change within the covariance matrix of the patch, as
it is a meaningful feature for this type of data [3, 4, 5, 6, 7, 8, 14].

2.2. Robust statistical model for the pixel patches

For a given time t the pixel patch consists of n i.i.d. samples {x(t)
i }i∈J1,nK

where each sample x
(t)
i ∈ Cp. Most work modeled this data as follow-
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Figure 1: Illustration data notation for change detection test in a MITS.

ing a complex Gaussian distribution [7, 8], i.e., that pixels are drawn from

x
(t)
i ∼ CN (0,Σ(t)) ∀i, with Σ(t) ∈ H++

p . However, it was shown in [14] that
the complex SG distribution offers a better fit to high resolution SAR images,
and allows for improving the performance of change detection. In this case
each sample x

(t)
i is modeled as complex Gaussian conditionally to an unknown

scale, referred to as the texture. The choice of the texture distribution allows
then for modeling many well known heavy-tailed distributions [11]. Following
from the robust estimation framework [12, 13], a distribution-free detection
process will be obtained by assuming that the texture is unknown and deter-
ministic for each sample. Hence, we model samples as x

(t)
i ∼ CN (0, τ

(t)
i Σ(t))

with τ
(t)
i ∈ R+

∗ ,∀ i ∈ [[1, n]]. The log-likelihood of the pixel patch at time t is
then, up to a constant,

L({x(t)
i }i∈J1,nK, θ

(t)) =
n∑

i=1

log |τ (t)i Σ(t)|+ 1

τ
(t)
i

x
(t)
i

H
Σ(t)−1

xi (1)

where θ(t) = {Σ(t), τ (t)} is the set of unknown statistical parameters, in which

τ (t) = [τ
(t)
1 , · · · , τ

(t)
n ] denotes the vector of textures. Though this will not

be exploited in this work, we also notice that the Gaussian model can be
recovered as a sub-case by simply setting τ

(t)
i = 1,∀ i ∈ [[1, n]].
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2.3. Change detection with the GLRT

Covariance based change detection operates by assuming that a change in
the image is translated by a change in the unknown parameters θ(t) over the
time index t. From the SAR-MITS {{x(t)

i }i∈J1,nK}t∈J1,T K, the change detection
problem can thus be written as the following hypothesis test:{

H0 : θ
(1) = θ(2) = ... = θ(T ) ∆

= θ(0)

H1 : ∃(t, t′) ∈ J1, T K2, θ(t) ̸= θ(t
′)

(2)

For the SG model of Section 2.2, the GLRT corresponding to this hypothesis
test has been derived in [14] and is expressed as:

Λ̂SG =

∣∣∣Σ̂(0)
∣∣∣Tn

T∏
t=1

∣∣∣Σ̂(t)
∣∣∣n

n∏
i=1

(
τ̂
(0)
i

)Tp

T∏
t=1

(
τ̂
(t)
i

)p H1

≷
H0

λ, (3)

where θ̂(0) = {Σ̂(0), τ̂ (0)} stands for the maximum likelihood estimator (MLE)
of the parameters under H0, and θ̂(t) = {Σ̂(t), τ̂ (t)}, ∀t ∈ [[1, T ]] for the MLE
of the parameters under H1. These MLEs are expressed respectively as

Σ̂(0) =
p

n

n∑
i=1

T∑
t=1

x
(t)
i x

(t)
i

H

T∑
t=1

x
(t)
i

H
Σ̂(0)−1

x
(t)
i

and τ̂
(0)
i =

T∑
t=1

x
(t)
i

H
Σ̂(0)−1

x
(t)
i

Tp
, (4)

and

Σ̂(t) =
p

n

n∑
i=1

x
(t)
i x

(t)
i

H

x
(t)
i

H
Σ̂(t)−1

x
(t)
i

and τ̂
(t)
i =

x
(t)
i

H
Σ̂(t)−1

x
(t)
i

p
, (5)

with the latter corresponds to Tyler’s M -estimator of the scatter matrix [12,
13].

2.4. Some practical limitations

Data dimension p (pixel depth): For SAR-MITS, the diversity in the data
arises from polarization channels (HH, VV and HV/VH), and the spectro-
angular diversity of the scatterers which can be obtained by using an appro-
priate wavelet transform [1]. The latter transformation tends to improve the
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detection performance of the covariance based change detectors (such as Λ̂SG

in (3)), however it increases the pixel depth p. It is consequently detrimental
to the spatial resolution of the detectors, as the number of pixel in the patch
n needs to scale with p to accurately estimate the local covariance matrix.
The assumption of i.i.d. data can also be violated when processing large ar-
eas, which motivates the development of methods that reduce the number of
needed samples. This reduction can be achieved by using regularization [27],
or low-rank structured covariance matrices [16]. Nevertheless these methods
involve regularization parameters that need proper tuning, which increases
the complexity of the detection process. This issues will be addressed in
Section 3, where we leverage a Kronecker product structure whose hyper-
parameters are inherently set by the wavelet transform [1].

Data dimension T (length of the time series): The detector Λ̂SG in (3)
involves solution of fixed point equations (5) and (4). Especially, the fixed
point in (4) depends on the whole dataset and cannot be computed recur-
sively (i.e., in a streaming fashion). Whether a low-dimensional structure
is used or not, this means that the computational load of the robust detec-
tors increases heavily for each new added image in the stack, which can be
limiting. This issue is addressed in Section 4, where we leverage the infor-
mation geometry of the considered statistical model in order to propose a
statistically efficient on-line estimation process.

3. Robust GLRT with Kronecker product structure

The wavelet transform in [1] consists in combining the polarization chan-
nels to reflect the spectro-angular diversity of the data. This combination
implies a Kronecker product structure of the covariance matrix, in which the
size of one of the two matrices will be 3 (number of polarization channels),
while the dimension of the other will be equal to the number of frequency
times the angular intervals that are considered. Hence, the covariance ma-
trix Σ can be assumed to be structured as Σ = A⊗B, with A ∈ H++

a and
B ∈ H++

b , where a = 3 and b = p/31. To avoid any scaling ambiguity on this
decomposition and the scaling by the textures, an arbitrary normalization on
A andB is needed. We rely on the unit determinant for both matricesA and

1This remains valid whatever a and b.
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B, which, as noted in [28, 23], is particularly advantageous from a geometri-
cal point of view. In this case, we have A ∈ sH++

a = {M ∈ H++
a : |M | = 1}

and B ∈ sH++
b = {M ∈ H++

b : |M | = 1}. Following from the SG model
of Section 2, we have that each sample of a patch is distributed according
to xi ∼ CN (0, τiA ⊗ B). The likelihood of a pixel patch at time t is then

directly transposed from (1), and also denoted L({x(t)
i }i∈J1,nK, θ

(t)), in which
the parameter of interest θ(t) now denotes θ(t) = {A(t),B(t), τ (t)}, which lies
in the product manifold M = sH++

a × sH++
b × Rn

++.
The following proposition then adapts the GLRT of (3) to the case where

the covariance matrix has such Kronecker product structure.

Proposition 1. The GLRT for the problem of detection (2) when θ(t) =
{A(t),B(t), τ (t)} and T images is:

log(Λ̂
(T )
K−SG) = LH1({θ̂(t)}Tt=1)− LH0(θ̂(0)) (6)

where the log-likelihoods of the whole data under H0 and H1 are expressed as:

LH0(θ(0)) = −nT log |A(0) ⊗B(0)| − Tp
∑n

i=1 log(τ
(0)
i )

−∑n
i=1

∑T
t=1

x
(t)
i

H
(A(0)⊗B(0))−1x

(t)
i

τ
(0)
i

LH1({θ(t)}Tt=1) = −n
∑T

t=1 log |A(t) ⊗B(t)| − p
∑n

i=1

∑T
t=1 log(τ

(t)
i )

−∑n
i=1

∑T
t=1

x
(t)
i

H
(A(t)⊗B(t))−1x

(t)
i

τ
(t)
i

,

(7)

and where θ̂(0) = {Â(0), B̂(0), τ̂ (0)} stands for the maximum likelihood esti-
mator (MLE) of the parameters under H0, and θ̂(t) = {Â(t), B̂(t), τ̂ (t)}, ∀t ∈
[[1, T ]] for the MLE of the parameters under H1. These MLEs are expressed
respectively as

Â(0) = 1
Tnb

(∑T
t=1

∑n
i=1

MT
i,t(B̂

(0))−1∗M∗
i,t

τ̂
(0)
i

)
B̂(0) = 1

Tna

(∑T
t=1

∑n
i=1

Mi,t(Â
(0))−1∗MH

i,t

τ̂
(0)
i

) and τ̂
(0)
i =

T∑
t=1

x
(t)
i

H
(Â(0) ⊗ B̂(0))−1x

(t)
i

Tp

(8)

and

Â(t) = 1
nb

(∑n
i=1

MT
i,t(B̂

(t))−1∗M∗
i,t

τ̂
(t)
i

)
B̂(t) = 1

na

(∑n
i=1

Mi,t(Â
(t))−1∗MH

i,t

τ̂
(t)
i

) and τ̂
(t)
i =

x
(t)
i

H
(Â(t) ⊗ B̂(t))−1x

(t)
i

p
(9)
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where Mi,t ∈ Ca×b is matrix storing the entries of x
(t)
i , such that vec(Mi,t) =

x
(t)
i . All these MLE estimators in (8) and (9) can be evaluated with a fixed-

point algorithm, such as the one proposed in [20].

Proof. The principle of the GLRT consists in computing the quantity:

log(Λ̂
(T )
K−SG) = max

{θ(t)}Tt=1

LH1({θ(t)}Tt=1)−max
θ(0)

LH0(θ(t)). (10)

Obtaining the maximal values in the above expression then boils down to
computing the MLE under H0 and H1. This requires canceling the derivative
of LH0 (resp. LH1) with respect to A(0), B(0), and τ (0) (resp. A(t), B(t), and
τ (t) ∀t). The derivatives of the trace terms are obtained by using xH(A ⊗
B)−1x = tr(A−TMHB−1M) and the following derivative:

∂ tr(OX−1P )

∂X
= −(X−1POX−1)H , (11)

which yields the following results:

∂xH(A⊗B)−1x
∂A

= −A−1MT (B−1)∗M ∗A−1

∂xH(A⊗B)−1x
∂B

= −B−1M (A−1)∗MHB−1.
(12)

The derivatives of the log terms are obtained by using the relation log |A⊗
B| = b log |A| + a log |B|, and ∂ log |X|

∂X
= X−H . After some matrix manipu-

lations, we obtain the final results in (8) and (9).

Remark: the expression of the MLEs under H1 coincide with Tyler’s M -
estimator with Kronecker product structure obtained in [20] (slightly modi-
fied, as we deal with complex valued matrices). Those under H0 are slightly
different due to the assumed shared parameters between the different time
index, and thus involve a summation over t.

Similarly to the unstructured GLRT in (3), the detector (6) cannot be

recursively derived when a new patch XT+1 = {x(T+1)
i }ni=1 is added to the

image stack. Indeed, if we denote the observation sets X1:T = {{x(t)
i }ni=1}Tt=1

and X1:T+1 = {{x(T+1
i }ni=1}T+1

t=1 , it is easy to notice for the MLE of A under
H0 that:

Â(0)(X1:T+1) ̸=
T

T + 1
Â(0)(X1:T ) +

1

T + 1
Â(0)(XT+1) (13)

9



due to the intricacy of the fixed-point solutions (the same is also true for B
and so on τ ). When processing large time series, re-computing the fixed point
can then be computationally demanding for large dimensions p and T , which
limits the practical implementation of the GLRTs. To overcome this issue, we
propose in the next section to recursively update the parameters θ(0), which
allows for computing an online version of the detector (6). Such recursive
algorithm, inspired by [23], will be obtained by leveraging the information
geometry of the manifold M induced by the SG distribution.

4. Online Robust GLRT with Kronecker product structure

In this section, we first derive the Riemannian geometry of M equipped
with the Fisher information metric induced by the likelihood (1). The expo-
nential mapping which is needed in any Riemannian gradient descent algo-
rithm is also given as well as the corresponding geodesic distance. The second
part of this section is devoted to the online estimation of the parameters θ(0)

with a stochastic Riemannian gradient descent algorithm.

4.1. Information geometry of M
In this subsection, we will omit the subscript .(t) since the results given

in this section will be valid for any values of T . By definition, the tangent
space of M at θ is TθM = TAsH++

a ×TBsH++
b ×TτRn

++. The tangent space
TτRn

++ is identified to Rn and the tangent spaces TAH++
a and TBH++

b can
be identified by [26]

TAsH++
a = {ξA ∈ Ha : tr(A

−1ξA) = 0}.
TBsH++

b = {ξB ∈ Hb : tr(B
−1ξB) = 0}. (14)

In the following, ξ = (ξA, ξB, ξτ ) and η = (ηA,ηB,ητ ) denote two elements
from TθM. The Fisher information metric on M induced by the scaled
Gaussian distribution is provided in Proposition 2.

Proposition 2 (Fisher information metric). Given θ ∈ M, ξ and η ∈ TθM,
the Fisher information metric on M induced by the likelihood (1) is

⟨ξ, η⟩θ =
b

p
tr(A−1ξAA

−1ηA) +
a

p
tr(B−1ξBB

−1ηB)

+
1

n
(ξτ ⊙ τ⊙−1

)T (ητ ⊙ τ⊙−1

)

10



Proof. We first introduce the mapping φi : M → H++
p as:

φi(θ
(t)) = τ

(t)
i A(t) ⊗B(t), (15)

such that x
(t)
i ∼ CN (0, φi(θ

(t))). From [29, Proposition 7], we have

⟨ξ, η⟩θ = ⟨Dφi(θ)[ξ],Dφ(θ)[η]⟩H
++
p

φ(θ) ,

where ⟨·, ·⟩H
++
p

· is the Fisher metric of the Gaussian distribution on H++
p .

This metric is, e.g., obtained in [25, 26], and is defined by:

⟨Σ1,Σ2⟩H
++
p

Σ = tr(Σ−1Σ1Σ
−1Σ2) (16)

The directional derivative of φ at θ in the direction ξ is obtained by ϕi(θ +
ξ)− ϕi(θ) and the result is then

Dφ(θ)[ξ] = τiA⊗ ξB + τiξA ⊗B + ξτiA⊗B.

The result is obtained by plugging Dφ(θ)[ξ] into ⟨·, ·⟩H
++
p

Σ , we have:

⟨ξ, η⟩θ =
n∑

i=1

⟨τiA⊗ ξB + τiξA ⊗B + ξτiA⊗B,

τiA⊗ ηB + τiηA ⊗B + ητiA⊗B⟩H
++
p

Σ

= tr
{
(τiA⊗B)−1(τiA⊗ ξB + τiξA ⊗B + ξτiA⊗B)

(τiA⊗B)−1(τiA⊗ ηB + τiηA ⊗B + ητiA⊗B)
}

Let us compute

(τiA⊗B)−1(τiA⊗ ξB + τiξA ⊗B + ξτiA⊗B)

= A−1ξA ⊗ I + I ⊗B−1ξB +
ξτi
τi

I.

By exploiting the relations (M ⊗ N )(O ⊗ P ) = MO ⊗ NP , tr(M ⊗
N ) = tr(M ) tr(N ) and tr(A−1ξA) = tr(A−1ηA) = 0 (and same property
for matrix B), we obtain the announced result.
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Remark: we notice that the determinant constraint is the best choice with
respect to information geometry since it allows to obtain a separable metric.
This is not the case when the trace constraint is used instead.

One can notice that the metric of Proposition 2 is separable into two
scaled Riemannian affine invariant metrics on A and B, respectively, and a
last term on τ . The geometry of a product manifold resulting from such a
separable metric is simply obtained by combining the geometries correspond-
ing to each component. In particular, the Riemannian exponential mapping
at θ ∈ M is defined for ξ ∈ TθM as

expM
θ (ξ) =

(
A exp(A−1ξA),B exp(B−1ξB), τ ⊙ exp(τ⊙−1 ⊙ ξτ )

)
. (17)

This exponential mapping will be very useful when it comes to optimizing a
cost function on the manifold. As for the exponential mapping, it is easy to
derive the geodesic distance since the metric is completely separable, and we
have:

δ2M(θ0, θ1) =
b

p
δ2H++

a
(A0,A1) +

a

p
δ2H++

b
(B0,B1) +

1

n
δ2Rn

++
(τ0, τ1), (18)

where δ2H++
p

(Σ0,Σ1) = ∥ logm(Σ
−1/2
0 Σ1Σ

−1/2
0 )∥22 and δ2Rn

++
(τ0, τ1) = ∥ log(τ−1

0 ⊙
τ1)∥22.

Thanks to this geometry, we are now able to derive an online change
detection when the covariance matrix possesses a Kronecker structure and
the data follows a SG distribution.

4.2. Online estimation of A0, B0 and τ0

Given a new pixel patch XT+1 = {x(T+1)
i }i∈J1,nK in the time-series, the

MLE of the parameter θ(0) = {A(0),B(0), τ (0)} is expressed as the fixed
point (8), that depends on the whole data X1:T+1. In order to evaluate the
proposed GLRT in a lightweight streaming fashion, our goal is to derive a
recursive algorithm that provides an estimate of θ(0) at time T + 1, denoted
θ̂
(0)
XT+1

, given solely the previous estimate θ̂
(0)
X1:T

and the incoming data XT+1.
Though many options can be envisioned to obtained such recursive algorithm,
the interest of leveraging the stochastic natural gradient descent [22, 29] is
twofold:

• By leveraging the Riemannian gradient associated with the Fisher infor-
mation metric (information geometry), a theoretically optimal gradient

12



step can easily be obtained (hence, no line search will be involved in the
update). Furthermore, this step only depends on intrinsic dimensions
(a, b, n) of the estimation problem.

• The corresponding stochastic Riemannian gradient descent ensures sta-
tistical efficiency, i.e., that the recursive estimate θ̂

(0)
X1:T+1

tends to the

MLE of θ(0) under H0 when T → ∞, so the corresponding online GLRT
is also asymptotically consistent.

An iteration of the proposed stochastic natural gradient descent [22, 29] is
expressed as:

θ̂
(0)
X1:T+1

= expM
θ̂
(0)
X1:T

(
−α0

T
gradL(T+1)(θ̂

(0)
X1:T

)
)

(19)

where expM
. is given in (17), and where gradL(T+1)(θ̂

(0)
X1:T

) denotes the Rie-

mannain gradient of the likelihood of the data XT+1 evaluated at point θ̂
(0)
X1:T

.
In order to apply this algorithm to the problem of interest, it remains to com-
pute the Riemannian gradient of L(T+1) according to the metric of Proposi-
tion 2. This Riemannian gradient is given in Proposition 3.

Proposition 3 (Riemannian gradient). The Riemannian gradient of L(T+1)

at θ ∈ M according to the metric of Proposition 2 is given by

gradL(T+1)(θ) =

(
−

n∑
i=1

1

bτi
PA(M

T
i B

−TM ∗
i )

,−
n∑

i=1

1

aτi
PB(MiA

−TMH
i ), n(q(T+1) − pτ )

)
,

where qi(A,B) = x
(T+1)
i

H
(A⊗B)−1x

(T+1)
i and q(T+1) = (q1(A,B), . . . , qn(A,B))T .

The matrix PA : Ha → TAsH++
a is the orthogonal projection map such that

PA(ξA) = ξA − tr(A−1ξA)

a
A.

and the matrix PB(ξB) follows from the fame expression.

Proof. The likelihood of the new dataset {x(T+1)
i }i∈J1,nK is

L(T+1)(θ(T+1)) =
n∑

i=1

ℓi(θ
(T+1)), (20)
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where

ℓi(θ) = −p log(τi)−
qi(A,B)

τi
,

with qi(A,B) = x
(T+1)
i

H
(A⊗B)−1x

(T+1)
i . Notice that the log-determinant

terms in the likelihood vanish because we consider matrices of determinant
one. The Riemannian gradient is defined according to the metric through
the relation:

⟨gradL(T+1)(θ), ξ⟩Mθ = DL(T+1)(θ)[ξ]. (21)

Thus we need the directional derivative of L(T+1)(θ):

DL(T+1)(θ)[ξ] = −∑n
i=1

(
pξτi
τi

+ 1
τ2i
qi(A,B)ξτi

)
−∑n

i=1
D qi(A,B)[ξ]

τi

= 1
n
⟨n(q(t) − pτ ), ξτ ⟩R

n
++

τ −∑n
i=1

D qi(A,B)[ξ]
τi

(22)

where ⟨ξτ ,ητ ⟩R
n
++

τ = (ξτ ⊙ τ⊙−1
)T (ητ ⊙ τ⊙−1

). The second term can be
obtained thanks to the following result:

g(X) = tr(XxxH), D g(X)[ξ] = tr(ξxxH)
g(X) = tr(X−1xxH), D g(X)[ξ] = tr(X−1ξX−1xxH)

(23)

which leads to

D qi(A,B)[ξ] = − tr(A−1ξAA
−1MT

i B
−TM ∗

i )
− tr(B−1ξBB

−1MiA
−TM ∗

i )

= −⟨MT
i B

−TM ∗
i , ξA⟩H

++
a

A − ⟨MiA
−TMH

i , ξB⟩H
++
b

B

(24)

Finally, the result of the Riemannian gradient according to the metric of
Proposition 2 is obtained through identification by (21) and projection onto
the tangent spaces.

Thanks to this proposition, the online GLRT is finally computed by plug-
ging the estimates updates from (19) in the detector (6).

To evaluate the quality of the estimation of parameters A0, B0 and τ0, it
is interesting to derive the intrinsic Cramér-Rao bound (ICRB) [25, 29] and
the corresponding inequality. This is the purpose of the next proposition.

Proposition 4 (ICRB). Given an unbiased estimator θ̂(T ) of θ̂
(T )
X1:T

corre-
sponding to a MITS with T data, the ICRB corresponding to the error mea-
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sured with the Riemannian distance (18) and the metric given in the propo-
sition (2) is

E[δ2M(θ(T ), θ̂
(T )
X1:T

)] ≤ (a2 − 1) + (b2 − 1) + n

Tpn

Proof. Since the distance is obtained trough the Fisher information metric,
the ICRB for the problem of estimation of θ(T ) could be easily deduced
from the approach of [25, 29] and is the ratio between the dimension of
the problems and the number of parameters to estimate.

Thanks to the fact that the metric is separable, it is then easy to obtain
the following inequalities for each component of θ(T ):

E[δ2H++
a

(Â
(T )
X1:T

,A(T ))] ≤ (a2−1)
bTn

,

E[δ2H++
b

(B̂
(T )
X1:T

,B(T ))] ≤ (b2−1)
aTn

,

E[δ2Rn
++

(τ̂
(T )
X1:T

, τ (T ))] ≤ 1
Tp
.

(25)

5. Numerical experiments

In this section, we first show the performances in terms of MSE of the
online estimator proposed in 4. Next, we will show the interest of this online
approach to the problem of change detection with simulated data as well as
with an experiment composed of real data.

5.1. Estimation performance

In this section, we compare the performance of the maximum likelihood
estimator obtained with a usual Riemannian optimization algorithm and of
the one obtained with the on-line procedure of (19). In order to do so, sim-
ulated data drawn from the multivariate K-distribution with ν = 1 for the
shape parameter are generated with a Kronecker product structured covari-
ance. To build a p× p (p = 12) covariance matrix, we compute

Σ = A⊗B,
A = UAΛAU

T
A, B = UBΛBU

T
B,

(26)

where a = 4 and b = 3,

• UA and UB are random orthogonal matrices,
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• ΛA and ΛB are diagonal matrices whose minimal and maximal ele-
ments are 1/√c and

√
c (c = 10 is the condition number with respect

to inversion); their other elements are randomly drawn from the uni-
form distribution between 1/√c and

√
c; the determinant of ΛA is then

normalized.

The number of samples is fixed to n = 8 since the conclusions keep the same
for larger n. The number of frames T varies from 1 to 1000. 1000 trials are
used to estimate the MSEs.

For this experiment, we consider the following estimators:

• the classical maximum-likelihood estimator obtained with Riemannian
gradient descent (GD). Optimization for this estimator is performed
with pymanopt toolbox [30, 31].

• the online version obtained through stochastic gradient descent (SGD)
of (19).

The online algorithm is initialized with θ0 = (A(1),B(1), τ (1)) obtained with
the GD when T = 1.

In order to measure the performance of the estimators, the distances
defined in (18), δ2H++

a
, δ2H++

a
and δ2Rn

++
, will be used. Moreover, the ICRBs for

each term given in (25) are also computed.
The results are presented in Figure 2 for the MSEs of A and B and in

3 for the MSE of τ . First, we notice that the on-line version converges to
the classical estimate which is expected as stated in [22]. We notice that for
a value of T = 100 the results of both algorithms become very close which
is clearly interesting in terms of practical interest in applications like change
detection.

5.2. Performance in change detection with simulated data

In this section, we compare the ROC plots of the change detection de-
tector of (6) in the offline and online versions. We hope that for a large
value of T , the performance become close. Like in the previous subsection,
p = 12 with a = 4 and b = 3. We also simulate a K-distribution for the
data. But, the covariance matrices are differently built to be better fitted
with the change detection application. In both hypothesis, A and B are
Toeplitz matrices of correlation coefficient ρ0 and ρ1 (for A: ρ0 = 0.3+ 0.7j,
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ρ1 = 0.3 + 0.5j. For B: ρ0 = 0.3 + 0.6j, ρ1 = 0.4 + 0.5j). For the H1 hy-
pothesis, the change is put at the middle of the time series, i.e. at T/2. The
number of samples n is 13. To show the interest to take into account of the
Kronecker structure in the change detection algorithm, we compare our two
versions of the Kronecker change detection to the one proposed in [14] and

given in (3). To resume, we test 4 change detectors, Λ̂
(T )
SG and Λ̂

(T )
K−SG, and

their corresponding on-line versions, Λ̂
(T )
SG−O and Λ̂

(T )
K−SG−O. For the offline

versions, the number of images T is equal to 50 whereas the online versions
are built from T varying from 2 to 50. All ROC plots are estimated by using
5000 trials.

Figure 4 shows the ROC plots when the data follows a Gaussian distri-
bution. Figures 5 and 6 show the same plots but when the data follow a K
distribution with ν = 100 and ν = 1 as shape parameters respectively. We
notice that all the Kronecker versions outperform the classical ones which is
expected by the structure of the covariance matrix. For the heterogeneous
hypothesis (ν = 1), we get a very good result, since online versions perform
similarly to offline detection when T = 50. Conversely, we have the surpris-
ing result that online versions have a slower convergence speed for Gaussian
or quasi-Gaussian data. Nevertheless, we can conclude that the detection re-
sults of the online detectors improve with T and converge towards the offline
result, particularly when the Kronecker structure is used.

5.3. Performance in change detection with real data

The SAR ITS data set is taken from UAVSAR (courtesy of NASA/JPL-
Caltech) and is referenced as SDelta 28518 02, Segment 1. The number of
images available is T = 68. They show the evolution of a river delta in the
USA with cycle of droughts and flood. Some strong scatterers appear and
disappear over time. Since the image cover an extensive area of the delta,
we crop it to an interesting part of size 200 × 200 pixels. The SAR images
correspond to full-polarization data with a resolution of 1.67 m in range
and 0.6 m in azimuth. Thanks to this high resolution property of the SAR
images, the scatterers present in this scene exhibit an interesting spectro-
angular behavior, each polarization of these images has been subjected to the
wavelet transform presented in [5], allowing to obtain images of dimension
p = 12. In this particular configuration, the full covariance matrices show
an inherent Kronecker structure A⊗B. The matrix A ∈ Ca×a corresponds
to the spectro-angular property (a = 4) although B ∈ Cb×b is linked to the
polarization (b = 3).
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As in the previous section, we test 4 change detectors, Λ̂
(T )
SG and Λ̂

(T )
K−SG,

and their corresponding on-line versions, Λ̂
(T )
SG−O and Λ̂

(T )
K−SG−O. Figure 7

shows the outputs of the four detectors for the complete time series. Since we
do not have any ground truths we are not able to conclude if the Kronecker
versions are better than the classical ones. But we are interested in the
similarity between the online and offline versions. For T = 68, it is difficult
to conclude since both results are quite different. We propose then to repeat
the time series in order to have a larger one. Figure 8 shows the result when
the number of repetition is 5 (T = 340). For this time series, we find better
similarity between the online and corresponding offline versions, especially
when the Kronecker structure is used in the change detector. This behavior is
better illustrated in Figure 9 when the number of repetitions is 10 (T = 680).

6. Conclusion

In this paper, we developed an online version of a change detection al-
gorithm that tests the difference in a series of a structured Kronecker co-
variance. The data are assumed to follow a SG distribution. This model
is well adapted to SAR-MITS data. The development of the online version
was based on the information geometry induced by this structure and the
statistical assumption. The algorithm was mainly based on the online esti-
mation of the covariance matrix under the null hypothesis. This step was
done with a Riemannian gradient and we also provided the corresponding
ICRB. Results on both simulated and real data showed the good results of
this approach and its practical interest to analyze large image times series.
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Figure 2: Mean of error measures on A (left) and B (left) of the classical gradient descent
method (GD) and its on-line counterpart (SGD) as functions of the number of frames T .
Means are computed over 1000 simulated sets {xi}ni=1 with ν = 1. The data size is p = 12
with a = 4 and b = 3 and the number of samples is n = 8.
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Figure 3: Mean of error measures on τ of the classical gradient descent method (GD)
and its on-line counterpart (SGD) as functions of the number of frames T . Means are
computed over 1000 simulated sets {xi}ni=1 with ν = 1. The data size is p = 12 with a = 4
and b = 3 and the number of samples is n = 8.
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Figure 4: Gaussian data with a = 3, b = 4, n = 13. For A: ρ0 = 0.3+0.7j, ρ1 = 0.3+0.5j.
For B: ρ0 = 0.3 + 0.6j, ρ1 = 0.4 + 0.5j. 5000 trials.

23



0 0.5 1

0

0.5

1

PFA

P
D

Scaled-Gaussian

0 0.5 1

PFA

Scaled-Gaussian Kronecker

GLRT T=50
SGD T=2
SGD T=5
SGD T=10
SGD T=25
SGD T=50

Figure 5: Non-Gaussian data with a = 3, b = 4, n = 13, ν = 100. For A: ρ0 = 0.3 + 0.7j,
ρ1 = 0.3 + 0.5j. For B: ρ0 = 0.3 + 0.6j, ρ1 = 0.4 + 0.5j. 5000 trials.
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Figure 6: Non-Gaussian data with a = 3, b = 4, n = 13, ν = 1. For A: ρ0 = 0.3 + 0.7j,
ρ1 = 0.3 + 0.5j. For B: ρ0 = 0.3 + 0.6j, ρ1 = 0.4 + 0.5j. 5000 trials.
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Figure 7: Window size of 7× 7. No repetitions of time series: T = 68.
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Figure 8: Window size of 7× 7. 5 repetitions of time series: T = 340.
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Figure 9: Window size of 7× 7. 10 repetitions of time series: T = 680.
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