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Abstract: System components are often regarded as part of a whole system, especially when it
comes to data-driven modeling. Thus, subsystem modeling is disregarded in general when building
a data-driven response, especially since multiple subsystem outputs are never measured in real
applications. However, subsystem knowledge and accurate modeling are of utmost importance
when aiming to repair, tune or troubleshoot a system. This work proposes a holistic modeling of
subsystems in an embedded system setting. A hybrid modeling starting from the physics-based
model is proposed in this work, correcting or enhancing the model, and predicting output variables,
even when a measurement is never available for some of those variables. The process relies on the
variables’ history, and employs an adjoint-free neural ordinary differential equation technique, along
with evanescent regularization to enhance the convergence on the unmeasurable variables. The
updated model converges to the exact measurements, for both the measurable and the unmeasurable
variables. Multiple examples are presented using synthetic data, to allow an easy evaluation of the
hidden or unmeasurable variables. The relative error offered by the updated model is around 0.001%
for the measurable quantities and 0.1% for the unmeasurable ones.

Keywords: model reduction; machine learning; complex systems; partially observable variables;
evanescent regularization

1. Introduction and Related Works

Data-driven modeling is gaining popularity in engineering. Multiple novel applica-
tions are appearing on a daily basis. A combination of data-driven modeling and the more
experienced physics-based modeling, to enhance diagnosis and prognosis, taking the best
of both paradigms, is also an active research topic [1]. Multiple data-driven approaches,
combined with physical modeling, are used and referred to as hybrid models [2].

Hybrid modeling has enhanced the predictive ability of the available models [3].
However, when a typical physics-based model is not accurate enough, such as when it
requires a correction through data-driven approach, the industrial world would be asking
to investigate the origin of the error. Such an investigation has been hindered until now
by the fact that many intermediate variables used in linking/connecting subsystems are
never measured, nor are they measurable. Thus, a component by component data-driven
modeling becomes tricky to achieve, unless a methodology for data completion is available.

Multiple works exist on the completion of missing data [4], however, these works focus
on data imputation, when data is missing from a data set. Data can be either completely
missing at random time samples, missing at random time sample, or not randomly missing
at a given time sample. However, in the present work, data related to a given output
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are never measured, and probably are unmeasurable. Unmeasurable variables have been
recently considered by the scientific community, with several application in the engineering
field [5]. In [5], the authors used physical modeling and simulation to complement data-
driven approach with the missing unmeasurable data, however, there was no data-driven
correction methodology to update these unmeasurable data. In [6], the authors aimed
to build the most suitable differential equation of a physical domain, through using a
pool of multiple linear and non-linear operators. Discovering physical equations can later
be used to predict missing data in regions where the data are not measured in the same
domain. This is suitable in the case of continuum mechanics and continuous quantities
in a domain, obeying to a certain differential equation in space and time. However, this
approach is not suitable when the learning parameters that are not correlated between each
other through differentiation of the inputs. In another work [7], the authors removed or
hid the unmeasurable quantities through substituting the equations of the unmeasurable
parameters into the equations of the measurable ones, without a need of computing the
unmeasurable values.

Multiple unmeasurable variables are listed in the literature, and workarounds are
being created to overcome limitations [8]. The present work aims at addressing the problem
of non-observed quantities that are of interest in a dynamical system. The method relies on
the use of Taken’s theorem. In fact, Taken’s theorem affirms that the state of a system’s out-
put can be determined from previous historical observation of the same outputs [9]. Thus,
considering the historical evolution of a system, one can predict existing dependencies,
even if not all the inputs are observable, using mutual information [10].

This work proposes a holistic framework for model updating and correction through
a data-driven methodology, while also updating the unmeasurable variables, even if they
are never observed. This approach is novel and has never been addressed until now.
The starting point of the proposed methodology is the existence of prior knowledge, a
model, which requires enhancement or correction. In Section 2, the available simulation
is improved based on measured real data, available only for the measurable quantities of
interest. In Section 3, a hybrid modeling of the available simulation, enhancing the results,
is built. The methodology is illustrated on an academic use case to clearly illustrate the
adopted approach, without any loss of generality.

2. Correction of the Available Model

This section starts by addressing a simple model, to grasp the proposed methodology.
Later, details on the approach and results will be given.

2.1. Methods

This section revisits some numerical methods and describes those used in this work.

2.1.1. Dynamical Model

We consider that a model is available, coming from a system modeling software, for
example. For the sake of simplicity, we consider:

dy
dt

= Ay (1)

where A is a no-singular and diagonalizable matrix, with negative eigenvalues to ensure
stability. The fact of being diagonalizable and having negative eigenvalues is not a limitation
of the proposed methodology, however, they allow us to define sound physical models.
The simulated problem is supposed to be less accurate than the exact one, involving the
matrix B such as:

B = A + εA (2)
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with ε small enough. Thus, the modeling and its simulation considers:

dy
dt

= By (3)

The discreet counterparts of Equations (1) and (3) lead to ye and ys, the reference and
simulated solutions, respectively. Thus, using a simple Euler explicit integration scheme in
time, one can write at the i-time step:{

ye
i+1 = ye

i + ∆tAye
i

ys
i+1 = ys

i + ∆tBys
i

(4)

where ∆t is the time step.
The model update and correction algorithm takes as input a partial measurements

of y, which is named ym and aims to predict both ym of dimension Nm, as well as ynm of
dimension Nnm, the non-measurable part of y, such as Nm + Nnm = N, the dimension of
the quantities of interest y. First, the measurable and non-measurable parts of the model
are separated such as:(

ys,m
i+1

ys,nm
i+1

)
=

(
ys,m

i
ys,nm

i

)
+ ∆t

(
Bm,m Bm,nm

Bnm,m Bnm,nm

)(
ys,m

i
ys,nm

i

)
(5)

Identifying the components of matrix B in the previous equation seems a tricky issue,
because at each time step ti, the solution involves the hidden variables at the previous time
step ti−1. Therefore, one could think that there are too many unknowns to be identified;
the components of B and the hidden estate at each time step, a number that exceeds the
number of available equations, the latter being the number of observable states at each
time step.

However, by using recurrence, all the solutions at any time step will depend on only
the initial one, which consists of some observable and hidden values. Thus, the number of
equations (involving the observable state at each time step) should be large enough (when
considering a sufficient number of time steps, which it is usually the case) for computing
the matrix and the hidden state at only the initial time.

Since this work also aims at identifying a correction for both the measurable and
non-measurable outputs, a substitution of ys,nm through the use of the Schur complement is
not the most suitable approach. Instead, a second time iteration will show that measurable
and non-measurable quantities are coupled:(

ys,m
i+2

ys,nm
i+2

)
=

(
ys,m

i+1
ys,nm

i+1

)
+ ∆t

(
Bm,m Bm,nm

Bnm,m Bnm,nm

)(
ys,m

i+1
ys,nm

i+1

)
=(

ys,m
i

ys,nm
i

)
+

(
2∆t
(

Bm,m Bm,nm

Bnm,m Bnm,nm

)
+ ∆t2

(
Bm,m Bm,nm

Bnm,m Bnm,nm

)2
)(

ys,m
i

ys,nm
i

)
=(

ys,m
i

ys,nm
i

)
+ 2∆t

(
Bm,m Bm,nm

Bnm,m Bnm,nm

)(
ys,m

i
ys,nm

i

)
+

∆t2
(

Bm,mBm,m + Bm,mBnm,m Bm,mBm,nm + Bm,nmBnm,nm

Bnm,mBm,m + Bnm,nmBnm,m Bnm,mBm,nm + Bnm,nmBnm,nm

)(
ys,m

i
ys,nm

i

)
(6)

From Equation (6), one can note that after a second iteration of the integration scheme, all
the non-measurable quantities ys,nm, as well as the parts of the modeling matrix B multiplying
them, appear in the equation of the measurable quantities ys,m. Thus, an optimization problem
can be formulated on the measurable quantities only, and calculating a correction of the model
matrix B for both the measurable and non-measurable quantities. This is only possible by
taking into consideration the history of the measurable quantities ys,m.
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The optimization problem can be formulated under the following form:

(
B, ys,nm

0
)
= arg min

B ∈ RN2

ys,nm
0 ∈ RNnm

{
nt
∑

i=1

(
Nm
∑

j=1

(
ye,j

i − ys,j
i

)2
)}

, (7)

where ys,nm
0 is the initial condition of the non-measurable variables, and nt is the number

of time steps performed in the integration scheme. Selecting several values of nt can
generate as much equations as required for the problem’s solution. However, the loss
function defined in Equation (7) is highly non-linear and involves high degrees of the
problem’s unknowns. To improve the convergence of the optimization problem using a
gradient descent algorithm, a regularization is required. Our proposal is making use of the
evanescent regularization, revisited in Section 2.1.2.

2.1.2. The Evanescent Regularization

The evanescent regularization is a regularization technique initially developed to
address the Cauchy problem, while ensuring convergence of the quantities of interest [11].
The authors in [12] used the Evanescent regularization to address the solution inside a given
domain, while only knowing the solution on the boundary of the domain. In that case,
the inverse problem had observable or “measurable” degrees of freedom on the boundary,
and unmeasurable ones inside the domain. The use of the evanescent regularization is
demonstrated to lead to the slow convergence of the unmeasurable quantities of interest,
as well as a strong convergence of the measurable ones, towards the exact solution of
the problem [13]. The evanescent regularization is also used when the extra boundary
conditions are available on a part of the domain, while totally missing on another part of
the boundary [11].

Thus, the loss function L is reformulated in the following form:

L =
nt
∑

i=1

(
Nm
∑

j=1

(
ye,j

i − ys,j
i

)2
)
+ λ1

(
Bm,m − B̂m,m)2

+

λ2
(

Bm,nm − B̂m,nm)2
+ λ3

(
ys,nm

0 − ŷs,nm
0

)2
(8)

with λ1, λ2 and λ3 the evanescent regularization parameters. The ·̂ quantities are the best
estimation of the regularized outputs of the optimization problem, which can be taken as
the known values from the previous iteration of the gradient descent algorithm. In fact, the
evanescent regularization will improve the convergence of both quantities, with a faster
convergence of the measurable quantities of interest. Thus, the regularized optimization
problem is reformulated as: (

B, ys,nm
0

)
= arg min

B ∈ RN2

ys,nm
0 ∈ RNnm

{L},
(9)

To solve the optimization problem defined in Equation (9), the gradients can always
be computed numerically, at the expense of dramatically increasing the computation time
of the gradient descent algorithm. It is therefore preferable to use an integration scheme
with automatic gradient differentiation through time steps, such as the Neural Ordinary
Differential Equations (Neural ODE) methods [14]. This will allow a fast and reliable
gradient calculation through automatic differentiation and will accelerate the convergence
of the optimization algorithm.

2.1.3. Time Integration and Adjoint-Free Neural ODE

The use of neural Ordinary Differential Equation (ODE), with the adjoint method,
involves the integration of another differential equation, backward in time, to compute
the gradients. This integration can involve very low time step requirements and increase
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dramatically the computation time. Therefore, in this work, this issue is alleviated through
proposing an adjoint-free neural ODE. This adjoint-free neural ODE uses a neural network
that estimates the derivatives of the quantities of interest y, while computing analytically,
through automatic differentiation, their gradients with respect to the neural network
training variables. In this case, the matrix B appearing in Equation (9) is interpreted as the
weights of a single layer dense neural network, with no bias.

To illustrate the adjoint-free neural ODE, the derivative of the quantities of interest is
written as:

dy
dt

= h(t, y; p), (10)

with h(t, y; p) is a neural network and p are any input parameters. The feed-forward
evaluation is possible though explicit integration using:

yi+1 = yi + ∆th(ti, pi, yi)
yi+2 = yi+1 + ∆th(ti+1, pi+1, yi+1) =

= yi + ∆th(ti, pi, yi) + ∆th(ti+1, pi+1, yi + ∆th(ti, pi, yi))
...

(11)

The derivation of yi+nt with respect to the trainable parameters of h, θ for instance,
can be performed through a straightforward manner by the means of the chain rule, and
using the property ( f ◦ g(θ))′ = f ′(g(θ)) · g′(θ). Thus, if θ is the vector of the neural
network trainable variables, one can write (h ◦ h(θ))′ = h′(h(θ)) · h′(θ). The gradients of
yi+nt are therefore easily computed, using the chain rule, while h′(θ) is computed through
automatic differentiation.

The neural ODE can therefore compute several values for yi+nt , to be used in the loss
function and the optimization problem defined in Equation (9), which can be re-written in
its general form: (

θ, ys,nm
0

)
= arg min

θ ∈ RN2

ys,nm
0 ∈ RNnm

{L},
(12)

θ being the model hyperparameters to optimize, which are the values of the matrix B of
dimensionality N2 in our selected example (θ ≡ B in our example). The final algorithm for
updating the simulation model and training the model weights is illustrated in Algorithm 1.
The ADAM stochastic optimization algorithm [15] is used for the gradient descent in
our examples.

Algorithm 1 Algorithm used for optimizing the simulation model and detecting the initial
condition of the unmeasurable parameters, using the adjoint-free neural ODE and the
evanescent regularization

Initialize θ as θ̂, ys,nm
0 as ŷs,nm

0
while L ≥ ε do

while i < nt do
Compute yi using adjoint-free Neural ODE integration, Equation (11)

end while
Compute L
Evaluate ∂L

∂θ and ∂L
∂ys,nm

0(
θ

ys,nm
0

)
← ADAM

((
θ

ys,nm
0

)
;

(
∂L
∂θ
∂L

∂ys,nm
0

))
end while
return

(
θ; ys,nm

0
)
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2.2. Results: Model Correction

In this section, for the sake of simplicity, a simple model with N = 5 is considered
(given in the Appendix A), and a single dense neural network layer connecting the inputs
and the outputs. No input parameters p are used in this case, the time is the only model
input. The trainable parameters θ and ys,nm

0 are initiated with the values coming from
the available simulation. The initial curves are shown in Figure 1, for the exact model (in
solid lines) and the simulated one (in dashed lines). In this section, only the last output is
assumed to be unmeasurable.

Figure 1. Exact solution and simulation of the considered model with N = 5.

The initial condition for the unmeasurable variable is deliberately set to a wrong initial
value yh,nm

0 = 0.8, while the exact initial conditions are considered for the measurable ones,
yh,m

0 = 1. The training is performed on a time domain t ∈ [0, 10]s with nt = 1000 time
steps and ∆t = 0.01s. The training with an adjoint-free neural ODE is performed on a
portable PC within half an hour. The results after the training are illustrated in Figure 2
for the measurable and non-measurable variables.The used values of the regularization
coefficients in this section are λ1 = 10−5, λ2 = 10−5, and λ3 = 1.

The results illustrated in Figure 2 highlight the ability of the network to correct the
existing simulation even though neither the initial value nor the output of the last quantity
of interest are available. The mean relative errors are:

• Relative error on ys,nm
0 , the initial condition of the non-measurable quantity: 0.49%

• Relative error on the measurable quantities ym: 0.01%
• Relative error on the unmeasurable quantities ynm: 0.43%

The predictive ability is highlighted, and shows that the proposed approach is able to
correct an existing simulation through time variation of only several quantities of interest.
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(a) Measurable output ŷ1 (b) Measurable output ŷ2

(c) Measurable output ŷ3 (d) Measurable output ŷ4

(e) Non measurable output ŷ5

Figure 2. Final output of the trained neural network for both the measurable and unmeasurable outputs.

3. A Hybrid Modeling Approach
3.1. A Single Unmeasurable Quantity

When it comes to hybrid modeling, the approach is similar to the previously proposed
one; using the same methods described in Section 2.1. However, this approach assumes
the existence of another model C existing in parallel to the simulation, and integrating
the results simultaneously. For instance, in the linear case for example, the hybrid model
solution yh

i+1 at any time steps can be written as:
ye

i+1 = ye
i + ∆t A ye

i
ys

i+1 = ys
i + ∆t B ys

i
yh

i+1 = yh
i + ∆t B yh

i + ∆t C yh
i

(13)
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In the non-linear situation, the hybrid model would be written as:

dyh

dt
= h(t, p, yh) + g(t, p, yh) (14)

where g is the correction term and h is the initial simulation model assumed non-trainable
in this case. The loss function is changed in the hybrid modeling to include the L2 norm
regularization with respect to the hyperparameters of the trainable model g(t, p, y), because
it is expected that the correction is not large with respect to B. For instance, the new loss
function J is written in the linear case by:

J =
nt
∑

i=1

(
Nm
∑

j=1

(
ye,j

i − yh,j
i

)2
)
+ λ1

(
Cm,m − Ĉm,m)2

+ λ2
(
Cm,nm − Ĉm,nm)2

+

+λ3

(
yh,nm

0 − ŷh,nm
0

)2
+ λ4

N
∑

i=1

N
∑

j=1

(
Ĉij
)2

+ λ5
(
‖Cm,nm‖ − ‖Ĉm,m‖

)2
(15)

where Ĉij includes all of the components of C, and enforce the sparsity in the correction,
even if a stronger enforcement could be applied by using the L1 norm. The new loss
function can be generalized for the non-linear case using:

J =
nt
∑

i=1

(
Nm
∑

j=1

(
ye,j

i − yh,j
i

)2
)
+ λ1

(
θm,m − θ̂m,m)2

+ λ2
(
θm,nm − θ̂m,nm)2

+

+λ3

(
yh,nm

0 − ŷh,nm
0

)2
+ λ4

Nθ

∑
k=1

(
θ̂k
)2

+ λ5
(
‖θm,nm‖ − ‖θ̂m,m‖

)2,

(16)

with θ being the trainable parameters of the non-linear model g, having a total number of
Nθ trainable parameters.

The exact error matrix C used in this example is shown in Appendix A. The last term
multiplying λ5 couples the amplitudes of the equations computing the measurable part and
the non-measurable part, to reduce the possibility of having a scale bias. The optimization
problem is now written as: (

θ, yh,nm
0

)
= arg min

θ ∈ RN2

yh,nm
0 ∈ RNnm

{J },
(17)

where θ are the hyperparameters to optimize. The training is performed on a standard
laptop within few minutes, even when starting from a very wrong initial condition yh,nm

0 .
The results are illustrated in Figure 3 for both the measurable and the unmeasurable
quantities of interest, when performing the training over 100 time steps only, and an initial
guess yh,nm

0 = 0.5, while 1 was the correct initial condition in this example. The used values
of the regularization coefficients in this example are λ1 = 10−3, λ2 = 10−3, λ3 = 10−3,
λ4 = 10−4, and λ5 = 10−2.

The mean relative errors in the updated model are found to be:

• Relative error on yh,nm
0 , the initial condition of the non-measurable quantity: 0.15%

• Relative error on the measurable quantities ym: 0.0093%
• Relative error on the unmeasurable quantities ynm: 0.104%

We can conclude that the hybrid model is able to outperform the simulation correction,
with a lower number of time steps. In fact, increasing the number of the available time
steps increases the information that is used by the machine learning algorithm to correct the
simulation. On the other hand, the increase in the number of time steps integration requires
an increase in the computation time. The approach illustrated in Section 2.2 did correct
the simulation, but even after 1000 time steps available, the results were less accurate than
those of the hybrid model after 100 available time steps only.
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(a) Measurable output ŷ1 (b) Measurable output ŷ2

(c) Measurable output ŷ3 (d) Measurable output ŷ4

(e) Non measurable output ŷ5

Figure 3. Final output of the trained hybrid modeling using a neural network for the correction
models. The shown results are for both the measurable and unmeasurable outputs.

3.2. A More Complex Case

This section addresses a more complex example, where the last two variables of
interest in our model are unmeasurable. This leads to a fraction of 40% of our model being
hidden or unmeasurable. Using the same loss function given in Equation (17), with the
regularization coefficients λ1 = 10−3, λ2 = 10−3, λ3 = 10−3, λ4 = 10−4 and λ5 = 10−2, the
results are presented in Figure 4 proving again an excellent accuracy. The initialization was
set to [0.5; 1.5] for the two unmeasurable quantities instead of 1, a 50% relative error with
respect to the correct initial conditions.



Appl. Sci. 2023, 13, 9616 10 of 12

(a) Measurable output ŷ1 (b) Measurable output ŷ2

(c) Measurable output ŷ3 (d) Non measurable output ŷ4

(e) Non measurable output ŷ5

Figure 4. Final output of the trained hybrid modeling using a neural network for the correction
models with two unmeasurable quantities ŷ4 and ŷ5. The shown results are for both the measurable
and unmeasurable outputs.

Figure 4 showcases the ability of the proposed methodology to correct the model with
nearly half of the variables set unmeasurable. The final mean relative errors for the updated
model are found to be:

• Mean relative error on yh,nm
0 , the initial condition of the non-measurable quantity: 0.67%

• Mean relative error on the measurable quantities ym: 0.051%
• Mean relative error on the unmeasurable quantities ynm: 0.3%
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4. Conclusions

In this work, a systematic approach to update or correct any simulation by using an
intrusive correction, which handles simulation component correction, is proposed. This
approach conserves the simulation structure and is thus fully explainable. The evanescent
regularization, as well as an adjoint-free neural ODE, are leveraged to achieve the correction.
The work also shows that hybrid modeling with L2 norm regularization of the cost function
outperforms a direct correction of the model, even when using a lower number of available
simulation and experimental time steps.
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Appendix A

The data involved in the numerical examples addressed in this papers where generated
by using the matrices A and B given by:

A =


−4.35611932 −1.22951563 1.83881934 0.54265555 −0.01757481
−1.15562685 −3.69112028 0.49813577 −0.0742603 0.20472346
1.79339231 0.37881996 −4.76496262 0.99545275 −1.8469943
0.65640466 −0.03439998 1.15462889 −3.33237733 0.67350006
0.32680216 0.47521164 −1.4571903 0.90412792 −1.2567266

 (A1)

and

B =


−4.84013258 −1.63964011 1.30937905 0.1723914 −0.1572111
−1.63964011 −4.10124475 −0.03130452 −0.44452445 0.06508717
1.30937905 −0.03130452 −5.29440291 0.6251886 −1.98663059
0.1723914 −0.44452445 0.6251886 −3.70264148 0.53386377
−0.1572111 0.06508717 −1.98663059 0.53386377 −1.39636289

 (A2)

The considered time integration is the simplest Euler’s integration schema, with a
time step ∆t = 0.01 s. The induced error C is the difference between A and B:

C =


0.4840 0.4101 0.5294 0.3703 0.1396
0.4840 0.4101 0.5294 0.3703 0.1396
0.4840 0.4101 0.5294 0.3703 0.1396
0.4840 0.4101 0.5294 0.3703 0.1396
0.4840 0.4101 0.5294 0.3703 0.1396

 (A3)
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