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Application of Machine Learning to MICADO
Passive and Active Neutron Measurement

System for the Characterization of
Radioactive Waste Drums

Quentin Ducasse , Cyrille Eleon , Bertrand Perot , Nadia Perot, and Pierre-Guy Allinei

Abstract— A passive and active neutron measurement system1

has been developed within the Measurement and Instrumentation2

for Cleaning and Decommissioning Operation (MICADO) H20203

project to estimate the nuclear material mass inside legacy waste4

drums of low and intermediate radioactivity levels. Monte–Carlo5

simulations were performed to design a transportable neutron6

system allowing both passive neutron coincidence counting and7

active interrogation with the differential die-away technique8

(DDT). However, the calibration coefficients (CCs) representing9

the signal of interest (due to nuclear material) in these two10

measurement modes may vary by a large amount depending on11

the properties of the matrix of the nuclear waste drum. Therefore,12

this article investigates matrix effects based on 104 Monte–13

Carlo calculations with different waste drums, based on Taguchi14

experimental design with a range of densities, material com-15

positions, filling levels, and nuclear material masses. A matrix16

correction method is studied using machine learning algorithms.17

The matrix effect on the neutron signal is deduced from the signal18

of internal neutron monitors located inside the measurement19

cavity and from a transmission measurement with an AmBe20

neutron source. Those quantities can be assessed experimentally21

and are used as explanatory variables for the definition of a22

predictive model of the simulated CC, either in passive or in23

active mode. A multilinear regression model of the CC based on24

ordinary least square (OLS) is built and compared to the random25

forest (RF) machine-learning algorithm and to the multilayer26

perceptron (MLP) artificial neural network. In passive neutron27

coincidence counting, the residual error of the regression is lower28

for the MLP and RF than for OLS. The agreement between the29

predicted CCs of four mockup drums used as test is better than30

17% and 3%, respectively, with the MLP and RF methods, while31

three predictions are out of the 95% confidence level range with32

OLS. In active neutron interrogation, similar conclusions are33

drawn. The prediction of the CC for the four mockup drums is34
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better than 12%, 35%, and 72% for the respective MLP, RF, and 35

OLS methods. In conclusion, the MLP and RF regression model 36

demonstrates more accurate results of the quantities of interest 37

than the traditional OLS method. The future steps will focus on 38

matrix heterogeneities, experimental validation, improving our 39

models and testing new regression approaches. 40

Index Terms— Active neutron interrogation, calibration coef- 41

ficient (CC), experimental design, linear regression, multilayer 42

perceptron (MLP), passive neutron coincidence counting. 43

I. INTRODUCTION 44

THE Measurement and Instrumentation for Cleaning and 45

Decommissioning Operations (MICADOs) project [1] of 46

H2020 Research and Innovation Program aims to propose a 47

cost-effective and comprehensive solution for nondestructive 48

characterization of nuclear waste. The project is develop- 49

ing a platform composed of different measurements (gamma 50

camera, gamma-ray spectroscopy, passive and active neutron 51

measurements, and photofission interrogation) and of modern 52

analysis technologies, such as AI and Bayesian methods, 53

to combine experimental results in view of reducing the 54

uncertainty in the determination of the nuclear material content 55

inside the nuclear waste package. The neutron system aims 56

at quantifying nuclear material (plutonium and uranium) in 57

legacy technological wastes resulting from the exploitation 58

of nuclear plants. A neutron system prototype was recently 59

designed and optimized by Monte–Carlo simulations [2] using 60

the MCNP code [3] for the nuclear material mass deter- 61

mination of a wide range of nuclear waste by combining 62

both passive neutron coincidence counting [4], [5] and active 63

neutron interrogation [5]. This work also showed that the 64

neutron signal of interest coming from the nuclear material 65

is strongly impacted by the properties of the nuclear waste 66

drum matrix. Therefore, we investigate the matrix effects with 67

Monte–Carlo calculations based on an experimental design to 68

figure out possible corrections to determine more accurately 69

the nuclear material mass. 70

II. MICADO NEUTRON SYSTEM MEASUREMENT 71

The design of a neutron measurement system is strongly 72

influenced by the characteristics of the nuclear waste drums to 73
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Fig. 1. MCNP model of the MICADO neutron system design. (a) Side view.
(b) Front view. (c) Upper view.

Fig. 2. Experimental setup of the MICADO neutron system. Measurement in
active neutron interrogation using (a) neutron generator and (b) transmission.

be measured. Hundreds of thousands of nuclear waste pack-74

ages (produced by EDF, ORANO, CEA, etc.) are currently75

stored in several areas in France [6]. We focus our study76

on 118 L technological legacy waste drums from nuclear fuel77

fabrication or spent fuel reprocessing plants, which contains78

plutonium and uranium. The MCNP numerical model of79

MICADO neutron system is based on the prototype described80

in [2], with only a few modifications to consider the measure-81

ment cell as built. Figs. 1 and 2 show the MCNP model and82

the experimental setup (not used in this article), respectively.83

The neutron system consists of a 150 × 170 × 230 cm84

cell that can contain drums up to 400 L. The 10-cm-thick85

walls of the cell are made of polyethylene to thermalize86

neutrons and thus increase the fission rate for the differential87

die-away technique (DDT) [5]. The neutron system prototype88

includes a total of 84 gas proportional counters filled with 3He,89

embedded by groups of seven detectors in 12 polyethylene90

blocks, in order to thermalize the neutrons to be detected.91

These neutrons are fission prompt neutrons induced in fissile92

nuclei like 239Pu and 235U, in active neutron interrogation,93

and spontaneous fission neutrons from odd nuclei like 240Pu,94

in passive neutron coincidence counting. The detection blocks95

are embedded in cadmium for the DDT technique. They are96

disposed horizontally on the two sidewalls of the system,97

to give an indication of the vertical location of neutron sources98

in the drum, in view to reduce uncertainties on the nuclear99

material mass determination. The drum is placed on a rotating100

plate made of aluminum that is relatively transparent to neu-101

trons. The motor that commands the rotating plate is composed102

of neutron absorbing materials (mainly stainless steel) and 103

is covered by a layer of 10 cm of polyethylene to mitigate 104

this effect. A 14-MeV DT neutron generator (GENIE16 from 105

SODERN, [7]) used in the active mode is fixed on the wall on a 106

polyethylene support. An additional boron-coated proportional 107

counter called “external monitor,” located outside the neutron 108

cell, is used to normalize all measurements and thus correct for 109

potential fluctuations of the neutron generator emission rate. 110

The determination of the nuclear material mass in a drum 111

derives from the value of a calibration coefficient (CC) 112

representing the useful neutron signal obtained for 1 g of 113

nuclear material in the drum, which is calculated by Monte– 114

Carlo simulation [2]. This signal is highly affected by the 115

properties of the matrix of the drum, namely, the presence of 116

neutron thermalizing and/or absorbing materials that impact 117

the useful signal in both passive neutron coincidence counting 118

and active neutron interrogation. For instance, a matrix with 119

rich-in-hydrogen materials, such as polyethylene, thermalizes 120

generator fast neutrons and thus increases the fission rate, but 121

neutrons absorbers, such as boron, cadmium, iron, or hydrogen 122

itself, have the opposite effect. On the other hand, as hydrogen 123

slows down the neutrons to be detected, coming from sponta- 124

neous or induced fissions, it reduces their detection efficiency. 125

Indeed, thermalized neutrons are absorbed by the cadmium 126

layer surrounding the detection blocks (see Fig. 1). To monitor 127

thermal neutron absorbers, two boron-coated detectors (called 128

“internal monitors,” see Fig. 1) are fixed at two different 129

heights on the opening door of the neutron cell. They are 130

sensitive to the thermal neutron flux inside the measurement 131

cavity, which depends on the waste materials, and can be 132

used to correct matrix effects in active neutron interrogation 133

mode, in view to reduce the uncertainty on the nuclear mass 134

estimation [10]. We also use the signal of an AmBe neutron 135

source transmitted across the waste drum, with the opposite 136

3He detection blocks (see Fig. 2), which is sensitive to the 137

thermalization properties of the matrix. Both internal monitors 138

and transmission signals are used to monitor matrix effects in 139

passive neutron coincidence counting and in active neutron 140

interrogation. 141

III. EXPERIMENTAL DESIGN 142

The investigation of matrix effects on the CC requires 143

a large number of Monte–Carlo simulations based from 144

the numerical model presented in Fig. 1 for a variety of 145

nuclear waste drums. For this purpose, a Taguchi experimental 146

design [8] is used to investigate how different matrix features 147

affect the mean and variance of the CC variable of interest. 148

The aim is to build a predictive model of CC for waste 149

matrices with properties in the scope of the experimental 150

design. The experimental design proposed by Taguchi involves 151

orthogonal arrays to organize the parameters affecting the 152

variable of interest and their levels of variation. Compared 153

to a factorial design, the Taguchi method only tests pairs of 154

combinations of parameters, allowing determining which ones 155

most affect the variable of interest with a limited number 156

of simulations. In this study, we perform the simulation for 157

104 waste drums of different matrix compositions, densities, 158

filling heights, and nuclear material masses (see Table I). 159
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TABLE I
PARAMETERS AND THEIR VARIATION LEVELS OF THE L32 AND THE L72

TAGUCHI EXPERIMENTAL DESIGNS FOR 118 L DRUMS

Note that the nuclear material mass is not strictly speaking160

a matrix effect, but it is introduced in the study to take161

into account the combined self-absorption and multiplication162

effects in nuclear material. In the end, this combined effect163

was found to be negligible in this study because nuclear164

materials are distributed homogenously in the whole matrix.165

The 104 simulations are split into an orthogonal array of166

32 and 72 configurations, namely, L32 and L72 [9]. These167

two experimental designs have then been merged into a unique168

L104 experimental design to obtain a more robust database for169

the regression techniques described later in this article. The170

target value is the CC both in passive neutron coincidence171

counting and in active neutron interrogation of 118 L drums.172

The L32 and the L72 propose four and up to six levels of173

variation of their parameters, respectively. The parameters and174

their levels of variation fully cover the scope of characteristics175

defining the nuclear waste drums likely to be measured in the176

MICADO project. They are presented in Table I.177

The experimental designs involve a large variety of matrices,178

mainly composed of metallic or organic elements present as179

primary components in technological wastes of nuclear plants180

(pipes, rods, gloves, etc.). In this study, the matrix and the dis-181

tribution of nuclear materials inside the drum are assumed to182

be homogeneous. In practice, partial information of the drum183

characteristics might be collected from the drum provider184

before performing a neutron measurement. Information can185

also be assessed with complementary measurements [11] per-186

formed within the MICADO project (gamma spectroscopy and187

tomography). In the following, we will assume that no a priori188

information is known, so as not to introduce any bias in the189

analysis of the experimental design simulations.190

IV. COMPARISON OF REGRESSION MODELS191

A. Definition of the Explanatory Variables192

The measured transmitted and internal monitor signals are193

used as explanatory variables to assess the properties of the194

waste matrix. The neutron signal transmitted through the drum195

is measured by the six 3He detection blocks (Str1, Str2, Str3,196

Str4, Str5, and Str6) located at the opposite side with respect197

to the AmBe source (Fig. 2). It reflects the thermalizing power198

of the waste matrix inside the drum. In passive neutron coin-199

cidence counting, only this neutron transmission information200

Fig. 3. Correlation matrix between the CC (CC 239Pu and CC 240Pu) and
the explanatory variables (signal of the internal monitors Smih and Smil and
neutron signal in the 12 3He detection blocks Stri measured with AmBe
source).

is implemented in the regression models, as thermal neutron 201

absorption in the waste matrix has a minor effect when using 202

detection blocks wrapped in cadmium for the purpose of the 203

active interrogation. For this last measurement, however, the 204

signal measured by the two internal monitors inside the cell 205

is used as additional explanatory variables in the regression 206

models. Indeed, these internal monitors give information on 207

the absorbing properties of the matrix for thermal interrogating 208

neutrons, respectively, in the lower part (Smil) and in the 209

higher part (Smih) of the drum. Fig. 3 shows the correlation 210

matrix between the CC (in passive and active modes) and 211

the explanatory variables. The CC in passive mode (CCpassive) 212

is little correlated to the signal of the internal monitors, 213

while it shows the highest correlation with the transmitted 214

signal (Str1–Str3) located at the opposite side of the AmBe 215

source. Finally, we can also observe the strong correlation 216

(factor > 0.7) between CC in the active mode (CCactive) and 217

internal monitors. 218

B. Regression Techniques 219

Regression techniques for the prediction of the CC can be 220

applied using the explanatory variables showing the highest 221

correlations with CC. In this work, we illustrate the benefit 222

of new regression approaches with respect to multilinear 223

regression with ordinary least squares (OLSs), which is tra- 224

ditionally used in our laboratory. We compare its results with 225

the multilayer perceptron (MLP) [11] and random forest (RF) 226

[12] algorithms from the Scikit-Learn Python library [13]. 227

Linear regression with the OLS provides a straightfor- 228

ward and interpretable framework for estimating relationships 229

between dependent and multiple independent variables. OLS 230

provides an estimation of the linear model coefficients by 231
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Fig. 4. Mockup drums modeled in MCNP. From left to right:
wood–PVC–polyethylene–stainless steel.

minimizing the sum of squared differences between observed232

and predicted values of the CC (here, CCMCNP and CCpred).233

CCpred is defined as an analytical function of quadratic and234

polynomial value (up to the second order) of the most relevant235

explanatory variables (see Section IV-A).236

An MLP is a class of artificial neural networks characterized237

by multiple layers of interconnected nodes, or “neurons,”238

which process input data to produce desired outputs [13].239

The efficacy of MLPs in regression modeling stems from240

their capacity to approximate highly nonlinear mappings241

between input and output variables. Unlike traditional multi-242

linear regression models, MLPs can capture intricate patterns,243

interactions, and nonlinearity present in the data.244

On the practical side, the optimization process involves245

defining hyperparameters, such as the number of hidden246

layers, the number of neurons for each hidden layer, the247

activation function, and the learning rate [13]. These are deter-248

mined through a cross-validation process, which is exclusively249

applied to the experimental design L72 that presents a larger250

number of density and matrix levels in comparison to L32251

(see Table I).252

The RF algorithm is a powerful asset in predictive model-253

ing, particularly for complex and high-dimensional datasets.254

By building a large set of decision trees and aggregating their255

predictions, RF enhances prediction accuracy, reduces overfit-256

ting, and provides valuable insights into variable importance.257

The hyperparameters include the number of trees, the criterion,258

the minimum number of samples required to split a node,259

and among others [13]. These are also determined through260

a cross-validation process, which is exclusively applied to the261

experimental design L72.262

C. Tests of the Regression Models With Homogeneous263

Mockup Drums264

In this work, the predictions of CC calculated by the265

regression models will be checked using calculations with the266

MCNP models of realistic homogenous waste drums. For this267

purpose, we use the MCNP models of four mockup drums268

filled with different matrices (see Fig. 4), which will be used269

in the experimental tests of MICADO cell at the Nuclear270

Measurement Laboratory of CEA Cadarache.271

These four matrices are representatives, in terms of neu-272

tron moderation and absorption, of the materials constituting273

radioactive technological wastes. In addition, their charac-274

teristics are included in the range of the parameters of the275

experimental design regarding matrix composition, density,276

filling level, and nuclear mass content (see Table II).277

In the following, the unique L104 experimental design (as278

described in Section III) is directly used for the training279

TABLE II
118 L MOCKUP DRUMS DESCRIPTION

Fig. 5. Predicted CC-240Pu of the mockup cases (labeled points) in passive
neutron coincidence counting obtained with (a) OLS, (b) MLP, and (c) RF
algorithms. The two red lines are the interval ±2 σres.

database, and the prediction performance of the regression 280

techniques is assessed using simulation results performed for 281

the four mockup drums. The result of the regression models 282

(called predicted CC or “CCpred”) is compared to the MCNP 283

simulated CCs (called “CCtrue”) for the 104 configurations in 284

Figs. 5 and 6 for passive neutron coincidence counting and for 285

active neutron interrogation, respectively. The predicted CC 286

and the true CC of the four mockup drums are also indicated. 287
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Fig. 6. Predicted CC-239Pu of the mockup cases (labeled points) in active
neutron interrogation obtained with (a) OLS, (b) MLP, and (c) RF. The two
red lines are the interval ±2 σres.

The predicted CC (CCpred) by the three regression methods288

is represented against the simulated (CCtrue). The residual error289

of the multilinear regression with the interval is ±2 σres. The290

absolute value of σres is deduced from the square root of the291

mean square error (mse). Values covered by the CC are largely292

distributed and are not organized in clusters, demonstrating293

the relevance of the description of the experimental design.294

The symmetric mean absolute percentage error (SMAPE)295

demonstrates a better quality of the regression using MLP and296

RF methods compared to OLS, in both passive coincidence297

counting (SMAPEOLS = 5.23%, σ res,OLS = 0.0446 c.s−1.g−1;298

SMAPEMLP = 1.94%, σ res,MLP = 0.0185 c.s−1.g−1;299

SMAPERF = 1.38%, σres,RF = 0,0111 c.s−1.g−1) and300

active interrogation (SMAPEOLS = 20.39%, σ res,OLS =301

37 c.s−1.g−1; SMAPEMLP = 5.94%, σres,MLP = 21 c.s−1.g−1;302

SMAPERF = 10.60%, σres,RF = 26 c.s−1.g−1). Additionally,303

a few negative, nonphysical values of CCpred arise from the304

linear regression [“Mockup 3” on Fig. 5 and a few others305

(blue points) on Fig. 6], disqualifying the validity of the306

OLS method in this region. Table III compares the metrics of307

TABLE III
COMPARISON METRICS OF THE DIFFERENT MULTILINEAR REGRESSION

MODELS IN PASSIVE NEUTRON COINCIDENCE COUNTING AND ACTIVE
NEUTRON INTERROGATION FOR THE FOUR MOCKUP DRUMS

accuracy for CCpred using the OLS, MLP, and RF methods in 308

passive coincidence counting and active interrogation. 309

In the passive mode, results indicate that the agreement 310

in the predicted CC in the four mockup drums lies in 311

the [1%–58%], [0%–17%], and [0%–3%] ranges in passive 312

coincidence counting and in the [3%–72%], [1%–12%], and 313

[1%–35%] ranges in active interrogation for the OLS, MLP, 314

and RF methods, respectively. The model based on the OLS 315

method provides poor prediction results in passive coincidence 316

counting, where three of the four drum cases are outside the 317

interval ±2 σres. This indicates an overfitting of the OLS model 318

and reducing the amount of input parameters, as well as the 319

polynomial order, enables to mitigate this disagreement (while 320

nonetheless degrading the residual error of the fit). On the 321

other hand, the MLP and RF methods forecast all the results 322

inside the interval ±2 σres. In active neutron interrogation, 323

a better accuracy and consistency of the predictions is also 324

observed for the MLP and RF methods. 325

D. Model Prediction Extension to Heterogeneous 326

Waste Cases 327

To assess the validity and limitations of the prediction 328

regression models established with homogenous waste matri- 329

ces, ORANO La Hague provided two realistic heterogeneous 330

drums case studies, together with their detailed Monte–Carlo 331

simulation model, in the frame of MICADO project [14]. The 332

first realistic case (RC1) consists of a 118 L alpha waste drum 333

divided into five bags containing decontamination wipes. The 334

activity of the plutonium inside the drum is heterogeneous. 335

The matrix is also moderately heterogeneous and exclusively 336

constituted of humid plastic C3H6(H2O) of densities varying 337

from 0.32 to 0.53. The second realistic case (RC2) is a 118 L 338

alpha waste drum containing 50 stainless steel pipes with a 339

low contamination level. The average density is 1.08 g.cm−3
340

and about 87% of the plutonium activity is concentrated in a 341

valve located at the bottom of the drum. Fig. 7 shows a view 342

of the RC1 and RC2 Monte–Carlo models. 343

The result of the regression models trained with the L104 344

data set is illustrated in Figs. 8 and 9, in passive neutron 345

coincidence counting and in active neutron interrogation, 346

respectively. 347
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Fig. 7. MCNP models of (a) RC1 and (b) RC2 waste drums. The different
colors correspond to different types of material.

Fig. 8. Predicted CC-240Pu of the realistic drum cases (labeled points)
in passive neutron coincidence counting obtained by (a) OLS, (b) MLP, and
(c) RF algorithms. The two red lines are the interval ±2 σres.

Table IV compares the accuracy metric results for CCpred348

using the OLS, MLP, and RF methods in passive coincidence349

counting and active interrogation.350

As previously mentioned, both drums present certain level351

of heterogeneities (matrix and distribution of the plutonium352

mass) that was not simulated in the experimental design353

calculations. Thus, the regression algorithms have not been354

trained with heterogeneous matrices and nuclear material355

distributions. This being said, CCpred agrees within [0%–30%]356

in passive neutron coincidence counting, regardless of the357

regression method, but results are significantly better using358

Fig. 9. Predicted CC-239Pu of the realistic drum cases (labeled points) in
active neutron interrogation obtained by (a) OLS method, (b) MLP, and (c) RF
algorithm. The two red lines are the interval ±2 σres.

TABLE IV
COMPARISON METRIC RESULTS OF THE DIFFERENT REGRESSION MODELS

IN PASSIVE NEUTRON COINCIDENCE COUNTING AND ACTIVE
NEUTRON INTERROGATION FOR THE

REALISTIC DRUM CASES

MLP and RF than OLS. In active neutron interrogation, 359

predictions are within [5%–55%] and OLS provides better 360

predictions of CC for RC2 (6% against 55% and 44% for 361

the MLP and RF methods, respectively). Beyond the fact that 362
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RC2 shows heterogeneities in matrix composition and nuclear363

mass distribution, these poor predictions for MLP and RF364

algorithms are probably due to the average density of RC2,365

which is out of the boundary limits defined in the experimental366

design (i.e., 1.08 versus 0.7 g.cm−3 maximum in the training367

set). Overall predicted results of realistic heterogeneous drum368

cases are thus logically less accurate than the prediction for369

the previous homogeneous mockup drums.370

E. Conclusion and Outlooks371

The MICADO neutron measurement system prototype has372

been designed by MCNP simulation, with the objective to373

estimate the nuclear material mass in a wide range of radioac-374

tive waste drums by passive neutron coincidence counting375

and active neutron interrogation. The useful neutron signal376

(namely, the CC in count per second and per gram of 240Pu377

or 239Pu, respectively) was calculated by Monte–Carlo simu-378

lations for a series of matrix compositions, density, and filling379

levels defined with an experimental design. The obtained380

104 simulation results were used to establish regression mod-381

els with three different algorithms to reduce the uncertainty382

on the nuclear mass estimation. These models were based on383

internal matrix monitors and a neutron transmission measure-384

ment. Within the context of this issue, MLP and RF regression385

techniques show a clear advantage over conventional OLS386

(linear regression with OLSs), both in passive coincidence387

counting and active interrogation techniques. This behavior388

may be attributed to the strong correlation between some389

of the predictors knowing that one of the conditions to use390

classical linear regression method is the independence of the391

predictors. The residual error and the SMAPE on the linear392

regression of the MLP and RF techniques are lower, and the393

predicted CC never results in nonphysical negative values.394

Therefore, the uncertainty on the determination of the nuclear395

mass can significantly be reduced by comparison to standard396

OLS method usually employed in our laboratory.397

In the next steps, we will investigate more regression398

methods and we will enlarge the training database with399

additional Monte–Carlo simulations, including more waste400

materials and heterogeneous matrices as well. Currently, the401

use of experimental designs helps to reduce the number of402

MCNP simulations while providing maximum information403

for constructing regression models. However, this approach404

only works if the range of variation for influential parameters405

(density, filling level, matrix material, etc.) covers the entire406

range of waste barrels to be measured. When dealing with407

homogeneous matrices, this approach is relatively robust.408

However, accounting for matrix heterogeneities and radioac-409

tive materials becomes very challenging, even when using410

experimental designs driven by MCNP simulations. At present, 411

the idea is to consider extreme cases in terms of hetero- 412

geneities. These cases are unlikely to be measured in practice, 413

but it allows to cover a broad range of variations. Despite this, 414

it is still expected that regression algorithms (based on inter- 415

polation between different points of the experimental design) 416

will exhibit poorer performance compared to homogeneous 417

cases. In this specific scenario, simulating all the possible 418

heterogeneous configurations to train the models is very 419

complex, if not impossible. Work is ongoing to evaluate the 420

performance for these heterogeneous waste scenarios. Another 421

important prospect is to perform laboratory measurements with 422

mockup drums in DANAIDES casemate of TOTEM nuclear 423

facility, at CEA Cadarache, both to validate our numerical 424

Monte–Carlo calculation models and to test with experimental 425

data the regression models established with simulation data. 426
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Application of Machine Learning to MICADO
Passive and Active Neutron Measurement

System for the Characterization of
Radioactive Waste Drums

Quentin Ducasse , Cyrille Eleon , Bertrand Perot , Nadia Perot, and Pierre-Guy Allinei

Abstract— A passive and active neutron measurement system1

has been developed within the Measurement and Instrumentation2

for Cleaning and Decommissioning Operation (MICADO) H20203

project to estimate the nuclear material mass inside legacy waste4

drums of low and intermediate radioactivity levels. Monte–Carlo5

simulations were performed to design a transportable neutron6

system allowing both passive neutron coincidence counting and7

active interrogation with the differential die-away technique8

(DDT). However, the calibration coefficients (CCs) representing9

the signal of interest (due to nuclear material) in these two10

measurement modes may vary by a large amount depending on11

the properties of the matrix of the nuclear waste drum. Therefore,12

this article investigates matrix effects based on 104 Monte–13

Carlo calculations with different waste drums, based on Taguchi14

experimental design with a range of densities, material com-15

positions, filling levels, and nuclear material masses. A matrix16

correction method is studied using machine learning algorithms.17

The matrix effect on the neutron signal is deduced from the signal18

of internal neutron monitors located inside the measurement19

cavity and from a transmission measurement with an AmBe20

neutron source. Those quantities can be assessed experimentally21

and are used as explanatory variables for the definition of a22

predictive model of the simulated CC, either in passive or in23

active mode. A multilinear regression model of the CC based on24

ordinary least square (OLS) is built and compared to the random25

forest (RF) machine-learning algorithm and to the multilayer26

perceptron (MLP) artificial neural network. In passive neutron27

coincidence counting, the residual error of the regression is lower28

for the MLP and RF than for OLS. The agreement between the29

predicted CCs of four mockup drums used as test is better than30

17% and 3%, respectively, with the MLP and RF methods, while31

three predictions are out of the 95% confidence level range with32

OLS. In active neutron interrogation, similar conclusions are33

drawn. The prediction of the CC for the four mockup drums is34
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better than 12%, 35%, and 72% for the respective MLP, RF, and 35

OLS methods. In conclusion, the MLP and RF regression model 36

demonstrates more accurate results of the quantities of interest 37

than the traditional OLS method. The future steps will focus on 38

matrix heterogeneities, experimental validation, improving our 39

models and testing new regression approaches. 40

Index Terms— Active neutron interrogation, calibration coef- 41

ficient (CC), experimental design, linear regression, multilayer 42

perceptron (MLP), passive neutron coincidence counting. 43

I. INTRODUCTION 44

THE Measurement and Instrumentation for Cleaning and 45

Decommissioning Operations (MICADOs) project [1] of 46

H2020 Research and Innovation Program aims to propose a 47

cost-effective and comprehensive solution for nondestructive 48

characterization of nuclear waste. The project is develop- 49

ing a platform composed of different measurements (gamma 50

camera, gamma-ray spectroscopy, passive and active neutron 51

measurements, and photofission interrogation) and of modern 52

analysis technologies, such as AI and Bayesian methods, 53

to combine experimental results in view of reducing the 54

uncertainty in the determination of the nuclear material content 55

inside the nuclear waste package. The neutron system aims 56

at quantifying nuclear material (plutonium and uranium) in 57

legacy technological wastes resulting from the exploitation 58

of nuclear plants. A neutron system prototype was recently 59

designed and optimized by Monte–Carlo simulations [2] using 60

the MCNP code [3] for the nuclear material mass deter- 61

mination of a wide range of nuclear waste by combining 62

both passive neutron coincidence counting [4], [5] and active 63

neutron interrogation [5]. This work also showed that the 64

neutron signal of interest coming from the nuclear material 65

is strongly impacted by the properties of the nuclear waste 66

drum matrix. Therefore, we investigate the matrix effects with 67

Monte–Carlo calculations based on an experimental design to 68

figure out possible corrections to determine more accurately 69

the nuclear material mass. 70

II. MICADO NEUTRON SYSTEM MEASUREMENT 71

The design of a neutron measurement system is strongly 72

influenced by the characteristics of the nuclear waste drums to 73

0018-9499 © 2024 EU
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Fig. 1. MCNP model of the MICADO neutron system design. (a) Side view.
(b) Front view. (c) Upper view.

Fig. 2. Experimental setup of the MICADO neutron system. Measurement in
active neutron interrogation using (a) neutron generator and (b) transmission.

be measured. Hundreds of thousands of nuclear waste pack-74

ages (produced by EDF, ORANO, CEA, etc.) are currently75

stored in several areas in France [6]. We focus our study76

on 118 L technological legacy waste drums from nuclear fuel77

fabrication or spent fuel reprocessing plants, which contains78

plutonium and uranium. The MCNP numerical model of79

MICADO neutron system is based on the prototype described80

in [2], with only a few modifications to consider the measure-81

ment cell as built. Figs. 1 and 2 show the MCNP model and82

the experimental setup (not used in this article), respectively.83

The neutron system consists of a 150 × 170 × 230 cm84

cell that can contain drums up to 400 L. The 10-cm-thick85

walls of the cell are made of polyethylene to thermalize86

neutrons and thus increase the fission rate for the differential87

die-away technique (DDT) [5]. The neutron system prototype88

includes a total of 84 gas proportional counters filled with 3He,89

embedded by groups of seven detectors in 12 polyethylene90

blocks, in order to thermalize the neutrons to be detected.91

These neutrons are fission prompt neutrons induced in fissile92

nuclei like 239Pu and 235U, in active neutron interrogation,93

and spontaneous fission neutrons from odd nuclei like 240Pu,94

in passive neutron coincidence counting. The detection blocks95

are embedded in cadmium for the DDT technique. They are96

disposed horizontally on the two sidewalls of the system,97

to give an indication of the vertical location of neutron sources98

in the drum, in view to reduce uncertainties on the nuclear99

material mass determination. The drum is placed on a rotating100

plate made of aluminum that is relatively transparent to neu-101

trons. The motor that commands the rotating plate is composed102

of neutron absorbing materials (mainly stainless steel) and 103

is covered by a layer of 10 cm of polyethylene to mitigate 104

this effect. A 14-MeV DT neutron generator (GENIE16 from 105

SODERN, [7]) used in the active mode is fixed on the wall on a 106

polyethylene support. An additional boron-coated proportional 107

counter called “external monitor,” located outside the neutron 108

cell, is used to normalize all measurements and thus correct for 109

potential fluctuations of the neutron generator emission rate. 110

The determination of the nuclear material mass in a drum 111

derives from the value of a calibration coefficient (CC) 112

representing the useful neutron signal obtained for 1 g of 113

nuclear material in the drum, which is calculated by Monte– 114

Carlo simulation [2]. This signal is highly affected by the 115

properties of the matrix of the drum, namely, the presence of 116

neutron thermalizing and/or absorbing materials that impact 117

the useful signal in both passive neutron coincidence counting 118

and active neutron interrogation. For instance, a matrix with 119

rich-in-hydrogen materials, such as polyethylene, thermalizes 120

generator fast neutrons and thus increases the fission rate, but 121

neutrons absorbers, such as boron, cadmium, iron, or hydrogen 122

itself, have the opposite effect. On the other hand, as hydrogen 123

slows down the neutrons to be detected, coming from sponta- 124

neous or induced fissions, it reduces their detection efficiency. 125

Indeed, thermalized neutrons are absorbed by the cadmium 126

layer surrounding the detection blocks (see Fig. 1). To monitor 127

thermal neutron absorbers, two boron-coated detectors (called 128

“internal monitors,” see Fig. 1) are fixed at two different 129

heights on the opening door of the neutron cell. They are 130

sensitive to the thermal neutron flux inside the measurement 131

cavity, which depends on the waste materials, and can be 132

used to correct matrix effects in active neutron interrogation 133

mode, in view to reduce the uncertainty on the nuclear mass 134

estimation [10]. We also use the signal of an AmBe neutron 135

source transmitted across the waste drum, with the opposite 136

3He detection blocks (see Fig. 2), which is sensitive to the 137

thermalization properties of the matrix. Both internal monitors 138

and transmission signals are used to monitor matrix effects in 139

passive neutron coincidence counting and in active neutron 140

interrogation. 141

III. EXPERIMENTAL DESIGN 142

The investigation of matrix effects on the CC requires 143

a large number of Monte–Carlo simulations based from 144

the numerical model presented in Fig. 1 for a variety of 145

nuclear waste drums. For this purpose, a Taguchi experimental 146

design [8] is used to investigate how different matrix features 147

affect the mean and variance of the CC variable of interest. 148

The aim is to build a predictive model of CC for waste 149

matrices with properties in the scope of the experimental 150

design. The experimental design proposed by Taguchi involves 151

orthogonal arrays to organize the parameters affecting the 152

variable of interest and their levels of variation. Compared 153

to a factorial design, the Taguchi method only tests pairs of 154

combinations of parameters, allowing determining which ones 155

most affect the variable of interest with a limited number 156

of simulations. In this study, we perform the simulation for 157

104 waste drums of different matrix compositions, densities, 158

filling heights, and nuclear material masses (see Table I). 159
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TABLE I
PARAMETERS AND THEIR VARIATION LEVELS OF THE L32 AND THE L72

TAGUCHI EXPERIMENTAL DESIGNS FOR 118 L DRUMS

Note that the nuclear material mass is not strictly speaking160

a matrix effect, but it is introduced in the study to take161

into account the combined self-absorption and multiplication162

effects in nuclear material. In the end, this combined effect163

was found to be negligible in this study because nuclear164

materials are distributed homogenously in the whole matrix.165

The 104 simulations are split into an orthogonal array of166

32 and 72 configurations, namely, L32 and L72 [9]. These167

two experimental designs have then been merged into a unique168

L104 experimental design to obtain a more robust database for169

the regression techniques described later in this article. The170

target value is the CC both in passive neutron coincidence171

counting and in active neutron interrogation of 118 L drums.172

The L32 and the L72 propose four and up to six levels of173

variation of their parameters, respectively. The parameters and174

their levels of variation fully cover the scope of characteristics175

defining the nuclear waste drums likely to be measured in the176

MICADO project. They are presented in Table I.177

The experimental designs involve a large variety of matrices,178

mainly composed of metallic or organic elements present as179

primary components in technological wastes of nuclear plants180

(pipes, rods, gloves, etc.). In this study, the matrix and the dis-181

tribution of nuclear materials inside the drum are assumed to182

be homogeneous. In practice, partial information of the drum183

characteristics might be collected from the drum provider184

before performing a neutron measurement. Information can185

also be assessed with complementary measurements [11] per-186

formed within the MICADO project (gamma spectroscopy and187

tomography). In the following, we will assume that no a priori188

information is known, so as not to introduce any bias in the189

analysis of the experimental design simulations.190

IV. COMPARISON OF REGRESSION MODELS191

A. Definition of the Explanatory Variables192

The measured transmitted and internal monitor signals are193

used as explanatory variables to assess the properties of the194

waste matrix. The neutron signal transmitted through the drum195

is measured by the six 3He detection blocks (Str1, Str2, Str3,196

Str4, Str5, and Str6) located at the opposite side with respect197

to the AmBe source (Fig. 2). It reflects the thermalizing power198

of the waste matrix inside the drum. In passive neutron coin-199

cidence counting, only this neutron transmission information200

Fig. 3. Correlation matrix between the CC (CC 239Pu and CC 240Pu) and
the explanatory variables (signal of the internal monitors Smih and Smil and
neutron signal in the 12 3He detection blocks Stri measured with AmBe
source).

is implemented in the regression models, as thermal neutron 201

absorption in the waste matrix has a minor effect when using 202

detection blocks wrapped in cadmium for the purpose of the 203

active interrogation. For this last measurement, however, the 204

signal measured by the two internal monitors inside the cell 205

is used as additional explanatory variables in the regression 206

models. Indeed, these internal monitors give information on 207

the absorbing properties of the matrix for thermal interrogating 208

neutrons, respectively, in the lower part (Smil) and in the 209

higher part (Smih) of the drum. Fig. 3 shows the correlation 210

matrix between the CC (in passive and active modes) and 211

the explanatory variables. The CC in passive mode (CCpassive) 212

is little correlated to the signal of the internal monitors, 213

while it shows the highest correlation with the transmitted 214

signal (Str1–Str3) located at the opposite side of the AmBe 215

source. Finally, we can also observe the strong correlation 216

(factor > 0.7) between CC in the active mode (CCactive) and 217

internal monitors. 218

B. Regression Techniques 219

Regression techniques for the prediction of the CC can be 220

applied using the explanatory variables showing the highest 221

correlations with CC. In this work, we illustrate the benefit 222

of new regression approaches with respect to multilinear 223

regression with ordinary least squares (OLSs), which is tra- 224

ditionally used in our laboratory. We compare its results with 225

the multilayer perceptron (MLP) [11] and random forest (RF) 226

[12] algorithms from the Scikit-Learn Python library [13]. 227

Linear regression with the OLS provides a straightfor- 228

ward and interpretable framework for estimating relationships 229

between dependent and multiple independent variables. OLS 230

provides an estimation of the linear model coefficients by 231
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Fig. 4. Mockup drums modeled in MCNP. From left to right:
wood–PVC–polyethylene–stainless steel.

minimizing the sum of squared differences between observed232

and predicted values of the CC (here, CCMCNP and CCpred).233

CCpred is defined as an analytical function of quadratic and234

polynomial value (up to the second order) of the most relevant235

explanatory variables (see Section IV-A).236

An MLP is a class of artificial neural networks characterized237

by multiple layers of interconnected nodes, or “neurons,”238

which process input data to produce desired outputs [13].239

The efficacy of MLPs in regression modeling stems from240

their capacity to approximate highly nonlinear mappings241

between input and output variables. Unlike traditional multi-242

linear regression models, MLPs can capture intricate patterns,243

interactions, and nonlinearity present in the data.244

On the practical side, the optimization process involves245

defining hyperparameters, such as the number of hidden246

layers, the number of neurons for each hidden layer, the247

activation function, and the learning rate [13]. These are deter-248

mined through a cross-validation process, which is exclusively249

applied to the experimental design L72 that presents a larger250

number of density and matrix levels in comparison to L32251

(see Table I).252

The RF algorithm is a powerful asset in predictive model-253

ing, particularly for complex and high-dimensional datasets.254

By building a large set of decision trees and aggregating their255

predictions, RF enhances prediction accuracy, reduces overfit-256

ting, and provides valuable insights into variable importance.257

The hyperparameters include the number of trees, the criterion,258

the minimum number of samples required to split a node,259

and among others [13]. These are also determined through260

a cross-validation process, which is exclusively applied to the261

experimental design L72.262

C. Tests of the Regression Models With Homogeneous263

Mockup Drums264

In this work, the predictions of CC calculated by the265

regression models will be checked using calculations with the266

MCNP models of realistic homogenous waste drums. For this267

purpose, we use the MCNP models of four mockup drums268

filled with different matrices (see Fig. 4), which will be used269

in the experimental tests of MICADO cell at the Nuclear270

Measurement Laboratory of CEA Cadarache.271

These four matrices are representatives, in terms of neu-272

tron moderation and absorption, of the materials constituting273

radioactive technological wastes. In addition, their charac-274

teristics are included in the range of the parameters of the275

experimental design regarding matrix composition, density,276

filling level, and nuclear mass content (see Table II).277

In the following, the unique L104 experimental design (as278

described in Section III) is directly used for the training279

TABLE II
118 L MOCKUP DRUMS DESCRIPTION

Fig. 5. Predicted CC-240Pu of the mockup cases (labeled points) in passive
neutron coincidence counting obtained with (a) OLS, (b) MLP, and (c) RF
algorithms. The two red lines are the interval ±2 σres.

database, and the prediction performance of the regression 280

techniques is assessed using simulation results performed for 281

the four mockup drums. The result of the regression models 282

(called predicted CC or “CCpred”) is compared to the MCNP 283

simulated CCs (called “CCtrue”) for the 104 configurations in 284

Figs. 5 and 6 for passive neutron coincidence counting and for 285

active neutron interrogation, respectively. The predicted CC 286

and the true CC of the four mockup drums are also indicated. 287
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Fig. 6. Predicted CC-239Pu of the mockup cases (labeled points) in active
neutron interrogation obtained with (a) OLS, (b) MLP, and (c) RF. The two
red lines are the interval ±2 σres.

The predicted CC (CCpred) by the three regression methods288

is represented against the simulated (CCtrue). The residual error289

of the multilinear regression with the interval is ±2 σres. The290

absolute value of σres is deduced from the square root of the291

mean square error (mse). Values covered by the CC are largely292

distributed and are not organized in clusters, demonstrating293

the relevance of the description of the experimental design.294

The symmetric mean absolute percentage error (SMAPE)295

demonstrates a better quality of the regression using MLP and296

RF methods compared to OLS, in both passive coincidence297

counting (SMAPEOLS = 5.23%, σ res,OLS = 0.0446 c.s−1.g−1;298

SMAPEMLP = 1.94%, σ res,MLP = 0.0185 c.s−1.g−1;299

SMAPERF = 1.38%, σres,RF = 0,0111 c.s−1.g−1) and300

active interrogation (SMAPEOLS = 20.39%, σ res,OLS =301

37 c.s−1.g−1; SMAPEMLP = 5.94%, σres,MLP = 21 c.s−1.g−1;302

SMAPERF = 10.60%, σres,RF = 26 c.s−1.g−1). Additionally,303

a few negative, nonphysical values of CCpred arise from the304

linear regression [“Mockup 3” on Fig. 5 and a few others305

(blue points) on Fig. 6], disqualifying the validity of the306

OLS method in this region. Table III compares the metrics of307

TABLE III
COMPARISON METRICS OF THE DIFFERENT MULTILINEAR REGRESSION

MODELS IN PASSIVE NEUTRON COINCIDENCE COUNTING AND ACTIVE
NEUTRON INTERROGATION FOR THE FOUR MOCKUP DRUMS

accuracy for CCpred using the OLS, MLP, and RF methods in 308

passive coincidence counting and active interrogation. 309

In the passive mode, results indicate that the agreement 310

in the predicted CC in the four mockup drums lies in 311

the [1%–58%], [0%–17%], and [0%–3%] ranges in passive 312

coincidence counting and in the [3%–72%], [1%–12%], and 313

[1%–35%] ranges in active interrogation for the OLS, MLP, 314

and RF methods, respectively. The model based on the OLS 315

method provides poor prediction results in passive coincidence 316

counting, where three of the four drum cases are outside the 317

interval ±2 σres. This indicates an overfitting of the OLS model 318

and reducing the amount of input parameters, as well as the 319

polynomial order, enables to mitigate this disagreement (while 320

nonetheless degrading the residual error of the fit). On the 321

other hand, the MLP and RF methods forecast all the results 322

inside the interval ±2 σres. In active neutron interrogation, 323

a better accuracy and consistency of the predictions is also 324

observed for the MLP and RF methods. 325

D. Model Prediction Extension to Heterogeneous 326

Waste Cases 327

To assess the validity and limitations of the prediction 328

regression models established with homogenous waste matri- 329

ces, ORANO La Hague provided two realistic heterogeneous 330

drums case studies, together with their detailed Monte–Carlo 331

simulation model, in the frame of MICADO project [14]. The 332

first realistic case (RC1) consists of a 118 L alpha waste drum 333

divided into five bags containing decontamination wipes. The 334

activity of the plutonium inside the drum is heterogeneous. 335

The matrix is also moderately heterogeneous and exclusively 336

constituted of humid plastic C3H6(H2O) of densities varying 337

from 0.32 to 0.53. The second realistic case (RC2) is a 118 L 338

alpha waste drum containing 50 stainless steel pipes with a 339

low contamination level. The average density is 1.08 g.cm−3
340

and about 87% of the plutonium activity is concentrated in a 341

valve located at the bottom of the drum. Fig. 7 shows a view 342

of the RC1 and RC2 Monte–Carlo models. 343

The result of the regression models trained with the L104 344

data set is illustrated in Figs. 8 and 9, in passive neutron 345

coincidence counting and in active neutron interrogation, 346

respectively. 347
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Fig. 7. MCNP models of (a) RC1 and (b) RC2 waste drums. The different
colors correspond to different types of material.

Fig. 8. Predicted CC-240Pu of the realistic drum cases (labeled points)
in passive neutron coincidence counting obtained by (a) OLS, (b) MLP, and
(c) RF algorithms. The two red lines are the interval ±2 σres.

Table IV compares the accuracy metric results for CCpred348

using the OLS, MLP, and RF methods in passive coincidence349

counting and active interrogation.350

As previously mentioned, both drums present certain level351

of heterogeneities (matrix and distribution of the plutonium352

mass) that was not simulated in the experimental design353

calculations. Thus, the regression algorithms have not been354

trained with heterogeneous matrices and nuclear material355

distributions. This being said, CCpred agrees within [0%–30%]356

in passive neutron coincidence counting, regardless of the357

regression method, but results are significantly better using358

Fig. 9. Predicted CC-239Pu of the realistic drum cases (labeled points) in
active neutron interrogation obtained by (a) OLS method, (b) MLP, and (c) RF
algorithm. The two red lines are the interval ±2 σres.

TABLE IV
COMPARISON METRIC RESULTS OF THE DIFFERENT REGRESSION MODELS

IN PASSIVE NEUTRON COINCIDENCE COUNTING AND ACTIVE
NEUTRON INTERROGATION FOR THE

REALISTIC DRUM CASES

MLP and RF than OLS. In active neutron interrogation, 359

predictions are within [5%–55%] and OLS provides better 360

predictions of CC for RC2 (6% against 55% and 44% for 361

the MLP and RF methods, respectively). Beyond the fact that 362



IE
EE P

ro
of

DUCASSE et al.: APPLICATION OF MACHINE LEARNING TO MICADO PASSIVE AND ACTIVE NEUTRON MEASUREMENT SYSTEM 7

RC2 shows heterogeneities in matrix composition and nuclear363

mass distribution, these poor predictions for MLP and RF364

algorithms are probably due to the average density of RC2,365

which is out of the boundary limits defined in the experimental366

design (i.e., 1.08 versus 0.7 g.cm−3 maximum in the training367

set). Overall predicted results of realistic heterogeneous drum368

cases are thus logically less accurate than the prediction for369

the previous homogeneous mockup drums.370

E. Conclusion and Outlooks371

The MICADO neutron measurement system prototype has372

been designed by MCNP simulation, with the objective to373

estimate the nuclear material mass in a wide range of radioac-374

tive waste drums by passive neutron coincidence counting375

and active neutron interrogation. The useful neutron signal376

(namely, the CC in count per second and per gram of 240Pu377

or 239Pu, respectively) was calculated by Monte–Carlo simu-378

lations for a series of matrix compositions, density, and filling379

levels defined with an experimental design. The obtained380

104 simulation results were used to establish regression mod-381

els with three different algorithms to reduce the uncertainty382

on the nuclear mass estimation. These models were based on383

internal matrix monitors and a neutron transmission measure-384

ment. Within the context of this issue, MLP and RF regression385

techniques show a clear advantage over conventional OLS386

(linear regression with OLSs), both in passive coincidence387

counting and active interrogation techniques. This behavior388

may be attributed to the strong correlation between some389

of the predictors knowing that one of the conditions to use390

classical linear regression method is the independence of the391

predictors. The residual error and the SMAPE on the linear392

regression of the MLP and RF techniques are lower, and the393

predicted CC never results in nonphysical negative values.394

Therefore, the uncertainty on the determination of the nuclear395

mass can significantly be reduced by comparison to standard396

OLS method usually employed in our laboratory.397

In the next steps, we will investigate more regression398

methods and we will enlarge the training database with399

additional Monte–Carlo simulations, including more waste400

materials and heterogeneous matrices as well. Currently, the401

use of experimental designs helps to reduce the number of402

MCNP simulations while providing maximum information403

for constructing regression models. However, this approach404

only works if the range of variation for influential parameters405

(density, filling level, matrix material, etc.) covers the entire406

range of waste barrels to be measured. When dealing with407

homogeneous matrices, this approach is relatively robust.408

However, accounting for matrix heterogeneities and radioac-409

tive materials becomes very challenging, even when using410

experimental designs driven by MCNP simulations. At present, 411

the idea is to consider extreme cases in terms of hetero- 412

geneities. These cases are unlikely to be measured in practice, 413

but it allows to cover a broad range of variations. Despite this, 414

it is still expected that regression algorithms (based on inter- 415

polation between different points of the experimental design) 416

will exhibit poorer performance compared to homogeneous 417

cases. In this specific scenario, simulating all the possible 418

heterogeneous configurations to train the models is very 419

complex, if not impossible. Work is ongoing to evaluate the 420

performance for these heterogeneous waste scenarios. Another 421

important prospect is to perform laboratory measurements with 422

mockup drums in DANAIDES casemate of TOTEM nuclear 423

facility, at CEA Cadarache, both to validate our numerical 424

Monte–Carlo calculation models and to test with experimental 425

data the regression models established with simulation data. 426
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