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This study evaluates the performance of analog-based methodologies to predict the longitudinal
velocity in a turbulent flow. The data used comes from hot wire experimental measurements from
the Modane wind tunnel. We compared different methods and explored the impact of varying the
number of analogs and their sizes on prediction accuracy. We illustrate that the innovation, defined
as the difference between the true velocity value and the prediction value, highlights particularly
unpredictable events that we directly link with extreme events of the velocity gradients and so to
intermittency. This result indicates that while the estimator effectively seizes linear correlations,
it fails to fully capture higher-order dependencies. The innovation underscores the presence of
intermittency, revealing the limitations of current predictive models and suggesting directions for
future improvements in turbulence forecasting.

I. INTRODUCTION

For a given temporal stochastic process X, Cramér defined innovation to describe the new random inputs into the
system and to quantify the unpredictability in the time evolution of X [1, 2]. For a deterministic dynamical system,
if a solution exists and is known, the lack of noise leads to a vanishing innovation. However, in chaotic systems,
innovation rarely vanishes and can be used to quantify the degree of predictability of the process and to identify
unpredictable localized events related to the system’s dynamics.

Fluid turbulence is one example of a chaotic system with very complex multiscale dynamics, in which the velocity
field is impossible to derive deterministically [3–8]. Turbulent velocity presents long-range correlations, indicating
non-local interactions [9], and intermittency leads to extreme events in the velocity gradients [9, 10]. Additionally,
in numerical experiments, noise is present due to numerical solver approximations and machine precision while in
physical experiments, noise is naturally present within the sensors or experimental procedures themselves, and the
observations are usually limited to some coordinates of the velocity field only. As a consequence, a minimal level of
unpredictability is always present in a turbulent velocity signal.

We propose to characterize the predictability of turbulent velocity in terms of innovation, highlighting that difficult-
to-predict events are related to bursts in velocity gradients and thus to intermittency. In this context, we adapt
analog-based estimators[11] previously used in meteorological [12, 13] and dynamical systems applications [14] to
predict the next value in a hot-wire velocity measurement from a grid turbulence experiment in the Modane wind
tunnel [15]. We compute the corresponding innovation as the difference between the real signal and its prediction.
We then analyze the statistical properties of the velocity, velocity increment, innovation, and the cumulative sum
of innovations by examining their second-order structure function and flatness. On the one hand, the second order
structure function is a second-order statistic that characterizes the energy distribution across scales. On the other
hand, the flatness is a higher-order statistic that characterizes the significance of extreme events across scales.

While the analog-based innovation predictions can effectively capture and predict non-extreme dynamics by remov-
ing some linear dependencies, extreme events in velocity gradients due to intermittency are not accurately predicted
by the analog method. This method falls short in accounting for higher-order dependencies. The innovation pro-
cess shows a nearly white spectrum with a non-Gaussian, fat-tailed probability distribution and retains higher-order
dependencies. Extreme events in innovation are localized in time and appear concomitantly with extreme velocity
gradient events, indicating that intermittency introduces unpredictability into the system.

This article is structured into three sections. In section Turbulence & Intermittency we discuss intermittency, its
characterization, and the turbulent data used. Section Innovation introduces the new proposed framework and the
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estimators we compute. Finally, section Results evaluates the performance of the different estimators and discusses
the statistics of innovation on real experimental data.

II. TURBULENCE & INTERMITTENCY

The Richardson cascade picture of three-dimensional turbulence identifies three domains of scale: the integral
domain, which contains the large scales where energy is injected; the inertial range, where energy cascades from large
to small scales; and the dissipative domain where energy is dissipated at smaller scales.

In the case of three-dimensional fully developed turbulence, the multifractal formalism [9, 16, 17] describes in the
inertial domain a power law behavior of the structure functions Sp(l) of the turbulent velocity field as a function of
the scale:

Sp(l) = E[(δlv)p] ∝ lζ(p) (1)

where δlv = v(x+ l)− v(x) is the velocity increment of size l and ζ(p) is the scaling exponent.
The Kolmogorov’s 1941 (K41) theory [18] originally proposed a linear scaling exponent ζ(p) = ph, with a single

Holder exponent h = 1
3 i.e. a monofractal velocity field. This model does not take into account the intermittency

phenomenon highlighted by experiments [15, 19]. Intermittency is characterized by a deformation of the probability
density function of the velocity increments from Gaussian at large scales to non-Gaussian with heavy tails at small
scales [20]. This behavior reflects the presence of extreme events, which become more significant at smaller scales.
It implies multifractality: a non-linear scaling exponent ζ(p) with a dependancy of h upon p ζ(p) = ph(p). An
intermittent model of turbulence was proposed by Kolmogorov and Obukhov (KO62) [21, 22] and later studied
within the multifractal formalism [10, 17, 20, 23–25].

The energy distribution across scales is characterized by the second-order structure function S2(l) which, for scales
in the inertial domain, is proportional to l2/3 up to intermittent corrections [9]. S2(l) characterizes second-order
statistics of the turbulent velocity field in the same way as autocorrelation and power spectrum [9].

The flatness characterizes the relative importance of extreme events and allows for a measure of the deformation
of the PDF. It is defined for a given scale l as

F (l) =
S4(l)

3S2(l)2
(2)

It thus characterizes higher-order statistics of velocity. In a monofractal Gaussian field, the flatness remains constant
across scales and is equal to 1. In contrast, turbulence shows an increasing flatness with decreasing scale l, indicating
a higher prevalence of extreme events or bursts at smaller scales [26–28]. The increased flatness at smaller scales due
to the departure from Gaussian statistics is a key indicator of intermittency.

A. Modane Turbulent Velocity Dataset

We use an Eulerian longitudinal velocity measurement from an experimental grid turbulence setup in the Modane
wind tunnel [15]. The full velocity measure spans 1000 seconds with a sampling frequency of fs = 25 kHz. Velocity
measurements were obtained using hot-wire anemometry. The Taylor scale Reynolds number of the flow is Rλ = 2500.

To relate temporal measurements to spatial properties, we employ Taylor’s hypothesis of frozen turbulence, which
allows us to interpret temporal variations in the velocity signal as spatial variations using v(x, t) = v(x − V t, 0) ,
where v is the velocity, x is the space coordinate in the longitudinal direction, defined along the mean velocity of the
flow, t is the time coordinate and V = 20.5ms−1 is the mean velocity of the flow.

From previous studies, the integral scale of the flow is L = 2350dl and the Kolmogorov scale [29] of the flow is
η = 5dl [30], where dl = V/fs.

In the following, all results are presented in function of t/T with T = L/V .

III. INNOVATION

A. Theoretical Description

For a stochastic process X = {xt} sampled at intervals equally separated by dt, we define the innovation εt as:
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εt = xt − E[xt|x−∞:t−dt] (3)

where E[xt|x−∞:t−dt] is the expected value of xt conditioned on its complete past x−∞:t−dt.
We interpret εt as the novel, unpredictable component of xt at time t [1, 2]. Thus, innovation acts as a limit to

the error of an optimal prediction, providing insight into the degree of unpredictability of the system as a function of
time.

Very interestingly, innovation can point out specific unpredictable events localized in time.
In practice, the expected value E[xt|x−∞:t−dt] cannot be conditioned on an infinite past and we restrict the condi-

tioning on a finite past interval t ∈ [t− pdt, t− dt], leading to the approximation:

ε
(p)
t = xt − E[xt|xt−pdt:t−dt] (4)

where p indicates the finite duration of the past horizon.

B. Analogs

For a given time t, we consider the temporal sub-sequence ~x
(p)
t of size p of the stochastic process X as:

~x
(p)
t =



xt−dt

...
xt−pdt


 (5)

Two such sub-sequences ~x
(p)
t and ~x

(p)
t′ considered at two different times t and t′ are called analogs if they are close

enough in terms of some given p-dimensional distance.
Based on Poincaré’s theorem [31], we assume that 1) analogs exist if the time series if sufficiently long; and 2) close

analogs will lead to close successors. Then for a given t, the set of successors xt′ of the analogs ~xt′,p of ~x
(p)
t can be used

to predict the successor xt. This approach relies on the similarity of past sequences and their subsequent outcomes
for making predictions.

In the context of the present study, analog forecasting serves as a methodological framework for estimating the
expected value E[xt|xt−pdt:t−dt] that appears in the definition of innovation.

C. Analog-based predictions and innovations

Given ~x
(p)
t and a fixed integer k, we define the analogs of ~x

(p)
t as the set {~x(p)t′i }1≤i≤k of the k historical sequences

with t′i < t that are the closest to ~x
(p)
t in terms of the Euclidean distance, as suggested in [32, 33].

D. Average

The original method for analog prediction computes a weighted average of the successors {xt′i}1≤i≤k of the analogs

[34, 35]. This leads to the Average prediction x̂t
(p):

x̂t
(p) =

1

k

k∑

i=1

wiixt′i (6)

with the corresponding innovation ε̂
(p)
t = xt− x̂t. The weights wii are defined as the components of a diagonal weight

matrix W :

wii =
e
−||~x(p)

t −~x
(p)

t′
i
||/λ

∑k
j=1 e

−||~x(p)
t −~x

(p)

t′
j
||/λ

(7)
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with λ = median({||~x(p)t − ~x(p)t′i ||}1≤i≤k), following the work of [32, 33].

This averaging method tends to draw predictions towards the average of the k successors, resulting in forecasts that
are more inaccurate in unexplored regions[33]. It nevertheless gives a simple first estimator that we compare to more
sophisticated one below.

E. Linear Regression (LR)

Following [32], we then make an analog-based prediction using a weighted linear regression performed on each
analog successor xt′i , in order to identify a relationship between analogs and successors.

For a given number k of analogs, the minimization problem can be written as min
βt

||~x−WXpβt|| where:

• ~x is the vector of analogs’ successors:

~x =



xt′1
...
xt′k


 , (8)

• Xp is a k × (p+ 1) matrix containing all analog vectors:

Xp =




1 xt′1−dt . . . xt′1−pdt
...

...
...

1 xt′k−dt . . . xt′k−pdt


 (9)

with a first line of ones added for regularization.

• W is a k × k diagonal matrix which specifies the weight of each analog. The non-zero elements wii of W are
defined using eq.7.

• βt is the coefficients vector of the weighted linear regression that depend on t through the definition of the
analogs, that we search for.

The ordinary least squares estimator for the minimization gives:

β̂t = (XT
p WXp)−1XT

p W~x (10)

The analog prediction then reads:

x̂t
(p) ≡ β̂t~x(p)t (11)

with the corresponding innovation ε̂
(p)
t = xt − β̂t~x(p)t .

This ”LR” approach in phase space establishes a relationship from past states to their successors based on historical
analogs. It has two parameters: the number k of neighbors and the dimension p of the sub-sequences. Note that for
the inversion (eq.10) to be possible, one should have k ≥ p.

F. Normalized LR

One can focus on trends rather than values by removing the mean value of the sub-sequences, allowing the analog
search to prioritize patterns over analogs’ values [36]. This method is thus identical to ”LR” method after replacing

all coordinates xtj of sub-sequences ~x
(p)
t by xtj − ~x(p)t with ~x

(p)
t ≡ 1

p

∑
1≤j≤p xt−jdt.
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IV. RESULTS

A. Analogs Prediction

In this section, we compare the performance of the three analog-based predictions presented here above. We also
evaluate the impact of k and p in the performance, in order to determine the optimal values for k and p.

We compute the corresponding innovations ε
(p)
t for different methodologies and k and p combinations. This is done

on nreal = 10 realizations of length N = 221 ' 900T samples of the Modane turbulent velocity v. (see fig.1) The
database containing the historical record for analog searching is chosen to precede and not overlap with the portion
over which the predictions and innovations are computed and it contains a total of Na = N samples, where Na has
been selected to ensure that further increasing the size of the historical record does not significantly affect the results.
Overlap between analogs is not permitted, ensuring that the selected analogs are distinct. The results are computed
over the nreal realizations.

0 2000 4000 6000 8000 10000
t/T

−5

0

5

v

Na N N N N N N N N N N

111.552 111.556 111.560
−0.8
−0.4 p

FIG. 1. Visualization of Modane turbulent velocity data usage for the innovation ε
(p)
t . The first red section of size Na represents

the historical record used for analog search. The subsequent ten black sections are the nreal = 10 realizations of size N over
which the innovation is computed. Vertical dashed lines indicate the boundaries of the historical record and of the realizations.
The inset shows a zoom of the historical record with non-overlapping analogs candidates and a highlighted analog length p = 3.

The performance of a prediction x̂t is quantified with the variance of its corresponding innovation ε
(p)
t = xt− x̂t(p):

a perfect prediction would yield zero variance. On the contrary, the naive prediction v̂t = vt−dt assumes a locally
constant speed and hence doesn’t account for any dynamics or even any change in the process. It leads to the
innovation ε0t :

ε0t = vt − vt−dt = δdtv (12)

which is nothing but the increment δdtv. As a consequence, we can use the increment as a baseline of the behavior

of the innovation ε
(p)
t for the three analog-prediction methods presented earlier.

In Figure 2 we compare the performance of the three analog prediction methods as a function of k for different values
of p. ”Normalized LR” configuration (orange) consistently shows the lowest variance in the innovation, indicating
superior performance. Regular ”LR” (blue) yields similar results. For these two estimators: 1) the variance increases
when p increases due to the curse of dimensionality leading to increased computational complexity and convergence
issues and 2) the variance decreases when k increases until reaching a plateau at Et[ε2] = 0.026. ”Average” (green)
method without linear regression shows higher variance which increases with the number k of neighbors.

Increasing the size p of the sub-sequences over p = 3 does not improve performance, even when k is accordingly
increased. This is because three-point statistics already capture most of the dynamics of turbulent flows [37].

The lower variance of innovation compared to the one of the increment (horizontal continuous black line) indicates
that predictions are indeed containing relevant information on the dynamics. The existence of a minimum plateau
should be interpreted cautiously since we are using only a single-point velocity measurement, which may not probe
the full 3D complexity of turbulence. In line with previous works [33], using linear regression for analogs significantly
enhances prediction accuracy, with the linear regression model far outperforming averaging methods.

Based on this performance analysis, we use the ”Normalized LR” method in the following, with p = 3 and k = 70.
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FIG. 2. Standard deviation of the innovation ε
(p)
t = vt − v̂t

(p) as a function of the number k of neighbors used in the kNN
algorithm. The performance is shown for different sizes of the past: p = 3, 10, 50 and for different methods: Linear Regression
(blue), Normalized LR (orange), Averaging LR (green). Vertical lines correspond to the average value and errorbars to the
standard deviation computed over nreal realizations. Increment variance (continuous black line) is present as a baseline for
informative prediction, see (eq.12), and a dashed line is present to highlight the minimum value towards which the estimator
converges.

B. Innovation Statistics

Figures 3a) and 3b) show respectively the typical evolution of the Modane velocity v and of its increment δdtv
over multiple integral scales. The increment exhibits intermittent behavior with calm regions and bursty regions

that highlight its non-Gaussianity. Figures 3c) and 3d) show respectively the innovation ε
(p)
t and its cumulative sum∑t′=t

t′=0 ε[t
′](p). The innovation mirrors the behavior of the increment but with reduced variance. The concomitant

occurence of bursts in both the increment and the innovation time series suggests that extreme events in the increments
induced by intermittency lead to an increase in the unpredictability of the velocity values vt knowing their past
(vt−dt, vt−2dt, vt−3dt). This is coherent with previous results illustrating the challenge of predicting extreme events
[26–28]. The cumulative sum of the innovation is non-stationary and seems to behave like a random walk, which

might indicate that the linear part of the dynamics is correctly predicted in v̂t
(p) and therefore removed from the

innovation ε
(p)
t .

Figures 4a) and 4b) present the evolution of the second-order structure function and the flatness, with the time-scale

τ of the increment, for the Modane turbulent velocity vt (red), its increment δdtv (blue), the innovation ε
(p)
t (green),

and its cumulative sum (yellow). We relate our results obtained in time to Kolmogorov-Obukhov theories in space
using Taylor’s hypothesis [21, 22].

The logarithm of the second order structure function ln(S2(τ/T )) of the increment δdtv and the innovation ε (blue
and green curves respectively) behave very similarly with the time-scale τ . However, it is completely constant across
scales for the innovation while it increases at small scales for the increment, until reaching a plateau.

This increase of the second order structure function S2 of the increment at small scales reveals the existence of
linear correlations within this process. In contrast, the flat behavior of S2 for the innovation (in green) indicates that
linear correlations have been eliminated and accurately predicted by the analog method.

For the velocity (in red), we recognize the three following distinct regions: the integral domain at larger scales,
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FIG. 3. Time series of the Modane velocity v (a), its smallest increment δdtv (b), the innovation ε (c), and the cumulative sum

of innovation
∑t

t′=0 ε
(p)

t′ (d). The insert shows the cumulative sum of innovation over a longer duration.

characterized by a plateau and the largest value of S2; the inertial range with the τ2/3 scaling from K41 theory (eq.1)
with ζ(2) = 2h and h = 1/3) up to intermittent corrections; and the dissipative domain at smaller scales with a
(τ/T )2 scaling. For the cumulative sum of the innovation (in yellow), we observe two distinct regions with different
power laws: one with an exponent close to 0.7 from the smallest scales up to τ ∼ T and one with an exponent 1 at
larger scales, identical to a Brownian motion.

Finally, the logarithm of the flatness ln(F (τ/T )) is presented in fig.4b). The flatness of the increments δdtv (in
blue) and of the innovation ε (in green) is always larger than one, indicating non-Gaussian behavior at all scales. The
flatness of the innovation is larger because simple linear correlations have been predicted, which reduces S2. This
implies that the unpredicted extreme events due to intermittency have a greater relative impact, resulting in increased
flatness. For the velocity (in red) the flatness tends to 1 at large scales, indicating Gaussian behavior, while being
substantially larger at smaller scales, revealing intermittency [38]. The cumulative sum of the innovation (in yellow)
shows a power-law behavior for scales larger than ln(τ/T ) ∼ −3 with an exponant close to −0.1. For smaller scales,
the evolution of the flatness is faster. Such behavior indicates the persistence of higher-order correlations within the
innovation signal, despite the removal of most, if not all, linear correlations.

V. CONCLUSION

In this study, we used analog-based predictions of turbulent velocity measurements from the Modane wind tunnel
and computed the innovation in order to analyze the predictability of turbulent velocity. A first application confirmed
that linear regression-based analog prediction better accounts for complex dynamics such as turbulence, compared
to the standard averaging method, as suggested by state-of-the-art studies. Our analysis then demonstrated that
extreme events in the turbulent velocity gradient correspond to extreme events in the innovation, indicating a direct
relationship between intermittency-related bursts of the velocity signal and harder to predict velocity values.

Moreover, a multi-scale analysis revealed that the analog-based estimator of turbulent velocity effectively predicts
and removes most linear dependencies in the turbulent velocity signal, as evidenced by the flat second-order structure
function of the corresponding innovation. The second-order structure function of the cumulative sum of the innovation
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FIG. 4. Modane moments: a) second-order structure function S2(•) and b) flatness S4(•)/3 ·S2(•) for the velocity v (red), the
associated smallest increment δdtv (blue), innovation ε (green), and innovation sum (yellow). Lines correspond to the average
value and errorbars to the standard deviation computed over nreal realizations. Computation are done over 10 realizations,
each of 892 integral scales. The black lines correspond to power laws: a) continuous:(τ/T )2/3, dashed:(τ/T )1, round markers
:(τ/T )0.77 and b) continuous and dashed:(τ/T )−0.1 with different offsets.

does not exhibit the typical dissipative and integral domains. Instead, it shows two distinct regions with different
power laws: one with a slope close to 0.7 and another with a slope 1. This suggests that while the estimator captures
linear dynamics, it struggles with high-order dependencies. The flatness analysis further confirms that high-order
dependencies remain largely intact, as indicated by the same power law of exponent -0.1 for the cumulative sum of
the innovation as for the turbulent velocity itself. These findings highlight the limitations of the current analog-based
estimator in fully capturing high-order interactions and extreme events. Future research should focus on developing
improved methods to predict high-order interactions and better capture the full complexity of turbulent flows.

The analog-based prediction methods and calculation of innovation were implemented using Python. The code is
available in our GitLab repository for transparency and reproducibility: https://gitlab.imt-atlantique.fr/e22froge/multi-
scale-causality
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[25] J. Delour, J. Muzy, A. Arnéodo, Intermittency of 1D velocity spatial profiles in turbulence: A magnitude cumulant analysis,

European Physical Journal B 23 (2001) 243–248. doi:10.1007/s100510170074.
[26] B. Dubrulle, Beyond Kolmogorov cascades, Journal of Fluid Mechanics 867 (2019) P1. doi:10.1017/jfm.2019.98.
[27] D. Buaria, A. Pumir, E. Bodenschatz, P. K. Yeung, Extreme velocity gradients in turbulent flows, New Journal of Physics

21 (4) (2019) 043004. doi:10.1088/1367-2630/ab0756.
[28] H. K. Moffatt, Extreme events in turbulent flow, Journal of Fluid Mechanics 914 (2021) F1. doi:10.1017/jfm.2020.1079.
[29] A. Kolmogorov, The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds’ Numbers,

Akademiia Nauk SSSR Doklady 30 (1941) 301–305.
[30] C. Granero-Belinchon, S. G. Roux, N. B. Garnier, Scaling of information in turbulence, EuroPhysics Letters 115 (5) (2016)

58003.
[31] H. Poincaré, Sur le problème des trois corps et les équations de la dynamique, Acta mathematica 13 (1) (1890) A3–A270.
[32] P. Platzer, P. Yiou, P. Naveau, P. Tandeo, Y. Zhen, P. Ailliot, J.-F. Filipot, Using local dynamics to explain analog

forecasting of chaotic systems, Journal of the Atmospheric Sciences 78 (7) (2021) 2117–2133. doi:10.1175/JAS-D-20-0204.
1.

[33] R. Lguensat, P. Tandeo, P. Ailliot, M. Pulido, R. Fablet, The Analog Data Assimilation, Monthly Weather Review 145
(2017) 4093–4107. doi:10.1175/MWR-D-16-0441.1.

[34] S. Kruizinga, A. H. Murphy, Use of an Analogue Procedure to Formulate Objective Probabilistic Temperature Forecasts
in The Netherlands, Monthly Weather Review 111 (11) (1983) 2244–2254.

[35] L. D. Monache, T. Nipen, Y. Liu, G. Roux, R. Stull, Kalman Filter and Analog Schemes to Postprocess Numerical Weather
Predictions, Monthly Weather Review 139 (11) (2011) 3554–3570. doi:10.1175/2011MWR3653.1.

[36] T. P. Barnett, R. W. Preisendorfer, Multifield Analog Prediction of Short-Term Climate Fluctuations Using a Climate
State vector, Journal of the Atmospheric Sciences 35 (10) (1978) 1771–1787.
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