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Abstract. Handwritten Mathematic Expression Recognition (HMER)
algorithms with deep learning aproaches have developed rapidly in re-
cent years, most algorithms are dependent on heavy pre-training and also
complex network structures. Existing architectures are build on encoder-
decoder from on-line or off-line inputs to produce LATEX markup strings,
or stroke-level graphs to generate symbol-level graphs. They all remain
on a latent space, which is not directly related to the input data: the
strokes. Using the Stroke Label Graph modelisation allows a direct con-
nection between the input data and the output labels. In this research, we
proposed a novel stroke-level graph labeling method with edge-weighted
graph attention network (EGAT). This lightweight model doesn’t rely
on any pre-training, abandons the laborious process of encoder-decoder,
is totaly end-to-end, directly accomplishes stroke-to-stroke feature ex-
traction, and produces strokes and relations classification. Experiments
show that our proposed EGAT algorithm can effectively fuse the node
features as well as the weighted edge features, and predict the node and
edge attributes simultaneously.

Keywords: Handwritten Mathematical Expression Recognition · Graph-
based approaches · Graph Attention Network · Stroke Level Labeling

1 Introduction

Mathematical Expression (ME) is an essential part of scientific researching, en-
gineering development, basic education and so on. Compared to the more regu-
lar and complicated click-based ME editing tools or markup language (such as
LATEX) for inputting an ME, the handwritten mathematical expression (HME) is
more convenient for human editing, but more difficult for machines to recognize
due to different writing styles and habits.

Handwritten Mathematical Recognition (HMER), which means transform-
ing handwriting into mark-up information for convenient computer calculation
or rendering, is a challenging and promising subject with a variety of possible
applications.
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Compared to the Optical Character Recognition (OCR) problem, handwrit-
ten manuscript recognition is more difficult due to the diversity of manuscript
styles. HMER has to confront the general challenges of handwriting recognition,
and also the specific dificulty of 2D mathematical expression structure.

According to the different processing objective, general HMER can be di-
vided into online HMER and offline HMER. Online means several strokes with
temporal trajectory forming a HME while offline means a static image of HME.

Existing Deep Learning architectures for HMER are usually built on encoder-
decoder from on-line or off-line inputs to produce LATEX markup strings. These
sequence-to-sequence models do not take advantage of the graph structure of
mathematical layout, the hidden information of the relations between symbols
is difficult to be captured and utilized. There are some other algorithms that
utilize graph structures or tree structures to recognize as assistive information.
However, all of them remain on a latent space, which is not directly related to
the input data: the seperate strokes.

In that way, we try to explore the graph based modelisation of HME, and
use the modelised data for end-to-end stroke-level recognition.

The contributions of this paper are as follows:

• We proposed a general stroke-level graph labeling architecture for HMER,
which can directly accomplish stroke-to-stroke feature extraction, and pro-
duce strokes and relations classification. The overview structure is shown in
Fig. 1.

• We proposed a stroke level graph modelisation with Line-of-Sight graph
structure, and also the node and edge features extraction with Fuzzy Relative
Positioning Template (FRPT).

• An edge-weighted graph attention network (EGAT) is proved to effectively
fuse the node features as well as the weighted edge features, and predict the
node and edge attributes simultaneously.

The rest of this paper is organized as follows. Section 2 reviews the related
work. Section 3 introduces the proposed stroke-level graph modelisation method.
Section 4 presents the proposed end-to-end for stroke-level graph labeling. Sec-
tion 5 presents the experimental results.

The open-source code and trained model will be available.1

2 Related Work

With the development of HMER algorithms recently, the sequential methods,
grammer integrated methods and other tranditional recognition methods are
gradually replaced by the more popular end-to-end approches. In recent re-
searches, with the help of high-performance backbone deep networks, the deep
information of HME is learned and extracted by different forms of modeling and
relabeling method.

1 https://gitlab.univ-nantes.fr/E19B516G/egat
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Fig. 1: Overview of the architecture. The preprocessing extracts the node and
edge features from the raw stroke coordinates, and the LOS graph augmented
by time connections. The Node and Edge Embedding models embed the node
and edge features into a high-dimensional vector. The Edge-weighted Graph
Attention Network (EGAT) is used to update the node and edge features. The
two Readout networks are used to make the final decisions on edges and nodes.

Except the graph-based methods, some researches applied encoder-decoder
structure to encode the HME images or sequential data into high-dimensional
vectors, and then decode the vectors into LATEX strings as the final recognition
results. Among these methods, bidirectional decoder [38], constrained attention
decoder [30], symbol counting vector [10] and other methods are proposed to
improve the performance of typical encoder-decoder.

Graph structure is powerful for Mathematical Expression (ME) modelisation,
which can better represent the deep information between symbols. Thus, more
and more researches have been proposed to use graph structure for HMER,
no matter tranditional methods or deep learning methods. Since our research
focuses on graph, graph modelisation and applications of graph modelisation
in HMER, we will pay more attention to the state of the art of “graph-based”
HMER methods.

Maximum Spanning Trees (MSTs). Some early tranditional methods [3,
6, 14] have taken advantage of graph structure by using Maximum Spanning Tree
to generate graph structure of ME. These traditional MST-based approaches are
no longer dominant after the popularity of machine learning in recent years. How-



4 Y. Xie and H. Mouchère

ever, this most elementary approach may also provide guidance and inspiration
for sophisticated deep learning networks, which is the most in trend nowadays.

Graph with Contextual Information. A number of instances [1, 4, 24]
have shown that graphical structure information can be specified by pre-designed
graph grammar, which can be employed for HMER. F. Julca-Aguilar et al. [7–9]
proposed the graph-driven general frameworks for online HMER, with data-
driven hypotheses prediction and graph grammar parser for parse tree gener-
ation. Although the graph based contextual information algorithms can parse
equations efficiently, the complex manual grammar designing work is prohibitively
expensive.

Tree Based Decoder. A tree based decoder is a more flexible and efficient
way to decode the structural information and represent the deep information
of ME. The first trial [37] extended chain-structured BLSTM as tree structure
decoder for online HMER. While [28] proposed an online HMER algorithm by
BLSTM-based symbol-relation temporal classifier and handmade a series of path
extraction rules for tree reconstruction. A sequential relation decoder [36] was
proposed to decode the encoded online trajectory into tree structure. And the
same team proposed a tree structure decoder with similar principle for offline
HMER [22].

However, these tree based decoders always convert tree structure by a fixed
order, thus they fail to take full advantage of the diverse expressions of tree. To
improve on this point, C. Wu et al. [31] proposed a novel tree decoder (TDv2) to
make maximum advantage of tree structure labels. These algorithms merely con-
sider structural information and lack the overall representation of grammatical
information in deep learning features. Y. Yuan et al. proposed a Syntax-Aware
Network (SAN) [35], first applied syntax information into the encoder-decoder
structure with help of syntax tree. Influenced by visual parsing, M. Mahdavi et
al. [12] adopted visual parsing, especially graph parsing for HMER and proposed
Query-Driven Global Graph Attention (QD-GGA) algorithm.

Graph Neural Network: In recent years, there has been rising enthusiasm
for the extension of deep learning methods to graphs, which is Graph Neural
Network (GNN) [25]. GNN is used to handle the HMER problem in recent some
research, which can effectively perform message passing by the graph represen-
tation of equation.

J. Wu et. all [32] proposed a Graph-to-Graph model for online HMER with
GAT based encoder-decoder structure, which is a symbol level labeling approche.
J. Tang et. all [27] proposed an offline HMER algorithm with Graph Reasoning
Network (GRN). On the basis of all this work, J. Tang et. all [26] has pre-
sented a new offline HMER algorithm with Graph Neural Network encoder and
Transformer decoder.

So far, there isn’t any research that directly uses the stroke-level graph mod-
elisation and labeling for HMER, cannot fully utilize the features of each stroke
separately. In this paper, we provide a new orientation for solving the HMER
problem.
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3 Stroke-level Modelisation

Graph construction serves as the foundational step in the development of a
Graph based Handwritten Mathematical Expression Recognition (HMER) sys-
tem. In this context, graph construction requires the detailed modeling of the
node features, edge features, and the connectivity relationships between them.

In this study, Nodes represent the individual strokes of the Online Hand-
written Mathematical Expression(OHME), while Edges represent the relations
between 2 strokes. The aim of the Nodes Modelisation is that each node can ef-
fectively represent the shape features of the corresponding stroke. And the Edge
Modelisation can well represent the temporal, spatial, and other high dimension
relations between 2 strokes.

Such “Stroke Level” graph construction can directly represent and preserves
the Online stroke information, which is better adapted than the “Symbol Level”
graph construction for end-to-end networks.

3.1 Graph Construction with Line-of-Sight

We applied the Line-of-Sight (LOS)[5] method to construct the connected rela-
tions between strokes. The main idea is whether the strokes will be still visible
due to the occlusion of other strokes. Based on LOS, we also add the tempo-
ral order connections between strokes to increase the connectivity of the graph,
which noted as LOS+t graph. From here, we only consider the visible relations
between strokes, without the consideration of attributes on the edges. As an in-
stance, OHME “ bn

x ” contains 4 strokes as shown in Fig 2a, while the undirected
graph constructed by LOS+t is shown in Fig 2b.
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Fig. 2: From OHME to Stroke Label Graph(SLG). a) The OHME “ bn

x ” with 5
strokes, numbers show the time order. b) The LOS+t graph, visibility between
strokes correspond to plain edges and time connections are in dashed. c) The
ground-truth Stroke Label Graph, NoE states for No-Edge, and “*” label means
segmentation edge.
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3.2 Node and Edge Modelisation

After the construction of graph structure with LOS, Node and Edge Modeli-
sation are required to represent the shape features of strokes and the relations
between strokes according to online stroke coordinate information. These steps
can be seemed as pre-feature extraction before input to an end-to-end deep neu-
ral network, which reduces the hardness of the following model training.

Node Modelisation Only the x and y coordinates of each stroke is utilised
to be directly modelised as the node features. However, due to the diversity of
data collection devices and the different writing habits of users, there are large
differences in the stroke coordinates of the same symbol class. Therefore, the
standardization is necessary for reducing these negative impacts. We applied
a strategy of removing writing speed [21] for the raw stroke coordinates, and
also the gaussian normalization in stroke level. Both these approches are used
for containing the stroke shape information and also reducing the influence of
writing speed and writing habits.

Edge Modelisation The edge modelisation is more complicated than the node
modelisation, which requires a strategy for modeling or extracting the rela-
tions features between strokes. The previous online documents analysis works
extracted the multi-dimensional geoetric features of bounding boxes of strokes,
such as [34].

Rather than simply considering the geometric relationship between the strokes
bounding box, in order to better capture the shape and bi-directional position
information. In this study, we applied a Fuzzy Relative Positioning Template
(FRPT) [2] for relations extraction.

The main idea is to calculate the radian degree between standard vectors
−→e in 4 directions and the vector

−−→
OPi from the center of initial stroke O to the

sampling points of target stroke Pi, as shown in Eq. 1. Only the features of
vectors that make an acute angle with the standard vector are preserved. While
the directed edge of the initial node pointing to the target node retains the shape
information of the target node.

θi = max

0, 1− 2

π
arccos

 −−→
OPi · −→e√

|
−−→
OPi|2 + |−→e |2

 (1)

Therefore, the exchange of initial and target stroke will lead to different
results, with a visualized example in Fig 3. In the first row, the initial stroke
is “b” and the target stroke is “n”, while the second row is the opposite. The
lighter pixel means larger embedding value, and the darker means closer to
0. The connections between the nodes always have 2 directions with different
embeddings.
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Fig. 3: Fuzzy Relative Positioning Template for b to n and n to b in 4 directions.

3.3 Ground Truth Relabeling with Graph Structure

The ground truth of OHME can be represented as different formats, such as
MathML tree, LaTeX string, and also the stroke-level graph called Stroke La-
bel Graph (SLG) proposed by [19, 16, 18, 17, 15, 33, 13]. Take the advantage of
stroke-level graph based end-to-end network and also the previous OHME graph
modelisation, we can apply the SLG as ground truth in following model design
and training process with only several simple edge modifications.

There are 101 classes of symbols and 6 relations in original SLG of CROHME
datasets. Except the “Right”, “Sup”, “Sub”, “Above”, “Below” and “Inside”
relations between strokes. These 6 relations are all directional according to the
relative position of the strokes. In order to avoid the ambiguity of directions, we
add an opposite directed edge for every edge in SLG, these opposite relations
are noted as “Right”, “Sup”, “Sub”, “Above”, “Below” and “Inside”. After that,
we keep only one directed edge for each pair of connected strokes according to
the writing order, which means every edge in the graph are directed from the
early written down stroke to the later stroke. This strategy preserves the graph
structure of SLG and ignores syntactic rules, but avoids confusion of directions
through temporal ordering.

In addition, we add an “*” relation that signifies the 2 strokes belong to one
symbol, and a “NoE” means there is no relation between 2 strokes. The edited
SLG example is shown as Fig 2c.

In conclusion, the ground truth of OHME can be represented as a stroke-level
graph with 101 classes of symbols and 14 relations. So we convert the complex
OHMER problem into a graph labeling problem with Cnode = 101 classes of
node classification and Cedge = 14 classes of edge classification.
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4 End-to-end Model

In this section, we will introduce the details of proposed deep learning model
with edge-weighted graph neural network.

4.1 General Structure

The general structure of end-to-end model is shown in Fig 1, which could be
divided into 3 parts: Graph embedding, Edge-weighted Graph Attention Network
and Readout. The entire model is an end-to-end trainable network, which can be
trained with the help of relabeled ground truth graph structure and stroke-level
OHME Graph Modelisation as input structure.

4.2 Graph Embedding Network

The graph embedding relies on the result of OHME modelisation, which extracts
the deep features of node and edge separately. Since the node represents each
stroke, intuitively we would like to preserve more of the shape features of the
strokes. While the edge represents the relations between 2 strokes, we would
like to preserve more features like position and directions. The efficient graph
embedding will give a positive influence on the following features fusion message
passing and classification.

Node Embedding Network The node information which represents a stroke
contains a series of coordinates by time order and already pre-processed, as
shown in Eq. 2, the input i − th node features hinput

i is a N × 2 matrix, where
N is the number of sampling points.

hinput
i = {(x1, y1), (x2, y2), · · · , (xN , yN )} ∈ RN×2 (2)

This temporal sequence can be embedded by Recurrent Neural Network
(RNN), such as LSTM or GRU, as well as Transformer Encoder. But the shape
information of the strokes is more important, so we tried a 1-D convolutional
deep network XceptionTime [23] that was more capable of capturing the shape
information. As shown in Eq. 3, the ith embedded node features hemb

i is cal-
culated by node embedding network F (x), where we employed XceptionTime
in this study. The node embedding network embedded the node features into a
Hemb

node dimension vector.

hemb
i = F (hinput

i ) ∈ RHemb
node (3)

XceptionTime is known for its depth-wise separable convolution, which can
reduce computation complexity and also keep the sequence information. Sub-
sequent experiments will verify that XceptionTime is the most accurate node
embedding network.
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Edge Embedding Network With the Edge Modelisation strategy FRPT in
Eq. 1, the edge input features binputij ∈ R4N ′

between node i and j is a 4N ′ vector,
where N ′ is the number of sampling points and is calculated in 4 directions.

bemb
ij = G(binputij ) ∈ RHemb

edge (4)

Although the edge modelisation is more complicated than the node modeli-
sation, the edge embedding needs less precise information than the node embed-
ding. Consequently, we employed a simple Multi layer Perception (MLP) G(x)
to embed the edge features into a Hemb

edge dimension vector.

4.3 Edge-weighted Graph Attention Network

With the excellent graph structure modeling capability and also the efficient
relations and dependencies caption ability, Graph Neural Network can be em-
ployed successfully in well-modeled OHME. In addition to the stroke information
embedded in nodes, the relations between nodes embedded in edges are also im-
portant for OHME labeling. However, edge information can not be represented
as reachability or a simple weight, and is supposed to be dynamically involved
in message passing and features update.

Thus, we propose an edge-weighted graph attention network (EGAT) with
the help of graph attention mechanisms [29], which can simultaneously update
the node features and also the edge features.

hq−1
0

hq−1
1

bq−1
10

e10

(a) Attention weight com-
putation.

hq−1
0

hq−1
1

hq−1
2

hq−1
3

hq
0

e10
e20

e30

(b) Node embedding h up-
date.

hq−1
0

hq−1
1

bq−1
10

bq10e10

(c) Edge embedding b up-
date.

Fig. 4: Illustration of the Edge-weighted Graph Attention Network (EGAT).

For every layer, when we calculate the attention weights, except the concate-
nation of corresponding neighbor node features, we also concatenate the edge

features together by Eq. 5. Wh ∈ RHq−1
node×Hq

node and Wb ∈ RHq−1
edge×Hq

edge are
learnable weights for node features and edge features, while a ∈ R2Hq

node+Hq
edge

is a learnable attention coefficient, where Hq−1
node and Hq−1

edge are the dimensions

of node features and edge features in the (q − 1)th layer, and Hq
node and Hq

edge
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are the dimensions of node features and edge features in the qth layer.

eij = a [Wh · hi ∥ Wh · hj ∥ Wb · bij ] (5)

Then, with the help of softmax function, we can get the attention weights

αij ∈ RHq−1
node×Hq

node by Eq. 6.

αij = softmax(eij) =
exp(eij)∑

k∈Ni
exp(eik)

(6)

In the q-th layer, the node i features hq
i ∈ RHq

node are updated by all the

neighbor node features in last layer hq−1
i ∈ RHq−1

node while j ∈ N and also the cor-
responding attention weights αij . The message passing will be achieved through
the weighted summation of neighbor information, by Eq. 7.

hq
i =

∑
j∈Ni

(
αij ·Wh · hq−1

j

)
(7)

Likewise, the edge features bqij ∈ RHq
edge will also be updated by the corre-

sponding attention weights αij and the edge features in last layer bq−1
ij ∈ RHq−1

edge

by Eq. 8.

bqij = αij ·Wb · bq−1
ij (8)

To summarize the EGAT, as described in Eq. 9. In case we use multi-batch

training with batch size B, the input of qth layer will be: hq−1 ∈ RB×Hq−1
node ,

bq−1 ∈ RB×B×Hq−1
edge and adjacency matrix A ∈ RB×B .

hq, bq = G(hq−1, bq−1,A) (9)

After EGAT features fusion and message passing network G(x), the output

of qth layer node features hq ∈ RB×Hq
node and edge features bq ∈ RB×B×Hq

edge

will be updated. In addition, the LOS based adjacency matric A isn’t altered as
a result.

4.4 Readout

After multi-layer EGAT, the fused node and edge features will be entered into
their individual Readout networks for the final classification. Both Readout net-
works for node features and edge features are MLPs with the similar structure.

Due to the ground truth is edited SLG with directed edges according to the
writing order, we concatenate the bi-directional edges bij and bji, and then input
the concatenated edge features into the Edge Readout network.

hout = R(hq) ∈ RB×Cnode (10)

bout = R(bq) ∈ RB×B×Cedge (11)
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4.5 Node and Edge Loss Function

To achieve the node and edge classification, we employed the cross entropy loss
function for node classification, and focal loss [11] for edge classification. The no
relation edges“NoE” take up a large proportion of the total edges, which will
lead to the problem of unbalanced data distribution. Thus, the focal loss can be
more effective than the cross entropy loss function. We combined the node loss
and edge loss together as the final loss function for the bi-objective optimization.

L = λ1Lnode + λ2Ledge (12)

5 Experiment

5.1 Implementation Details

Our proposed model is implemented by PyTorch-Lightning framework, and trained
on a single NVIDIA GeForce RTX 2080 Ti GPU with 12GB memory. All the
hyperparameters are selected by finetuning with optuna framework: input node
dimension N = 150, sampling edge dimension N ′ = 10, node embedding dimen-
sionHemb

node = 384, edge embedding is a 3-layer MLP G(x) = [40, 256, 384], 4-layer
EGAT with Hnode = [384, 512, 384, 512] and Hedge = [384, 256, 512, 256], node
Readout network is a 3-layer MLP Rnode(x) = [384, 512, 101], edge Readout
network Redge(x) = [512, 384, 14], node loss weight λ1 = 0.4, edge loss weight
λ2 = 0.6. The Adam optimizer is used with a learning rate of 0.0004 and a batch
size of 256.

For the proposal of multi batch training, all the expressions are unified to sub-
expressions with 8 strokes, the sub-expressions are padded with 0 if the number
of strokes is less than 8. Thus, each batch contains 32 sub-expressions and 256
strokes in total, which is considered as a graph with 256 nodes. Only inner
sub-expression has edge connection, there is no connection between different
sub-expression. This strategy is similar to the multi-patch training in computer
vision, which can significantly improve ability of generalization in practice and
reduce GPU memory usage.

In the training and validation stages, we masked the incomplete symbols
from cutting, as well as the padding symbols, to reduce the negative impact
of abnormal data on the model. While in the test stage, we used the entire
expression as the input for the complete recognition.

5.2 Dataset

The proposed model is trained and evaluated on the newest Competition on
Recognition of Online Handwritten Mathematical Expression dataset (CROHME
2023) [33]. The CROHME 2023 provides large-scale on-line OHME data with
expressions-level, symbol-level, and stroke-level annotations. There are 101 math
symbol classes and 6 structural relation classes (“Right”, “Sup”, “Sub”, “Above”,
“Below”, “Inside”).
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We did the ablation study on the CROHME 2023 and 2019 test set in stroke-
level, but restricted by the fact that stroke-level recent studies are rare, and the
training and validation data we used has contained the test 2012 test 2013 test
2014 and test 2016.

The composition of the utilised data is shown in Table 1.

Table 1: CROHME 2023 Dataset.
Dataset Composition Number of HME

Train Set
Train2014 Test2013 Test2012

12024
Test2014 Train2023

Validation Set
Test2016

1072
Val2023

Test Set
Test2019

3499
Test2023

5.3 Results

Node Embedding Network This sub-experiment is to verify the effectiveness
of the node embedding network, and the results will guide the following entire
model training.

We applied different time series Neural Network with framework Tsai[20] for
stroke-level classification, including XceptionTime, Bi-LSTM, InceptionTime,
Xresnet1D18, ResNet (1D), Transformer Model and RNN-FCN. As shown in
Table 2, XceptionTime is the most accurate node embedding network, which
is a CNN-based convolutional network for time series data. Unexpectedly, the
Transformer Model is not suitable in this case, which is a self-attention based
network for sequence data.

Table 2: Node Embedding Network.

Method
Testset 2019 Testset 2023

acc. % prec.% acc.% prec.%

XceptionTime 60.48 59.87 60.23 59.66
Bi-LSTM 57.94 57.83 58.09 57.99

InceptionTime 56.10 54.32 56.24 54.12
Xresnet1D18 55.88 54.66 55.34 54.29
ResNet (1D) 54.25 54.11 54.36 54.43

TransformerModel 40.70 40.53 40.56 40.45
RNN-FCN 40.19 39.98 40.43 40.12



Stroke-Level Graph Labeling with EGAT for HMER 13

Edge Modelisation Method We employed Fuzzy Relative Positioning Tem-
plate (FRPT) for edge modelisation, and compared with tranditional edge mod-
elisation method with 20 dimension geometric features (Geo.) which was utilised
in [32]. The used edge embedded network is a simple MLP with 3 layers, same hy-
perparameters as the end-to-end model. The classification results are 14 classes
of edge relations, accurancy and precision shown in Table 3.

Experiments show that FRPT algorithm is more accurate than normal geo-
metric features, which is a more suitable edge modelisation method for OHME.

Table 3: Edge Modelisation Method, with same embedded network and classes
as the end-to-end model.

Method
Testset 2019 Testset 2023

acc.% prec.% acc.% prec.%

FRPT 70.55 66.92 70.69 67.01
Geo. 60.57 51.67 61.21 53.20

Ablation Study A series of ablation studies are conducted to verify the ef-
fectiveness of the proposed model in Table 4. We utilised accurancy (acc.) and
precision (prec.) to evaluate the segmentation (Seg.), segmentation with clas-
sification (Seg. + Class.) and relation classification (Relation) performance in
HMER.

Node and edge modelisation and embedding network were trained separately
without message passing and features fusion with GNN, which is utilised as
baseline the proposed stroke-level modelisation model to compare with following
ablation studies.

We applied the normal Graph Attention Network (GAT) for message passing
only between strokes, without any features fusion of edge information. There is
no significant improvement over baseline, due to the lack of relation information.

The incorporation of the EGAT makes a significant improvement in base-
line. No matter which node embedding network or edge modelisation method is
applied, the segmentation, stroke classification and relation classification accu-
rancy are all improved over 20%. This is a strong indication that the node and
edge features can guide and improve each other take the advantage of EGAT.

By comparing different node embedding and edge modelisation methods, the
most effective end-to-end model use the XceptionTime for node embedding with
FRPT edge features. While Bi-LSTM is also effective especially in testset 2019,
but with larger parameter volume than XceptionTime.
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Table 4: Ablation Study.

Method Testset 2019

E. Mod. N. Emb. GNN
Seg. Seg. + Class. Relation

acc. prec. acc. prec. acc. prec.

FRPT Xcept. × 71.99 65.23 60.48 59.87 70.55 66.92
Geo. Xcept. × 65.23 60.76 60.48 59.87 60.57 61.21
× Xcept. GAT - - 61.69 61.21 - -
Geo. Xcept. EGAT 93.17 92.01 82.95 85.97 87.99 87.24
FRPT Trans. EGAT 93.16 90.21 73.41 75.33 85.77 87.15
FRPT BiLSTM EGAT 96.06 96.84 85.41 87.32 91.10 92.47
FRPT Xcept. EGAT 96.18 95.88 85.07 88.97 90.87 90.93

Method Testset 2023

E. Mod. N. Emb. GNN
Seg. Seg. + Class. Relation

acc. prec. acc. prec. acc. prec.

FRPT Xcept. × 72.11 66.38 60.23 59.66 70.69 67.01
Geo. Xcept. × 66.09 60.88 60.23 59.66 61.21 53.20
× Xcept. GAT - - 62.06 61.67 - -
Geo. Xcept. EGAT 93.77 92.10 84.35 84.77 88.88 87.51
FRPT Trans. EGAT 93.72 89.24 75.89 77.62 85.31 86.60
FRPT BiLSTM EGAT 96.33 96.28 87.10 88.48 90.88 92.03
FRPT Xcept. EGAT 96.70 95.85 87.39 88.39 90.93 92.28
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5.4 Cases Analysis

According to the results of experiments, we can see that the proposed model is
effective in stroke-level recognition both in stroke and relation classification.

However, there are some misclassification errors that can be fixed by post-
processing approches, such as the example in Fig 5d. The node classification are
all correct, only one edge classification between the first stroke and the third
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stroke is wrong, which is a “Right” relation, but the model predicted it as a
“NoE”. The second stroke and third compose the “≥” symbol, and the symbol
segmentation as well as relation classification between the first stroke and the
second stroke are all correct, so we can add the “Right” relation between the
first stroke and the second stroke to fix the error.

In several situations, the model will give results that match the spatial loca-
tion but not the grammar of expression. Such as the expression “

√
360”, only the

first symbol “3” below the “\sqrt” has the “Inside” relation, “6” and “0” have
both the “Right” relation with their previous symbol. But the model predicted
the extra “Inside” relation between “6” and “\sqrt”, “0” and “\sqrt”, which is
raisonable in spatial location but not correct in stroke-level prediction.

The interpretability of the model makes a number of reasonable improve-
ments as possible.

6 Conclusion

In this study, we proposed a novel end-to-end stroke-level labeling model for
Online Handwritten Mathematical Expression (OHME) based on Edge-weighted
Graph Attention Network (EGAT), which is a radically new approach to solving
the HMER problem in stroke-level. We have proved the proposed stroke-level
modelisation model is effective for stroke and relation classification, and also
the positive influence of node and edge features fusion with EGAT. However, in
expression level, the accurancy is not quite at SOTA level, and the model is not
interpretable enough for the grammar of expression.

In the future, we will focus on the following aspects to improve the baseline
model:

• More essential features for node and edge modelisation. The pre-
processing methods for node modelisation and FRPT for edge modelisation
remain potential for improvement. Such as the pre-fusion features of strokes
and the distance information for FRPT.

• Post-processing with simple grammar rules. After the end-to-end
model, a post-processing with simple interpretable grammar rules can be
employed to fix the misclassified errors. Such as unify the attributes of the
strokes in the same symbol, and the relations between the strokes in the
same symbol.

• Fine-grained edge classification. Similar positional relations are classi-
fied completely different due to the rules of the syntax tree. Fine-grained
classification of edges, with the help of syntactic tree rules, will be helpful
to improve the accuracy of edge classification
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