
HAL Id: hal-04694717
https://hal.science/hal-04694717

Preprint submitted on 11 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

A robust event-driven approach to always-on object
recognition

Antoine Grimaldi, Victor Boutin, Sio-Hoi Ieng, Ryad Benosman, Laurent U
Perrinet

To cite this version:
Antoine Grimaldi, Victor Boutin, Sio-Hoi Ieng, Ryad Benosman, Laurent U Perrinet. A robust event-
driven approach to always-on object recognition. 2024. �hal-04694717�

https://hal.science/hal-04694717
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

A robust event-driven approach to always-on object recognition

Antoine Grimaldi, Victor Boutin1, Sio-Hoi Ieng2, Ryad Benosman2 and Laurent U Perrinet1

aInstitut de Neurosciences de la Timone (UMR 7289); Aix Marseille Univ, CNRS; Marseille, France,

Abstract

We propose a neuromimetic architecture that can perform always-on pattern recognition. To achieve this, we have extended an
existing event-based algorithm (Lagorce et al., 2017), which introduced novel spatio-temporal features as a Hierarchy Of Time-
Surfaces (HOTS). Built from asynchronous events captured by a neuromorphic camera, these time surfaces allow to encode the
local dynamics of a visual scene and to create an efficient event-based pattern recognition architecture. Inspired by neuroscience,
we have extended this method to improve its performance. First, we add a homeostatic gain control on the activity of neurons
to improve the learning of spatio-temporal patterns (Grimaldi et al., 2021). We also provide a new mathematical formalism that
allows an analogy to be drawn between the HOTS algorithm and Spiking Neural Networks (SNN). Following this analogy, we
transform the offline pattern categorization method into an online and event-driven layer. This classifier uses the spiking output
of the network to define new time surfaces and we then perform the online classification with a neuromimetic implementation of
a multinomial logistic regression. These improvements not only consistently increase the performance of the network, but also
bring this event-driven pattern recognition algorithm fully online. The results have been validated on different datasets: Poker-
DVS (Serrano-Gotarredona and Linares-Barranco, 2015), N-MNIST (Orchard et al., 2015a) and DVS Gesture (Amir et al., 2017).
This demonstrates the efficiency of this bio-realistic SNN for ultra-fast object categorization through an event-by-event decision
making process.

Keywords: vision, pattern recognition, event-based computations, spiking neural networks, homeostasis, efficient coding, online
classification

1. Introduction

Bio-inspired engineering aims to take advantage of our un-
derstanding of nature’s complex and impressively efficient
mechanisms. Event-based cameras perfectly illustrate this pro-
cess. These sensors, also known as silicon retinas, are inspired
by biological retinas and make it possible to capture light in-
formation asynchronously. Unlike their classical frame-based
counterpart, an event-based camera reacts to the dynamics of
the scene on a pixel-by-pixel basis: when a change in lumi-
nance is detected, an event is emitted. The event is labelled with
an ON or OFF polarity depending on whether it corresponds
to an increase or decrease in brightness, respectively (see fig-
ure 1). Event-based cameras offer several advantages such as
a high temporal resolution, energy efficiency, redundancy re-
duction and a high dynamic range. They are many interesting
applications and use cases for event-based cameras now flour-
ishing in the scientific community (see Gallego et al. (2019)
for a review). This new technology, together with the corre-
sponding Address Event Representation specification (Boahen,
2000), brings a paradigm shift in the way visual information is
processed. Efficient event-driven solutions have been found to
solve classical computer vision tasks such as the optical flow
estimation (Benosman et al., 2013; Tschechne et al., 2014; Bar-
dow et al., 2016), 3D reconstruction (Hidalgo-Carrió et al.,
2020; Osswald et al., 2017; Zhu et al., 2018) or the simulta-
neous localization and mapping problem (Gallego et al., 2017;
Kim et al., 2016). In this work, we focus on performing pattern

recognition and extend an already existing method: Lagorce
et al. (2017).

This particular model performs object recognition thanks to
a feedforward hierarchical architecture using time surfaces, an
event-driven analog representation of the local dynamics of a
scene. These are then combined into a Hierarchy Of Time Sur-
faces (HOTS). Using a form of Hebbian learning, the network is
able to learn, in an unsupervised way, progressively more com-
plex spatio-temporal features that appear in the event stream.
This algorithm has been shown to make accurate predictions on
a letter and digit dataset (Orchard et al., 2015b), on a flipped
card dataset (Pérez-Carrasco et al., 2013) and on a dataset of
scenes with faces.

Figure 1: A miniature event-based ATIS sensor (Left) which, compared to clas-
sical frame-based representations (Middle), outputs an event-based representa-
tion of the scene (Right).

We have identified two main limitations of the HOTS algo-
rithm. First, the unsupervised clustering of the kernels is highly
dependent on initialization, and this can affect the performance

Preprint submitted to Neural Networks July 19, 2023

of the network. We have recently proposed to include a biolog-
ically plausible homeostatic gain control mechanism (Grimaldi
et al., 2021). We showed there that unsupervised feature learn-
ing is qualitatively improved by balancing the activity of the
different neurons within the same layer. We also tested the clas-
sification accuracy on different datasets by injecting different
amounts of spatial and temporal noise into the stream of input
events, demonstrating that efficiency was increased by home-
ostasis. The second limitation that we identified in HOTS is the
classifier. Indeed, it is based on computing a histogram of the
neuronal activations in the last layer of the network to perform
the classification. Such a method ignores the fine-grained tem-
poral dynamics of the stream of events produced by the final
layer of the network. More importantly, a major drawback is
that the classification can only be performed post hoc, once all
the events of the tested sample have been received.

This offline layer was chosen because it provides an ac-
curate response once all events have been emitted. In this
study, to achieve a full end-to-end event-driven and online pat-
tern categorization, we incorporate and test an online classi-
fication method in the final layer of the network. We for-
mally demonstrate that the overall structure of the proposed
model corresponds to a biologically plausible spiking neural
network (SNN). To our knowledge, it is the first always-on,
event-driven object recognition method, and we validate it on
different datasets designed for categorizing symbol (Serrano-
Gotarredona and Linares-Barranco, 2015), digit (Orchard et al.,
2015a) or gesture (Amir et al., 2017) categorization. Given
the simplicity of the proposed network’s architecture, its event-
based formalism and its local learning rules, this method is eas-
ily transferable to neuromorphic hardware to exploit the effi-
ciency of event-based computing.

From this perspective, the structure of this paper will be as
follows. First, we present the HOTS algorithm using a novel
mathematical formalization and the improvements brought by
our method. Then, we extend the categorization algorithm
by adding a simple biologically plausible online classification
layer. We prove that our method corresponds to a SNN with
Leaky Integrate-and-Fire (LIF) neuron models, which can be
implemented in a neuromorphic chip. Finally, we show the
quantitative improvements of the resulting classification perfor-
mance, and how its dynamics can vary for different datasets. We
have tested the model on different event camera datasets, and
a full implementation of this algorithm is available at https:
//github.com/AntoineGrimaldi/hotsline. These scripts
allow all results presented in this paper to be reproduced, and
we provide links to reproducible notebooks within the text.

2. Materials and methods

In this section, we first describe the datasets used in this study
and present the method we designed to test the robustness of
our algorithm to spatial and temporal jitter. After giving an
overview of existing object recognition algorithms, we general-
ize the event-based HOTS model, already described in Lagorce
et al. (2017), and extend its formalism to the continuous time

domain. We then present the improvements that make the algo-
rithm fully online and biologically plausible. We introduce the
homeostasis regulation rule, which allows for a better learning
of the weights of the different layers (Grimaldi et al., 2021), and
we describe a new classifier using Multinomial Logistic Regres-
sion (MLR) to propose an end-to-end event-driven classifica-
tion algorithm. We conclude this section by providing a formal
analogy of our architecture with a SNN and local correlation-
based learning rules to propose a unified theoretical framework
between neuromorphic engineering and computational neuro-
science.

2.1. Datasets

To load the events, we use the community-built tonic python
package (Lenz et al., 2021). It currently provides the ability
to load 12 different event-based vision datasets and is based
on the PyTorch language (Paszke et al., 2019). This allows to
load event streams in a standard way and to optionally apply
data augmentation methods to the event streams. Once loaded,
an event-based camera recording is a Nev × 4 matrix where Nev

represents the number of events and the 4 columns represent re-
spectively the x and y positions on the pixel grid, the timestamp
value, and the polarity. Timestamps are given in microseconds
and polarities are 0 and 1 for OFF and ON events respectively.
Of these datasets, 6 are labelled for object classification tasks.
We choose to test the performance of our method on 3 different
datasets:

• Poker-DVS dataset (Serrano-Gotarredona and Linares-
Barranco, 2015), one of the first publicly available DVS
recordings from a real-world scene that was used to test
the performance of HOTS Lagorce et al. (2017). It con-
sists of 131 occurrences of the four different symbols of
playing poker cards (clubs, diamonds, hearts and spades).

• N-MNIST dataset (Orchard et al., 2015a), a widely used
dataset that was recorded by moving an event-based cam-
era in front of a screen onto which digitized MNIST dig-
its (LeCun et al., 1998) were projected.

• DVS128 Gesture dataset (Amir et al., 2017), which con-
sists of more complex and naturalistic recordings of real-
world scenes. In this dataset, 29 subjects perform hand
and arm gestures of different categories (“hand clap”, “arm
roll”, . . .). These were recorded with an iniLabs DVS128
event-based camera (with a resolution of 128×128 pixels)
and under different lighting conditions. The samples pro-
vided by the dataset are 6 seconds long and, to reduce the
computational load of the training, we keep only the first
3 seconds of the recording.

To test for the robustness of the proposed algorithm, we also
used the tonic package to transform and augment the datasets.
In particular, this allows spatial or temporal jitter to be added
to the input stream. Since the relevant information is sup-
posed to be represented within the timing and position of the
input events, we can assume that the classification performance
should deteriorate as the jitter increases. Therefore, we will use

2

https://github.com/AntoineGrimaldi/hotsline
https://github.com/AntoineGrimaldi/hotsline
https://github.com/neuromorphs/tonic
https://github.com/neuromorphs/tonic

this module to test the robustness of the algorithm by progres-
sively adding some noise to the input signal. To account for the
variability of the random jitter applied, we repeat the predic-
tion 10 times for each amount of jitter and derive a statistical
quantification from these repetitions. To reduce the simulation
time, we compute this study on Poker-DVS, on a subset of N-
MNIST and do not perform this analysis on DVSGesture. The
subset of N-MNIST consists of 1000 randomly selected digits
with a balanced number of samples between each class.

2.2. Related work
Poker-DVS is included as it was tested using the original

HOTS method (Lagorce et al., 2017). Due to its small size,
this experiment acts as a toy model to test the different meth-
ods. In this paper, we focus on performing pattern recogni-
tion. A widely used event-based dataset: N-MNIST (Orchard
et al., 2015a). Some related approaches have used standard
artificial neural networks that have been converted to SNN,
resulting in overall good classification results (Neil and Liu,
2016; Patino-Saucedo et al., 2020). In 2020, Patino-Saucedo
et al. (2020) is the first neuromorphic hardware implementation
of the event-based N-MNIST benchmark. Alternatively, some
other competitive event-driven algorithms are developed using
Back-Propagation (BP) adapted to SNN (Shrestha and Orchard,
2018; Lee et al., 2016; Wu et al., 2018). More recently, it has
been proposed to introduce biomimetic saccades to improve
object recognition (Yousefzadeh et al., 2018). All these con-
tributions saturate the digit recognition problem introduced by
the N-MNIST dataset with accuracies around 99% but none of
them addressed the question of ultra-fast object recognition,
i.e. the ability to recognize a digit with only the first events.
We report that online inference on event-based data has been
developed in previous studies (Thiele et al., 2018; Giannone
et al., 2020; Zhou et al., 2021). However, the model proposed
by Zhou et al. (2021) accumulates spikes as input to reconstruct
an image frame, Giannone et al. (2020) uses a sample-and-hold
approach, and freezes events during a defined time step. Thiele
et al. (2018) proposes to use Spike-Timing Dependent Plasticity
(STDP) for unsupervised learning of spatio-temporal features.
For this latter study, they also construct a supervised classifier
that can learn in an online fashion and which should be able
to make an inference for each event. However, they perform a
classification based on the strongest response of a neuron dur-
ing the time window in which the sample is presented. In this
way, they do not take advantage of the event-driven nature of
the signal for classification.

Then, the DVS128 Gesture dataset provides a more complex
recognition task as it consists of real-world scenes with nat-
ural movements performed by subjects. Zhang et al. (2021)
presents a non-local synaptic modification method with spiking
and artificial neurons inspired by natural networks called self-
BP. A spiking version of the deep ResNet architecture (STS-
ResNet) also achieves good performance for gesture recogni-
tion as well (Samadzadeh et al., 2020). A recent study devel-
ops a bio-plausible method using SNN and STDP that achieves
very good results (Safa et al., 2021). The classifier is a Support
Vector Machine (SVM) applied to the feature vectors as output

from the SNN. A promising method involving Spiking Recur-
rent Neural Networks (SRNN) is introduced in Yin et al. (2021)
and achieves high online performances on several datasets. Ac-
curacy on the DVS128 Gesture dataset reaches 97.61%, but this
method requires an additional preprocessing with a convolution
layer on frames computed from the DVS recording and it was
not mentioned whether this number reflects an average com-
puted on the online accuracy or not. SLAYER (Shrestha and
Orchard, 2018) could also provide an online classification with
a SNN using 8 layers trained with BP. However, the network is
trained with a target spike count to discriminate the true class
and needs to wait until the end of the output spike train to infer
a decision.

For both datasets, these different methods achieve very good
performances, but none of them report the accuracy as a func-
tion of the number of events used or as a function of time - thus
making it impossible to derive online accuracy results. An ex-
ception in the literature is Sironi et al. (2018), which reports the
accuracy as a function of the latency. It is calculated on the N-
CARS dataset created for this study. However, this method uses
an accumulation of time surfaces and can not perform event-
by-event classification. The method we propose is the first to
develop an always-on decision process, and we report its per-
formance as a function of the number of events integrated by
the network. We stick to the study of the three widely used
datasets mentioned above (N-MNIST, DVSGesture and Poker-
DVS), which can be loaded with the tonic package.

2.3. Event-based formalism: HOTS model

The HOTS model has three main aspects. First, it defines
the core mechanism of a layer of neurons that transforms each
incoming event from the event stream into a novel event (see
figure 3). This layer consists of perceptron-like neurons that
measure the similarity of the input to patterns stored in the neu-
rons’ synaptic weights. Crucially, this new event is selected on
the basis of previous history thanks to the definition of what
we will call time surfaces and is used as input to the current
layer of the network. Secondly, the neuron that is deduced to
be the most similar emits an output event at the same time as
the incoming event. This core mechanism is defined on arbi-
trary address spaces and forms a layer of the network. Using it
as a building block, such layers can be stacked together, with
the output address space of each layer defining a new input ad-
dress space for the next layer. This eventually constructs a hier-
archy of layers organized in a feedforward fashion. Third, the
core mechanism can be used in the particular case of the event
streams produced by an event-based camera by defining a set of
addresses relative to the pixel grid. This is done by reproducing
the core mechanism in each layer at each position of the pixel
grid. This defines weights as kernels, similar to Convolutional
Neural Networks (CNNs). Let’s formalize these three aspects
independently.

2.3.1. Time Surfaces
The output of an event-based camera is a discrete stream of

events (see figure 1), which can be formalized as an ordered

3

https://github.com/neuromorphs/tonic

OF
F

Binary flux
 of events at ti

Time representation of
 the events at ti (in ms)

Time surface
 at ti

ON

0

100

200

300

0.00

0.25

0.50

0.75

1.00

Figure 2: Illustration of the different event-based data types used in the HOTS
network at a given event time. The two rows correspond to the OFF and ON
polarities of the events as output of the event-based camera. (Left) Screenshot
of one single event (in white) at ti. (Middle) Timings since the latest event, or
time context, at time ti, forming the matrix T (ti) (white represents −∞). (Right)
Time surface at ti as the matrix TS (ti) (note that the maximum of 1 is reached
for the current event).

set of addresses: {ai}i∈[0,Nev) where Nev ∈ N is the total num-
ber of events in the data stream. Each address is typically
in the form ai = (xi, yi,pi), where (xi, yi) defines its position
on the pixel grid and pi its polarity. This formalism is de-
fined over the address space D. On a camera, we can define
D = [0,NX)× [0,NY)× [0,Np) ⊂ N3 where (NX ,NY) is the size
of the sensor in pixels and Np is the number of polarities. Each
event is usually associated with a time ti. We can now define the
subset of events’ ranks that occurred at or before a given time
t ∈ R+ at a given address a ∈ D:

ξa(t) = { j ∈ [0,Nev)|a j = a, and t j ≤ t}

Note that this definition is given for any continuous time t but
is usually computed at the time of events.

For the corresponding stream of events occurring at the ad-
dress a, it is possible to construct a so-called time context Ta(t).
It records the time of the last event that occurred at the specific
address a before or at t, with −∞ if no event was recorded (see
figure 2, middle column):

∀a ∈ D, Ta(t) =
{

−∞ if ξa(t) = ∅
max{ti|i ∈ ξa(t)} else. (1)

The time context Ta(t) is computed for each address at each
time, forming a vector that we write T (t) over the address space.

Finally, from the time context calculated at each address, we
derive the following set of values:

∀a ∈ D, S a(t) = e−
t−Ta (t)
τ (2)

where τ is a given time constant. This defines an analog vector
over the address space which we call the time surface and that
we write S (t). In particular, it follows from the definition that
0 ≤ S a(t) ≤ 1 and that ∀i, S ai (ti) = 1. An illustration of a time
surface is given in figure 2, right column.

2.3.2. Architecture of the network: hierarchy
Let us now formalize the building block of the HOTS algo-

rithm as a core mechanism defined on a neural layer. Specif-
ically, let’s assume that the layer is composed of Nn neu-
rons which form a novel address space A that we can index
as n ∈ [0,Nn). Each neuron is defined by a weight vector
Wn = [wa,n]a∈D. This vector has the dimension of the dendritic
space associated with the input of this layer. These can be com-
bined into a weight matrix W = [wa,n]a∈D,n∈A. These weights
are used to compute the similarity of the weight patterns with
each time surface (Perrinet, 2004). The similarity measure βn
is defined as the scalar product over the dendritic spaceD:

βn(t) = ⟨Wn, S (t)⟩ =
∑
a∈D

wa,n · S a(t) (3)

Whenever a new event enters the layer at time ti, then this
layer will emit one unique event with the same timestamp and
with an address corresponding to that of the neuron whose
weight vector is the most similar to the time surface as input:

ni = arg max
n∈A

βn(ti)

As a summary, this process thus transforms the list of input
addresses {ai} into a novel stream {ni}with identical timestamps
{ti}.

As mentioned above, this building block can be stacked by
using the output address space to define the input address space
of a subsequent layer. We will index layers by L and, to de-
scribe the input of a layer L, we define a dendritic address space
DL (with DL=0 = D). We also define an axonal address space
AL for the output of the layer. If we defineDL+1 based onAL,
then we can stack the different layers: the event stream will
cascade from the first to the last layer. Each layer is defined
by a weight matrix WL, so that each time surface will be as-
sociated with a similarity measure that generates events in the
axonal address spaceAL. Since each incoming event generates
one and only one output event in each successive layer, we can
compute a time surface for each incoming event at each layer.
For this computation, we will use a different time constant τL

which will vary for each layer of the network. We will desig-
nate the corresponding time surfaces at each layer L as S L(t).
This process defines the core mechanism of the HOTS model.

2.3.3. Architecture of the network: kernels
Now let us define the topology of the address spaces. We

have seen that each time surface S L(t) stores an analog value
function of the delay between t and the last event that was
recorded in the dendritic address space DL. This value is
then compared to weight vectors, similar to the linear opera-
tion which occurs in the dendritic tree of perceptron neurons.
However, from our knowledge of the early visual cortical areas,
we know that the receptive field of neurons does not cover the
whole visual space, but develops over a limited visual space and
with stereotyped shapes. This is used in CNNs to define differ-
ent kernels that capture the local context in the neighborhoods
around each neuron. From the spatial invariance of the physical

4

dendritic address
space

axonal address
space

input event stream

similarity

winner-take-all

time surface

output event stream

time

time

Figure 3: Illustration of the core computation made within one layer of the HOTS algorithm. On the top of the plot, we show the dendritic stream of events convolved
by an exponential decay which forms the time surface. Time surfaces are computed at the timestamp of each event/spike. The time surface at present is represented
with the colored bar plot on the top. In the vertical slice, computations made within one layer at time ti are illustrated. The time surface is compared to all the
kernels of the layer with the similarity measure resulting in the membrane potential of the postsynaptic neuron represented in green. As an illustration, the layer
contains only 4 neurons associated to 4 different kernels and with 10 dendritic inputs. At last, a winner-take-all rule (or arg max non-linearity) will choose at time ti
the most activated neuron. This will emit a spike and prevent the others from being activated through lateral inhibitions (in red). Note that for each event as input of
the layer, a new event will be emitted with the same timing as the incoming event.

problem, it is assumed that the kernels should be similar across
different positions and define a convolution operator. A notable
advantage of this representation is its invariance to translations.
Thus, in analogy to what is done in CNNs, we can thus define
the connectivity of a HOTS core computation from this set of
kernels that are translated on the sensor grid.

The dendritic address space for each layer is defined as fol-
lows: DL = [0,NX) × [0,NY) × [0,NL

p) ⊂ N3. The number NL
p

defines the number of channels of the time surface as input to
the layer L, we call them dendritic channels. Each address can
be decomposed into its position and its dendritic channel, i.e.
aL = (xL, yL,pL). The axonal address space of the layer L is
AL = [0,NX)× [0,NY)× [0,NL

n) ⊂ N3, where NL
n is the number

of axonal channels. The similarity measure can thus be written
as:

βL
(xL,yL,kL)∈AL (t) = (K̃L

k ∗ S L(t))(xL, yL) (4)

where ∗ is the convolution operator and ∼ is the symmetry op-
erator, which allows the correlation in equation (3) to be com-
puted using convolution. Note that K̃L

k ∗ S L(t) represents the
activity map and can be computed efficiently by a convolution
operation. In our formalism, time surfaces are defined glob-
ally, and each weight vector corresponds to a column of the
weight matrix, constructed with a Toeplitz operation, where in-
dices are associated with each axonal address: (xL, yL,kL). The
local context for the kernels is defined, on the topography of
the pixel grid, by a radius RL and on all channels of the time
surface. The weights outside this radius are zero, and thus the

similarity measured with the global time surface S (t) will give
the same results as with the locally defined time surfaces in the
original HOTS formalization.

Furthermore, the HOTS algorithm, specified in Lagorce et al.
(2017), enforces that the position of each event is not changed
from one layer to the next. As a consequence, each kernel
still acts as a convolution kernel, but the comparison is to be
performed only on the addresses corresponding to the position
(xi, yi) of the event. This restriction can be implemented by
defining the subset of output neurons with the exact same posi-
tion but over the different axonal channels, and modifying the
match equation to:

pL+1
i = arg max

kL∈[0,NL
n)
βL

(xi,yi,kL)(ti)

As a result, the next layer will send an event aL+1
i = (xi, yi,pL+1

i)
with the same timestamp ti, with the same spatial position
(xi, yi) but with a different channel. In summary, each layer
takes input events from its previous layer and feeds events to
the next layer by repeating these steps. It follows that neurons
within a layer L compete for features: each incoming event
produces a single event on the axonal space. Following what
is observed in the biological visual pathways of mammals, we
may set the number of axonal channels NL

n , the time constant
τL and the radius of the kernels RL so that they increase as we
move up the hierarchy. The choice made in the original HOTS
algorithm is to double the radius of a kernel and the number of
channels from one layer to the next, while multiplying the time

5

constant from one layer to the next by a factor of ten. As a re-
sult, the network learns increasingly complex spatio-temporal
features in a hierarchical fashion. We keep the same multipli-
cation factor from one layer to the next one for the number of
kernels NL

n and for the radius RL. For the time constant τL, we
set it as a function of the number of channels in the time sur-
face so that it is adapted to the average interspike interval on
each layer: τL = NL

p .τ
L=0. A description of the hyperparame-

ters associated with the experiments on the different datasets is
given in 3.1.

As for learning of the weights, this is done in an unsupervised
manner. During the unsupervised clustering phase, the kernels
are updated with the same learning rule as described in Lagorce
et al. (2017):

K̃L
pL+1

i
← K̃L

pL+1
i
+ ηpL+1

i
· βpL+1

i
· (S L

local(ti) − K̃L
pL+1

i
)

with ηpL+1
i
=

0.01

1 +
#pL+1

i
20000

where we define #pL+1
i

as the number of times kernel K̃L
pL+1

i
has

been selected and S L
local(ti) is the time surface defined locally,

i.e. around the event as input of the layer with a radius RL.
That is, once a neuron is matched, a Hebbian-like mechanism
is used to bring the selected kernel K̃L

pL+1
i

closer to the observed
time surface. In fact, βpL+1

i
represents the product of the activa-

tion for the presynaptic and postsynaptic neurons. Note that the
training of the kernels is shared among all the spatial locations
for the same axonal channel, just as in CNNs. This mecha-
nism is similar in principle to that used by the k-means algo-
rithm and is implemented in many other unsupervised learning
schemes (Perrinet et al., 2003). For the layers of the HOTS
model, we filter the time surfaces with a threshold on the num-
ber of active pixels to avoid noisy or isolated events. We set
this threshold to 2 · RL. Figure 4 provides an illustration of the
different kernels learned by the network.

2.4. Homeostasis
The contribution of homeostasis to the robustness of the

HOTS model is the guideline of a previous work (Grimaldi
et al., 2021). Similar regulation methods on an event-based
dataset are used in Diehl and Cook (2015); Wu et al. (2019)
to balance the firing rate over the neurons of each layer of the
SNN. The model of Diehl and Cook (2015) uses an adaptive
membrane threshold, while Wu et al. (2019) adds an auxil-
iary neuron per layer to regulate the firing rates. In this last
paper, they make a comparison of this technique with zero-
mean batch normalization (Ioffe and Szegedy), which is used
for training deep neural networks. These methods are similar
in their aims and are well justified in terms of efficient cod-
ing (Perrinet, 2010).

Here, we implement homeostasis regulation by adapting the
heuristics used in a sparse coding scheme (Perrinet, 2019). It
simply consists of modifying the similarity measure (see equa-
tion (3)) as follows:

βk(t) = γk(t) · ⟨Wk, S (t)⟩ (5)

Where we use the same gain as defined in Grimaldi et al.
(2021):

γk(t) = eλ·(fk(t)− 1
N) (6)

where λ is a regularization parameter, fk is the relative activa-
tion frequency of kernel k and N the total number of kernels in
this layer. Note that the gain control is applied to each map of
kernel activities, not to the activity of individual neurons, due
to the translation invariance property of the architecture. This
control rule allows the different kernels to be trained in such a
way that the response of only a few of them is avoided, reaching
an equilibrium when fk(t) = 1

N , i.e. when they are on average
equally likely to be activated.

In practice, we observed that adding homeostasis leads to a
better clustering of the weight matrices, see figure 4. Note that
during the unsupervised clustering phase, the neural activity is
balanced across all digits. The homeostasis process does not
necessarily result in an equi-probable neural activity for one
digit, but over the whole learning set, in line with the efficient
coding hypothesis (Barlow et al., 1961). It also avoids introduc-
ing an ad hoc heuristics into the learning rule to achieve con-
vergence for all neurons. For example, in Lagorce et al. (2017),
weight matrices or synaptic weights associated with each neu-
ron were initialized with the first incoming time surfaces. The
original method makes the learning of weight matrices very
sensitive to initialization. In addition, the hierarchy is learned
sequentially, one layer at a time. In this work, the weights are
initialized randomly, and we allow spikes to feed each layer of
the network even if a given layer is not fully trained, but con-
vergence is still robust. As a result, this additional ingredient
in the unsupervised learning phase makes our algorithm behave
more like living systems.

2.5. Online event-based classification

In the original HOTS algorithm, classification is performed
by comparing the activation histograms across the channels of
the last layer of the network with the average observed for
each given class. This classification by histogram comparison
is performed post hoc, after the encoding of an element from
the dataset. Here, we introduce a novel online classification
scheme, that is, where classification is performed for each spike
that reaches the classifier, and more generally at any time when
a classification is required. Following the same strategy used
for the construction of time surfaces, each event reaching the
last layer L = C of the network can indeed be transformed into
a time surface S C(t) using a time constant τC. This constant
can vary from one dataset to another according to the statistics
of the samples. The time surface thus forms an analog vector
that can be used in a Multinomial Logistic Regression (MLR)
model to achieve supervised classification. Such MLR models
are used, for example, in the last layer of classical deep learn-
ing networks (Lecun et al., 1998) and are compatible with a
neural implementation (Berens et al., 2012). More specifically,
it corresponds to the similarity measure (see equation (3)) of
the MLR weights with the input, stacked with a sigmoid non-
linearity. The weights are defined over the whole dendritic
space, i.e. there is no local context as it was defined for the

6

(a)

0.0

0.2

Layer 1

0.0

0.2

0.4

Layer 2
Unsupervised clustering for original HOTS

(b)

0.00

0.05

0.10

Layer 1

0.00

0.05

Layer 2
Unsupervised clustering with homeostasis

Figure 4: Activation histograms and time surfaces obtained in the unsupervised learning algorithm (a) for the original HOTS network (replicated from Lagorce et al.
(2017) with time surfaces intialized randomly) and (b) for the bio-plausible version with homeostasis. Activation histograms correspond to the frequency by which
each neuron was activated. For each layer number n, fn = 1

Nn
is the averaged activation frequency. Associated time surfaces are plotted below histogram bins. The

different lines are the different polarities of the features (ON and OFF for the first layer), that is, the output neurons of the previous layer for the next one.

kernels on the previous layers. For each event, the output neu-
rons will compute the probability of predicting the respective
class. In the MLR, this probability value is computed as a soft-
max function of the linear combination of the analog vector as
input:

∀c ∈ {1, . . . ,Nclass},

Pr(y = c|ti; WC) =
e⟨W

C
c ,S

C(ti)⟩∑Nclass
j=1 e⟨W

C
j ,S

C(ti)⟩

where WC
j are the coefficients associated with class j of the

MLR model. As in section 2.3.2, the formulation of the time
surface can be extended to the continuous time domain. It fol-
lows that the probability value can be computed at any time
when necessary. We simplify the notation of the probability
value by defining the following equation for the softmax func-
tion:

σc(t) =
eβ

C
c (t)∑Nclass

j=1 eβ
C
j (t)

(7)

Where βC
c (t) is the similarity measure (from equation (3)) be-

tween the time surface as input to the classification layer and the
MLR model weights associated with the class c. The final pre-
diction can be made for each incoming event using the arg maxc
function by selecting the class associated with the highest prob-
ability. Then, thanks to the definition of the softmax function,
we obtain its maximum value through the maximum value of
the similarity measure. We obtain the same spiking process as
in any layer of the HOTS network:

c(t) = arg max
c∈{1,...,Nclass}

σc(t)

The result is an always-on decision process, that can make a
prediction at any time. In the following, we will perform event-
driven prediction and compare the classification results as a
function of the number of events fed to the classifier or as a
function of time. Using this probabilistic formalism, we can
also provide predictions with higher confidence to improve the
performance of the classification. Even if the probabilities are

calculated for each event, the class prediction can only be made
for some events with a probability above a defined threshold.
This flexibility to make predictions with a specific confidence
threshold allows performance to be improved while maintain-
ing an event-driven approach to computation.

In practice, we first trained the hierarchical network using
unsupervised online learning on a training set. On this set, we
computed the transformation of the input stream into the out-
put stream and then transformed it into time surfaces to feed
the classification layer. We trained the MLR model using each
time surface along with its true class as supervision pairs. The
MLR model was implemented using the PyTorch language, and
training was performed using a gradient descent with the Adam
optimizer. Our loss function is the binary cross entropy com-
puted on the output spike train, and the learning parameters are
described in 3.1. Once the MLR model was trained, we ob-
tained analog vectors from the hierarchical network computa-
tions on the test set. We then tested classification performances
by sending these vectors to the MLR model, which outputs the
probability of each class being true. The decision process can
be the arg max function of the probability values, and this al-
lowed us to compute an accuracy on an event-by-event basis.

2.6. The Spiking Neural Network analogy
We have defined the HOTS algorithm in an event-based

formalism, and we show that, when it is extended to the
continuous-time domain, this algorithm can be implemented as
a SNN. Indeed, the definition of the time surface modulated by
an exponential decay in equation (2) bears an analogy to the LIF
model with exponentially decaying postsynaptic potentials, as
described for other SNNs (Rueckauer et al., 2017). We aim to
describe the event-based model on a time continuum thanks to
Ordinary Differential Equations (ODE) and to bridge such an
algorithm with the SNN framework from computational neuro-
science.

2.6.1. HOTS as a SNN
Let’s look at the fundamental mechanism of the HOTS algo-

rithm at some layer L (we will omit this superscript for clarity in

7

this section). In the previous section, time surfaces are defined
at each time using equation (2). Looking at figure 3, one can
see that the dendritic addresses refer to the presynaptic neurons
and that the temporal kernel defined by the time surface cor-
responds to the Spike Response Model (Gerstner, 1995) of a
first-order linear ODE. Each presynaptic neuron corresponding
to an address a ∈ D received the events with ranks from the set
ξa(t) and the evolution of S a(t) thus follows the ODE:

d
dt

S a(t) = −
1
τ
· S a(t) +

∑
i∈ξa(t)

(1 − S a(t)) · δ(t − ti) (8)

The second term on the right hand side of equation (8) is a mod-
ulated Dirac function that implements the integration of a new
presynaptic potential at t = ti. The modulation 1− S a(t) is such
that at the moment of the event, the new value of the potential
becomes S a(t) + (1 − S a(t)) = 1. This implements the fact that
the maximum value of a time surface is equal to 1, and that
only the time until the last spike has an effect on activity, as
implemented in the definition of the time context. As a con-
sequence, it implements a kind of reset mechanism that allows
the time surface to be computed as a function of the time to the
last spike.

Then, for a postsynaptic neuron n of the layer, we may de-
fine a membrane potential corresponding to the integration of
synaptic inputs in the similarity measure:

βn(t) = ⟨Wn, S (t)⟩ =
∑
a∈D

wn,a · S a(t)

where we use the same weights Wn of equation (3) from the
event-based formalism. Finally, by integrating over the differ-
ent input synapses, we obtain a differential equation that de-
scribes the dynamics of the membrane potential βn as a similar-
ity measure:

d
dt
βn(t) = −

1
τ
· βn(t) +

∑
a∈D

wn,a ·
∑

i∈ξa(t)

(1 − S a(t)) · δ(t − ti)

Which can be simplified to a sum of all events:

d
dt
βn(t) = −

1
τ
· βn(t) +

Nev∑
i=0

wn,ai · (1 − S ai (t)) · δ(t − ti)

Such an ODE is classical for describing the evolution of the
membrane potential of LIF neurons. Note that the main change
is the modulation of the integration of incoming spikes, which
allows only the time to the last spike to be represented. The
hierarchical network proposed in Lagorce et al. (2017) is then
equivalent to a SNN composed of LIF neurons with a Hebbian-
like learning mechanism, as mentioned in section 2.3.3. In this
SNN, for each incoming event from the event-based camera,
one spike is emitted for each layer of the network. This re-
sults in a winner-take-all (WTA) competition between neurons
within the same layer.

2.6.2. MLR as a SNN
The classification layer of our algorithm is defined as a MLR

model, for which a parallel to a SNN implementation has al-
ready been drawn in Berens et al. (2012). Analogous to biology

and as described in section 2.6.1, the linear combination of the
input time surface with the MLR weights corresponds to the in-
tegration of presynaptic spikes on the dendritic tree of a postsy-
naptic neuron associated with a class. Then, βc(t) = ⟨WC

c , S (t)⟩
represents the membrane potential of the postsynaptic neuron
associated with class c and WC

c are the corresponding synaptic
weights. The softmax function presented in equation (7) is a
good model of a spiking WTA network. Indeed, Nessler et al.
(2013) showed that a stochastic spiking WTA can be built from
this type of activation function. The denominator expresses the
lateral inhibition by the other neurons of the layer. The arg maxc
function imposes a complete inhibition of other neurons un-
til the next decision. As a consequence, if the classification is
event-driven, only one spike will be emitted for the most prob-
able class only for each event. The spiking mechanism of the
classification layer is then the same as for the rest of the net-
work due to the fact that the logistic function is monotonic.

The main difference with the other layers of the network lies
in the supervised learning rule of the MLR weights. We can ob-
tain the learning rule by finding the derivative of the loss func-
tion. For the softmax regression, the loss function for an event
of rank i is the binary cross-entropy:

J(ti) = −
Nclass∑
c=1

δ{y(ti)=c} · log(σc(ti))

where δ{y(ti)=c} is the ’indicator function’ and y(ti) is the true
class. If we compute the derivative of the loss function with
respect to WC

c , we can obtain the update rule of the weights of
the postsynaptic neuron associated with class c:

∆WC
c (ti) =

{
η · S C(ti) · (1 − σc(ti)), for c = y(ti)
−η · S C(ti) · σc(ti) for c , y(ti)

where η is the learning rate. This correlation-based learning
rule can be described as a supervised Hebbian learning mecha-
nism, with different possible weight updates depending on the
true value of the outcome.

In summary, the event-based algorithm that we use in this
paper can be fully described by a SNN. The learning of the
weights is done in an event-driven manner and corresponds to
Hebbian-like mechanisms for the neurons, both inside the net-
work and in the classification layer. We claim that these local
learning rules are advantageous both in terms of bio-plausibility
and for energy-efficient on-chip implementations (Roy et al.,
2019).

3. Results

The classification results obtained with our method are pre-
sented in this section. First, we present the online classification
performance of the network, which is the main novelty of our
study. We then compare the performance with the state of the
art (SOTA) on the different datasets by reporting the accuracy
obtained when making one prediction per sample. We com-
plete our analysis by studying the robustness of our algorithm
to both temporal and spatial jitter, comparing it to the original

8

method proposed in Lagorce et al. (2017). Let’s start with a de-
tailed description of the parameters and the architecture of the
networks tuned for classification on the different datasets. We
report these parameters in Table 1. The parameter tuning for L1
and L2, which are layers similar to those in the original HOTS
network, was done on subsets of the different datasets by com-
puting the accuracy for each of the different architectures us-
ing histogram comparison as done in Lagorce et al. (2017). For
each dataset, the classification layer is implemented in PyTorch,
and we train it using gradient descent and the Adam optimizer.
The time surfaces as input to this last layer are defined globally,
i.e. on the whole pixel grid, and we adjust the time constant
for each dataset. Time constants are also obtained empirically,
by testing the performance of the classifier with different pa-
rameters, on a subset of the original dataset. For each dataset,
we set the number of epochs to 33 and keep the optimizer’s
default parameters. For both the N-MNIST and DVSGesture
datasets, to reduce the number of computations and to avoid
reaching a local minimum within the first samples, we perform
the learning only on a randomly chosen percentage of the com-
puted time surfaces. We keep 10% and 5% of the time surfaces
of a sample for N-MNIST and DVSGesture datasets, respec-
tively. For DVSGesture, we also apply spatial downsampling
by a factor of 2 · RL + 1 for each dimension and at each layer.
With the winner-takes-all spiking mechanism used in the un-
supervised layers and the spatial downsampling, the core lay-
ers of HOTS now implement an event-based convolution with a
max-pooling. This allows reducing the dimensions of the fea-
ture maps and the amount of computations performed in these
recordings with a greater number of events and a wider pixel
grid.

L1 L2 MLR
NK = 8 NK = 16 η = 0.005

Poker DVS R = 2 R = 4 τC = 30 ms
τ = 1 ms τ = 4 ms θ = 0.9
NK = 16 NK = 32 η = 0.005

N-MNIST R = 2 R = 4 τC = 50 ms
τ = 20 ms τ = 160 ms θ = 0.99
NK = 16 NK = 32 η = 0.0001

DVS Gesture R = 2 R = 2 τC = 1 s
τ = 10 ms τ = 160 ms θ = 0.4

Table 1: Network parameters. L1 and L2 are the unsupervised layers where we
report the number of kernels (NK), the size of the receptive fields (R) and the
time constants (τ) associated with each layer. MLR is the supervised classi-
fication layer trained with a specific learning rate η, a time constant τC and a
threshold to make the decision θ.

Table 1 shows the different time constants, the learning rate
used for training and the threshold on the probability values
used to compute the performance of the classification.

3.1. Online inference
We first present the results of the end-to-end event-driven on-

line classification described in section 2.5. To illustrate the dy-
namic evolution of the event-based classification performance,

we plot the accuracy value as a function of the number of events
received by the classifier for each dataset (see Figure 5). We
present two decision-making modes for the classifier. The first
is online HOTS, where a prediction is made for each incom-
ing event without any condition on the probability values cor-
responding to the different classes. The second is online HOTS
with threshold, i.e. when the output of the classifier must reach
a probability threshold to make a decision. In this last condi-
tion, in order to filter out events in periods of poor information
content (especially at the beginning), we select only events with
a decision confidence above a threshold. This improves the av-
erage performance of the classification. However, it introduces
some time delay to accumulate enough evidence to make a pre-
diction. We also report the accuracy values for the classification
post hoc with a k-nearest neighbors algorithm on the activation
histograms. Two results are shown in figure 5, one for the origi-
nal HOTS and another with the homeostatic gain control for the
clustering phase: HOTS with homeostasis.

As expected, for all datasets and both modalities, the ac-
curacy of the online classification improves as the number of
events increases. Within a dataset, the total number of events
for the samples can vary. We set a maximum number of events
to represent the accuracy by taking the 90th percentile of the
dataset in terms of number of events. The accuracy of the event-
based classification for each dataset is shown in Figure 5. Note
that the x-axis is plotted on a logarithmic scale and that only a
small number of events will allow for significant classification
above chance.

In Figure 5-(a), we observe the online inference for the Poker
DVS dataset. The RESULTS PokerDVS.ipynb notebook re-
produces the results and figures for this dataset. The post hoc
methods perform well but do not reach 100% accuracy, with
an advantage for clustering with homeostasis (95.0% accuracy)
than without (85.0% accuracy). For online HOTS, the accuracy
quickly reaches 100% after only an average of 19.4% of the
total number of events, i.e. one fifth of the total event stream.
This online classification allows an ultra-fast categorization of
objects in terms of events: only a few events are needed for
the classification to reach a good level of accuracy. If we set
a confidence threshold on the MLR, we obtain a perfect clas-
sification once at least 35 events are received. Given the small
number of samples in this dataset, we evaluate the performance
of the network on two more complex and widely used datasets.

The online accuracy on the N-MNIST dataset is shown in
Figure 5-(b) and reproducible at RESULTS NMNIST.ipynb.
The original algorithm already performs well with the classi-
fication by histogram comparison, reaching 94.4% for HOTS
and 92.4% for HOTS with homeostasis. In this particular ex-
ample, the homeostatic gain control did not improve the per-
formance for the clustering phase, and we recall that the main
advantage of this regularization is to reduce the sensitivity of
the unsupervised learning to the initialization (Grimaldi et al.,
2021). For online HOTS, we observe an accuracy above chance
after the very first events, which increases with the number of
events received by the network. Note that the accuracy value
increases drastically after about 1000 events and reaches values

9

https://github.com/AntoineGrimaldi/hotsline/tree/main/notebooks/RESULTS_PokerDVS.ipynb
https://github.com/AntoineGrimaldi/hotsline/tree/main/notebooks/RESULTS_NMNIST.ipynb

(a) Poker DVS

100 101 102 103

Number of events
0

20

40

60

80

100

Ac
cu

ra
cy

 (i
n

%
)

(b) N-MNIST

100 101 102 103

Number of events

online HOTS (ours)
online HOTS
with threshold
chance level
original HOTS
HOTS with
homeostasis

(c) DVS Gesture

100 101 102 103 104 105

Number of events

Figure 5: Accuracy for online classification on 3 different datasets (see text for details).

above the original method approximately at 2000 events, the
average of events for the N-MNIST dataset being 4176 events
(see DATASET STATS.ipynb). If we compute the mean per-
formance over all the decisions, i.e. for each event, we get an
accuracy of 70.1% and 96.6% for the accuracy calculated when
the decision is made at the timestamp of the last event. Another
way of calculating the post hoc accuracy with this probabilis-
tic approach is to choose the decision that was made with the
highest confidence. This gives us an accuracy of 97.4%, which
is close to the SOTA (see next section). We also show the flex-
ibility and the advantage of using this MLR model by setting a
minimum likelihood value, necessary to make a decision (see
the online HOTS with threshold curve in Figure 5-(b)). With a
threshold set at 0.99, good results can only be obtained after a
minimum of about 100 events, in line with the idea of ultra-fast
categorization. With this last decision method, we obtain an av-
erage accuracy of 96.2% which is greatly improved compared
to the mean performance over all the decisions without confi-
dence threshold. The results of 5-(b) indicate that the second
and the third saccades of the N-MNIST recordings add only a
small amount of information, and the evolution of the accuracy
in Figure 5-(b) illustrates this point. Previous works report ac-
curacy results using only the first saccade and show only a small
improvement when the other saccades are also used (Lee et al.,
2016; Frenkel et al., 2020; Thiele et al., 2018).

For the DVSGesture dataset, we confirm the improvement of

our method over the original one on more realistic event-based
recordings (see Figure 5-(c)). For these more complex gesture
recognition tasks, the online HOTS accuracy remains close to
the chance level for about 100 events. More evidence needs to
be accumulated, and then the accuracy increases monotonically,
outperforming the previous method after about 10.000 events
(an average of 9.3% of the sample). These event-based record-
ings have a much higher event density than the other datasets,
and we remind the reader that only 3 seconds of the recording
is kept to test our algorithm. The average accuracy for all the
decisions is 85.7% and 87.2% when the decision is taken at the
last event received. The average always-on accuracy can reach
88.8% by setting the confidence threshold to 0.4. When we
make a decision post hoc, choosing the classifier output with
the highest probability, we get 89.8%.

3.2. Comparison to the state-of-the-art
To compare the performance of our method with the SOTA,

we choose to compute the accuracy when the decision is made
with the highest confidence, as other methods do not present the
event-driven online accuracy in their results. We report a table
of the best accuracy results found in the literature for the N-
MNIST and the DVSGesture datasets. All methods mentioned
in 2.2 are not reported here, preprints are discarded, and we fo-
cus on event-based methods that achieve the best performance.
We split the table 2 into two different parts for the methods that

N-MNIST DVS Gesture
HOTS (with k-NN) (Lagorce et al., 2017) 94.39% 83.0%

HATS (Sironi et al., 2018) 99.1% –
SLAYER (Shrestha and Orchard, 2018) 99.2% 93.64%

Spike-based BP (Fang et al., 2021) 99.61% 97.57%
DSNN-STDP (Thiele et al., 2018) 95.77% –
DECOLLE (Kaiser et al., 2020) 96% 95.54%

self-BP (Zhang et al., 2021) – 84.76%
hybrid CNN-SRNN (Yin et al., 2021) – 97.61%

Ours 97.4% 89.8%

Table 2: Offline classification accuracy for the N-MNIST and DVSGesture datasets. The upper part of the table corresponds to non-biologically plausible algorithms,
and the lower part to biologically plausible ones.

10

https://github.com/AntoineGrimaldi/hotsline/tree/main/notebooks/DATASET_STATS.ipynb

(a) Poker DVS

0 2 4 6 8 10

Standard deviation of spatial jitter (in pixels)

0

20

40

60

80

100

A
cc

u
ra

cy
 (

in
 %

)

(b) N-MNIST

0 2 4 6 8 10

Standard deviation of spatial jitter (in pixels)

(c)

100 101 102 103 104

Standard deviation of temporal jitter (in ms)

0

20

40

60

80

100

A
cc

u
ra

cy
 (

in
 %

)

(d)

100 101 102 103 104

Standard deviation of temporal jitter (in ms)

Figure 6: Evolution of classification accuracy as a function of (a-b) spatial and (c-d) temporal jitter.

are biologically plausible (bottom) and the others (top). We
skip the comparison of the results obtained with the Poker DVS
dataset, which serves as a toy model but does not provide a
challenging classification task. We argue that, even if we don’t
outperform these SOTA results, this simpler 3-layer feedfor-
ward network structure with a bio-plausible learning achieves
very competitive accuracy values. In addition, our classifier is
the first to provide always-on decision making.

3.3. Robustness to jitter

We also wanted to assess the robustness of this event-driven
object recognition method. To do this, we perturb the original
datasets by adding temporal or spatial jitter to the events. Jit-
ter is applied only to the test set to add noise to the signal used
for classification. As described in section 2.1, we use the tonic
package to apply temporal or spatial jitter to the test samples.
For each amount of jitter applied to the test set, 10 repetitions
are performed to obtain different accuracy values. Finally, we
fit a beta distribution to each of these results to compute the per-
centiles shown in Figure 6. To compare with previous results
obtained in Grimaldi et al. (2021), we plot the offline accuracy
obtained when making one decision per sample. We reduce
the number of computations for this analysis by using subsets
of the N-MNIST dataset (1000 samples). For each amount of

jitter applied to the test subset, 10 repetitions are performed
to obtain different accuracy values. Finally, we fit a beta dis-
tribution to these results to compute the percentiles shown in
Figure 6. As the proposed method is a proof of concept for
event-based computation, the simulations on GPU are not opti-
mized and results with jitter applied to the DVSGesture dataset
are not computed for reasons of simulation time. We highlight
the fact, that to our knowledge, no other studies have performed
this test on event-based recordings. Simulated on two different
DVS datasets, these results provide insight into the robustness
of our algorithm, but also highlight the features that are relevant
for classification within the event-based recordings.

As expected, the higher the jitter, the greater the negative im-
pact on classification. The decrease in accuracy as a function of
jitter fits well to a sigmoid function that decreases from a maxi-
mum accuracy value to reach the chance level. Using this fit, it
is possible to define a critical standard deviation of jitter in pix-
els or in ms where the accuracy drops to half of its maximum
compared to the chance level. This half saturation level pro-
vides a signature value for the relevant information contained
in the signal.

Figure 6-(a) shows the evolution of the accuracy for the dif-
ferent methods as a function of the amount of spatial jitter
applied to the PokerDVS dataset. Accuracy reaches half sat-

11

https://github.com/neuromorphs/tonic

uration for a spatial jitter with a standard deviation of 1.50,
1.66 and 3.87 pixels, for HOTS, HOTS with homeostasis and
online HOTS respectively. Figure 6-(b) shows results for the
N-MNIST dataset. Curves for HOTS, HOTS with homeosta-
sis are very close but show slightly different half saturation
levels: 2.42 pixels for HOTS, 2.32 and for HOTS with home-
ostasis. The homeostasis itself does not give significant im-
provement in this particular example, in line with the results
obtained in Figure 5-(b). However, online HOTS shows overall
significantly better performances and reaches its half saturation
level at 3.74 pixels Reaching half saturation level at approxi-
mately a standard deviation of the spatial jitter equal to 3.8 pix-
els demonstrates that this method relies heavily on the spatial
information. However, considering the small pixel grid of these
datasets (32×32 for PokerDVS and 28×28 for N-MNIST) and
the gradual decrease of the accuracy, we observe robustness to
spatial jitter for the different methods. In any case, the results
demonstrate a significant improvement of the robustness to spa-
tial jitter for the new method.

Panels (c, d) in Figure 6 illustrate a high resilience of the
network to temporal jitter, note that the x-axis is composed of
log10-spaced values. The average recording time for the Pok-
erDVS dataset is 7.1 ms and 308 ms for N-MNIST. For Pok-
erDVS (see figure 6-(d)), we obtain the following half satura-
tion levels corresponding to one standard deviation of the jitter
distribution in ms. For HOTS: 1.77 ms; HOTS with homeosta-
sis: 8.16 ms; and online HOTS: 34.5 ms. For N-MNIST (see
figure 6-(d)), the half saturation values are 49.77 ms, 41.32 ms
and 126.2 ms for HOTS, for HOTS with homeostasis and for the
algorithm presented in this study respectively. Even the origi-
nal method offers a high resilience to temporal jitter compared
to the duration of the recordings. For PokerDVS, this resilience
increases significantly with the addition of the homeostatic gain
control but not for N-MNIST where the robustness curves are,
again, very similar. For the online HOTS method, we observe
an increased robustness to temporal jitter. The standard devi-
ation of the added jitter must reach a similar timescale as the
recording itself (5 times the average duration of a recording for
PokerDVS and one third of the average duration for N-MNIST
samples). This surprisingly high robustness may be due to the
use of time surfaces to encode the signal. When temporal jitter
is added, the locations of events are preserved and only the tim-
ing is affected. A time surface with the same spatial structure is
computed from a jittered or non-noisy signal. By applying an
exponential decay to the delays, the effect of jitter is reduced.
This time surface is then compared to smooth time surfaces
with a scalar product over the entire spatial window. This tech-
nique makes the encoding of input events more robust to local
temporal variations. The increase in robustness for the home-
ostatic gain methods may be due to the improved clustering of
the network’s time surfaces. The way we construct the analog
vector as input to the MLR layer can explain this surprisingly
high resilience. Given the relatively high time constant used for
the exponential decay (see Table 1), the combination of only a
few events at precise spatial locations can lead to a good predic-
tion of the class. With this exponential decay, higher temporal
resolution is achieved for events closer in time to when the time

surface is computed. The higher the time constant, the better
the resolution for the recent past history, but the more events
can accumulate on the same 2D time surface, interfering with
accurate classification.

4. Discussion

In this study, we extended a neuromorphic engineering
method with techniques inspired by computational neuro-
science to develop an online, event-driven classification algo-
rithm similar to a SNN. We started our study with the HOTS
network, whose original basis is inspired by the hierarchy found
in the visual cortex. As designed in this network, the size of
the receptive field increases along the visual hierarchy (Lennie,
1998). Furthermore, cortical areas were found to follow a hier-
archical order of intrinsic time scales (Murray et al., 2014). One
hypothesis is that shorter time scales may be useful for rapid de-
tection or tracking of dynamic stimuli, while longer time scales
may be used for decision-making computations performed by
higher level areas. This particular organization of the HOTS ar-
chitecture and the evolution of the temporal surface parameters
through the different layers follows physiological principles.

Furthermore, we show that our model is similar to that of an
SNN by extending the equations to the continuous time domain.
We present this unified theoretical framework to bridge the gap
between neuromorphic engineering methods and computational
neuroscience. We extend the event-based algorithm to a more
generic and bio-plausible model. First, we used a homeostatic
rule inspired by living systems to make the unsupervised on-
line learning of the network more generic and robust. Sec-
ond, we added an online classification layer that performs MLR
and is compatible with a neural implementation (Berens et al.,
2012). As shown in section 2.6, the learning rules are local and
Hebbian-like. This makes the learning of the network easily
transferable to neuromorphic hardware. Once trained, the net-
work can perform an always-on classification, i.e. it can infer a
prediction whenever necessary. We present the results obtained
with event-based categorization, i.e. a prediction is made for
each input event of the classification layer. There is no need to
wait for the end of the recording of the sample or to collect a de-
fined number of events, which allows for ultra-fast categoriza-
tion. This dynamic classification, which evolves over time for
each new event, is closer to the object recognition performed by
biological systems. We also demonstrate the advantage of us-
ing a probabilistic approach to classification by presenting the
decisions made when a defined confidence threshold is reached.
Although using a high confidence threshold to make a decision
improves the overall classification performance, the classifier
needs to accumulate more evidence to be able to categorize an
event. The flexibility offered by this approach makes the al-
gorithm a viable model for solving different tasks that require
fast or accurate decisions. Overall, these results provide a good
illustration of the potential synergy between neuromorphic en-
gineering and computational neuroscience.

12

Acknowledgment

Antoine Grimaldi and Laurent Perrinet received fund-
ing from the European Union ERA-NET CHIST-ERA 2018
research and innovation program under grant agreement
N° ANR-19-CHR3-0008-03 (“APROVIS3D”). Sio-Hoi Ieng,
Ryad Benosman and Laurent Perrinet received funding from
the ANR project N° ANR-20-CE23-0021 (”AgileNeuroBot”).

During the preparation of this work the authors used DeepL
Write in order to improve language and readability. After using
this tool/service, the authors reviewed and edited the content as
needed and take full responsibility for the content of the publi-
cation.

References

Amir, A., Taba, B., Berg, D., Melano, T., McKinstry, J., Di Nolfo, C., Nayak,
T., Andreopoulos, A., Garreau, G., Mendoza, M., Kusnitz, J., Debole, M.,
Esser, S., Delbruck, T., Flickner, M., Modha, D., 2017. A low power, fully
event-based gesture recognition system, in: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR).

Bardow, P., Davison, A.J., Leutenegger, S., 2016. Simultaneous optical flow
and intensity estimation from an event camera, in: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 884–892.

Barlow, H.B., et al., 1961. Possible principles underlying the transformation of
sensory messages. Sensory communication 1.

Benosman, R., Clercq, C., Lagorce, X., Ieng, S.H., Bartolozzi, C., 2013. Event-
based visual flow. IEEE transactions on neural networks and learning sys-
tems 25, 407–417.

Berens, P., Ecker, A.S., Cotton, R.J., Ma, W.J., Bethge, M., Tolias, A.S., 2012.
A fast and simple population code for orientation in primate V1. J Neur 32.
URL: https://www.jneurosci.org/content/32/31/10618, doi:10.
1523/JNEUROSCI.1335-12.2012.

Boahen, K.A., 2000. Point-to-point connectivity between neuromorphic chips
using address events. IEEE Transactions on Circuits and Systems II: Analog
and Digital Signal Processing 47, 416–434.

Diehl, P.U., Cook, M., 2015. Unsupervised learning of digit recognition using
spike-timing-dependent plasticity. Frontiers in computational neuroscience
9, 99.

Fang, W., Yu, Z., Chen, Y., Masquelier, T., Huang, T., Tian, Y., 2021. Incor-
porating learnable membrane time constant to enhance learning of spiking
neural networks, in: Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 2661–2671.

Frenkel, C., Legat, J.D., Bol, D., 2020. A 28-nm convolutional neuromorphic
processor enabling online learning with spike-based retinas, in: 2020 IEEE
International Symposium on Circuits and Systems (ISCAS), IEEE. pp. 1–5.

Gallego, G., Delbruck, T., Orchard, G., Bartolozzi, C., Taba, B., Censi, A.,
Leutenegger, S., Davison, A., Conradt, J., Daniilidis, K., et al., 2019. Event-
based vision: A survey. arXiv preprint arXiv:1904.08405 .

Gallego, G., Lund, J.E., Mueggler, E., Rebecq, H., Delbruck, T., Scaramuzza,
D., 2017. Event-based, 6-dof camera tracking from photometric depth maps.
IEEE transactions on pattern analysis and machine intelligence 40, 2402–
2412.

Gerstner, W., 1995. Time structure of the activity in neural network models
51, 738–758. URL: https://link.aps.org/doi/10.1103/PhysRevE.
51.738, doi:10.1103/PhysRevE.51.738.

Giannone, G., Anoosheh, A., Quaglino, A., D’Oro, P., Gallieri, M., Masci, J.,
2020. Real-time classification from short event-camera streams using input-
filtering neural odes. arXiv preprint arXiv:2004.03156 .

Grimaldi, A., Boutin, V., Ieng, S.H., Perrinet, L.U., Benosman, R.,
2021. A homeostatic gain control mechanism to improve event-driven
object recognition, in: Content-Based Multimedia Indexing (CBMI)
2021. URL: https://laurentperrinet.github.io/publication/
grimaldi-21-cbmi/.

Hidalgo-Carrió, J., Gehrig, D., Scaramuzza, D., 2020. Learning monocular
dense depth from events. arXiv preprint arXiv:2010.08350 .

Ioffe, S., Szegedy, C., . Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift. URL: http://arxiv.org/
abs/1502.03167, arXiv:1502.03167.

Kaiser, J., Mostafa, H., Neftci, E., 2020. Synaptic plasticity dynamics for deep
continuous local learning (decolle). Frontiers in Neuroscience 14, 424.

Kim, H., Leutenegger, S., Davison, A.J., 2016. Real-time 3d reconstruction and
6-dof tracking with an event camera, in: European Conference on Computer
Vision, Springer. pp. 349–364.

Lagorce, X., Orchard, G., Galluppi, F., Shi, B.E., Benosman, R.B., 2017.
HOTS: A Hierarchy of Event-Based Time-Surfaces for Pattern Recogni-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence
39, 1346–1359. URL: http://www.ncbi.nlm.nih.gov/pubmed/

27411216http://ieeexplore.ieee.org/document/7508476/,
doi:10.1109/TPAMI.2016.2574707.

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., 1998. Gradient-based learning
applied to document recognition. Proceedings of the IEEE 86, 2278–2324.

Lecun, Y., Bottou, L., Bengio, Y., Haffner, P., 1998. Gradient-based learning
applied to document recognition. Proceedings of the IEEE 86, 2278–2324.
doi:10/d89c25.

Lee, J.H., Delbruck, T., Pfeiffer, M., 2016. Training deep spiking neural net-
works using backpropagation. Frontiers in neuroscience 10, 508.

Lennie, P., 1998. Single units and visual cortical organization. Perception 27,
889–935.

Lenz, G., Chaney, K., Shrestha, S.B., Oubari, O., Picaud, S., Zarrella, G., 2021.
Tonic: event-based datasets and transformations. URL: https://doi.
org/10.5281/zenodo.5079802, doi:10.5281/zenodo.5079802. Doc-
umentation available under https://tonic.readthedocs.io.

Murray, J.D., Bernacchia, A., Freedman, D.J., Romo, R., Wallis, J.D., Cai,
X., Padoa-Schioppa, C., Pasternak, T., Seo, H., Lee, D., et al., 2014. A
hierarchy of intrinsic timescales across primate cortex. Nature neuroscience
17, 1661–1663.

Neil, D., Liu, S.C., 2016. Effective sensor fusion with event-based sensors
and deep network architectures, in: 2016 IEEE International Symposium on
Circuits and Systems (ISCAS), IEEE. pp. 2282–2285.

Nessler, B., Pfeiffer, M., Buesing, L., Maass, W., 2013. Bayesian computation
emerges in generic cortical microcircuits through spike-timing-dependent
plasticity. PLoS Comput Biol 9, e1003037.

Orchard, G., Jayawant, A., Cohen, G.K., Thakor, N., 2015a. Converting static
image datasets to spiking neuromorphic datasets using saccades. Frontiers
in neuroscience 9, 437.

Orchard, G., Meyer, C., Etienne-Cummings, R., Posch, C., Thakor, N., Benos-
man, R., 2015b. Hfirst: a temporal approach to object recognition. IEEE
transactions on pattern analysis and machine intelligence 37, 2028–2040.

Osswald, M., Ieng, S.H., Benosman, R., Indiveri, G., 2017. A spiking neural
network model of 3d perception for event-based neuromorphic stereo vision
systems. Scientific reports 7, 1–12.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., et al., 2019. Pytorch: An im-
perative style, high-performance deep learning library. arXiv preprint
arXiv:1912.01703 .

Patino-Saucedo, A., Rostro-Gonzalez, H., Serrano-Gotarredona, T., Linares-
Barranco, B., 2020. Event-driven implementation of deep spiking convo-
lutional neural networks for supervised classification using the spinnaker
neuromorphic platform. Neural Networks 121, 319–328.

Pérez-Carrasco, J.A., Zhao, B., Serrano, C., Acha, B., Serrano-Gotarredona,
T., Chen, S., Linares-Barranco, B., 2013. Mapping from frame-driven to
frame-free event-driven vision systems by low-rate rate coding and coinci-
dence processing–application to feedforward convnets. IEEE transactions
on pattern analysis and machine intelligence 35, 2706–2719.

Perrinet, L.U., 2004. Feature detection using spikes : the greedy approach.
Journal of Physiology-Paris 98, 530–9. URL: http://dx.doi.org/

10.1016/j.jphysparis.2005.09.012, doi:10.1016/j.jphysparis.
2005.09.012.

Perrinet, L.U., 2010. Role of homeostasis in learning sparse representa-
tions. Neural Computation 22, 1812–36. URL: https://arxiv.org/
abs/0706.3177, doi:10.1162/neco.2010.05-08-795.

Perrinet, L.U., 2019. An adaptive homeostatic algorithm for the unsuper-
vised learning of visual features. Vision 3, 47. URL: https://spikeai.
github.io/HULK/, doi:10.3390/vision3030047.

Perrinet, L.U., Samuelides, M., Thorpe, S.J., 2003. Emergence of filters from
natural scenes in a sparse spike coding scheme. Neurocomputing 58–60,

13

http://aprovis3d.eu/
https://laurentperrinet.github.io/grant/anr-anr/
https://www.jneurosci.org/content/32/31/10618
http://dx.doi.org/10.1523/JNEUROSCI.1335-12.2012
http://dx.doi.org/10.1523/JNEUROSCI.1335-12.2012
https://link.aps.org/doi/10.1103/PhysRevE.51.738
https://link.aps.org/doi/10.1103/PhysRevE.51.738
http://dx.doi.org/10.1103/PhysRevE.51.738
https://laurentperrinet.github.io/publication/grimaldi-21-cbmi/
https://laurentperrinet.github.io/publication/grimaldi-21-cbmi/
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
http://www.ncbi.nlm.nih.gov/pubmed/27411216 http://ieeexplore.ieee.org/document/7508476/
http://www.ncbi.nlm.nih.gov/pubmed/27411216 http://ieeexplore.ieee.org/document/7508476/
http://dx.doi.org/10.1109/TPAMI.2016.2574707
http://dx.doi.org/10/d89c25
https://doi.org/10.5281/zenodo.5079802
https://doi.org/10.5281/zenodo.5079802
http://dx.doi.org/10.5281/zenodo.5079802
http://dx.doi.org/10.1016/j.jphysparis.2005.09.012
http://dx.doi.org/10.1016/j.jphysparis.2005.09.012
http://dx.doi.org/10.1016/j.jphysparis.2005.09.012
http://dx.doi.org/10.1016/j.jphysparis.2005.09.012
https://arxiv.org/abs/0706.3177
https://arxiv.org/abs/0706.3177
http://dx.doi.org/10.1162/neco.2010.05-08-795
https://spikeai.github.io/HULK/
https://spikeai.github.io/HULK/
http://dx.doi.org/10.3390/vision3030047

821–6. URL: http://dx.doi.org/10.1016/j.neucom.2004.01.133,
doi:10.1016/j.neucom.2004.01.133.

Roy, K., Jaiswal, A., Panda, P., 2019. Towards spike-based machine intelli-
gence with neuromorphic computing. Nature 575, 607–617.

Rueckauer, B., Lungu, I.A., Hu, Y., Pfeiffer, M., Liu, S.C., 2017. Conversion of
Continuous-Valued Deep Networks to Efficient Event-Driven Networks for
Image Classification. Frontiers in Neuroscience 11.

Safa, A., Sahli, H., Bourdoux, A., Ocket, I., Catthoor, F., Gielen, G.G.E.,
2021. Learning event-based spatio-temporal feature descriptors via local
synaptic plasticity: A biologically-realistic perspective of computer vision.
CoRR abs/2111.00791. URL: https://arxiv.org/abs/2111.00791,
arXiv:2111.00791.

Samadzadeh, A., Far, F.S.T., Javadi, A., Nickabadi, A., Chehreghani, M.H.,
2020. Convolutional spiking neural networks for spatio-temporal feature ex-
traction. CoRR abs/2003.12346. URL: https://arxiv.org/abs/2003.
12346, arXiv:2003.12346.

Serrano-Gotarredona, T., Linares-Barranco, B., 2015. Poker-dvs and mnist-
dvs. their history, how they were made, and other details. Frontiers in neu-
roscience 9, 481.

Shrestha, S.B., Orchard, G., 2018. Slayer: Spike layer error reassignment in
time. Advances in neural information processing systems 31.

Sironi, A., Brambilla, M., Bourdis, N., Lagorce, X., Benosman, R., 2018.
HATS: Histograms of averaged time surfaces for robust event-based object
classification, in: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 1731–1740.

Thiele, J.C., Bichler, O., Dupret, A., 2018. Event-based, timescale invariant
unsupervised online deep learning with stdp. Frontiers in computational
neuroscience 12, 46.

Tschechne, S., Sailer, R., Neumann, H., 2014. Bio-inspired optic flow from
event-based neuromorphic sensor input, in: IAPR Workshop on Artificial
Neural Networks in Pattern Recognition, Springer. pp. 171–182.

Wu, Y., Deng, L., Li, G., Zhu, J., Shi, L., 2018. Spatio-temporal backpropa-
gation for training high-performance spiking neural networks. Frontiers in
neuroscience 12, 331.

Wu, Y., Deng, L., Li, G., Zhu, J., Xie, Y., Shi, L., 2019. Direct training for
spiking neural networks: Faster, larger, better, in: Proceedings of the AAAI
Conference on Artificial Intelligence, pp. 1311–1318.

Yin, B., Corradi, F., Bohté, S.M., 2021. Accurate and efficient time-domain
classification with adaptive spiking recurrent neural networks. Nature Ma-
chine Intelligence 3, 905–913.

Yousefzadeh, A., Orchard, G., Serrano-Gotarredona, T., Linares-Barranco, B.,
2018. Active perception with dynamic vision sensors. Minimum saccades
with optimum recognition. IEEE transactions on biomedical circuits and
systems 12, 927–939.

Zhang, T., Cheng, X., Jia, S., Poo, M.m., Zeng, Y., Xu, B., 2021. Self-
backpropagation of synaptic modifications elevates the efficiency of spiking
and artificial neural networks. Science Advances 7, eabh0146.

Zhou, S., Wang, W., Li, X., Jin, Z., 2021. A spike learning system for event-
driven object recognition. arXiv preprint arXiv:2101.08850 .

Zhu, A.Z., Chen, Y., Daniilidis, K., 2018. Realtime time synchronized event-
based stereo, in: Proceedings of the European Conference on Computer Vi-
sion (ECCV), pp. 433–447.

14

http://dx.doi.org/10.1016/j.neucom.2004.01.133
http://dx.doi.org/10.1016/j.neucom.2004.01.133
https://arxiv.org/abs/2111.00791
http://arxiv.org/abs/2111.00791
https://arxiv.org/abs/2003.12346
https://arxiv.org/abs/2003.12346
http://arxiv.org/abs/2003.12346

	Introduction
	Materials and methods
	Datasets
	Related work
	Event-based formalism: HOTS model
	Time Surfaces
	Architecture of the network: hierarchy
	Architecture of the network: kernels

	Homeostasis
	Online event-based classification
	The Spiking Neural Network analogy
	HOTS as a SNN
	MLR as a SNN

	Results
	Online inference
	Comparison to the state-of-the-art
	Robustness to jitter

	Discussion

