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Abstract

This study proposes to precisely quantify the uncertainty in a CPU-
time costly Computational Fluid Dynamics (CFD) model used to evaluate
local temperature field in the situation of blocked fuel assembly in a PWR
transfer tube. Several uncertain parameters are identified and a first un-
certainty propagation study is conducted on a low fidelity (poorly refined)
mesh for CPU cost issues. Then, using the concept of “support points”,
an algorithm is employed to reduce the size of the initial design of ex-
periments. A high-fidelity model (finer mesh, more CPU-time expensive)
is then run on this small-size design of experiments. A metamodel was
finally built on those high fidelity results to propagate uncertainties and
finely analyze the results. The successful results that are obtained show
that metamodeling has potential to overcome the issue of highly costly
CPU-time CFD models in the near future.

1 Introduction

In the framework of nuclear safety, simulations tools are used at each step of
the process - going from design to safety demonstrations. Those analyses are
primarily performed using so called 1D “system” codes (such as RELAP or
CATHARE), which are validated against a very large panel of experiments and
mainly based on empirical correlations (see, e.g., [1]).

Numerical simulators, often referred to as codes, require numerous input
parameters that define the phenomenon being investigated or pertain to its
physical and numerical modeling. The information available for many of these
parameters is frequently limited or uncertain. These uncertainties primarily
arise from gaps in our understanding of the underlying physical processes and
the challenges in accurately characterizing the model’s input parameters, often
due to insufficient experimental data [2]. Additional uncertainties can also stem
from the specific accidental scenarios chosen for analysis. As a result, both the
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input parameters and the outputs generated by the simulator carry inherent un-
certainties. In light of this, it becomes crucial to account for these uncertainties
when interpreting the results of computer simulations. The quantification of the
variability of the outputs due to the uncertainties in the inputs is calculated via
propagation of uncertainties. It is a critical component of safety analysis. In the
context of nuclear safety, this approach is termed BEPU (“Best-Estimate Plus
Uncertainty”) and represents a significant advancement in the rigorous assess-
ment of safety measures [3, 4, 5]. The main idea is to be able to compute low
or high-order (e.g. 5% or 95%) quantiles of model output variables of interest.

In the recent decades, the use of 3D Computational Fluid Dynamics (CFD)
models to predict the entire local flow field in a nuclear system has considerably
increased [6]. Indeed, some phenomena are intrinsically 3D by nature (such as
the pressurized thermal shock, steam line break and boron dilution) and the use
of 1D system codes might not be accurate enough on such configurations. More-
over, by reducing the modeled part of the governing equations and increasing
the resolved one, CFD is expected to reduce conservatism and to give a better
physical understanding of safety-relevant phenomena.

The verification and validation (“V&V”) process is fundamental to quantify
the level of confidence one can have in a CFD code [7] for inputs with no signif-
icant uncertainties. Uncertainty Quantification (UQ) (see, e.g., [8]) is however
more difficult to set up in the CFD context [9]. When performing UQ on CFD
codes, one of the main technical difficulties is the CPU time cost of the simula-
tor evaluation. Indeed, depending on the studied configuration, a single run can
take hours or days to return its result. Pointing out that the direct Monte Carlo
approach (which includes the Wilks method allowing to compute a conservative
quantile estimation [10, 11]) often cannot be applied in this context, this issue
has been investigated in the review report [12]. This reference identifies the
following methods as solutions:

• The accuracy extrapolation methods [13, 14] which requires experimental
data,

• The deterministic sampling approach [15, 16] which does not give access
to quantile estimates without strong assumptions on the output variable
distribution,

• The use of a metamodel [17] which consists in building a CPU-time inex-
pensive mathematical function approximating a set of results from sim-
ulator runs (coming from a well-chosen sample of input values evaluated
with the CFD code).

Therefore, if no experimental data are available, and if we want to compute
quantile of an output variable without hypothesis on the output distribution, the
metamodels appear as adequate solutions as shown by [18] with the generalized
polynomial chaos, [19] with the Gaussian process, and [20] with the so-called
optimal statistical estimator.

In this paper, a particular industrial safety issue, coming from the engi-
neering division of EDF (Electricité de France, which is the French electrical
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company) and related to the operation of Pressurized Water nuclear Reactor
(PWR), is studied from the perspective of CFD calculations. When loading or
unloading nuclear fuel in a PWR, fuel assemblies go from the core (containment
pool or BR pool) to the spent fuel pool (BK pool). This transit is made possible
by a device that allows the fuel assemblies to be switch from a vertical to an
horizontal position. It is then placed on a cart that goes from the BR pool to
the BK pool in a tube (see Fig. 1). The accidental scenario of interest in such
configuration considers that a fuel assembly is blocked in the transfer tube for
an undetermined time. The saturation temperature of water in the tube is, in
this particular scenario of interest, around 122◦C. Thus, ensuring that there is
no boiling in the tube leading to the draining of the fuel assembly, is a major
issue in such scenario.

BR pool
BK pool

Transfer tube

Core

Figure 1: Sketch of the situation studied.

This study proposes to precisely quantify the uncertainty on the temperature
in the tube. In particular, it has a threefold objective:

• To quantify the input uncertainties by identifying the uncertain parame-
ters of the study and modeling them with probabilistic distributions,

• To perform an UQ/BEPU study by propagating these uncertainties on a
low fidelity CFD mesh (coarse numerical model) to give a first answer to
the problem,

• To investigate the possibility to use metamodels to perform uncertainty
propagation on a high fidelity mesh (precise numerical model). In this
study, we focus on the use of a Gaussian process metamodel [21] which is
known to be efficient for simulators up to tens of inputs [22, 23].

Propagating firstly the uncertainties on a mesh that is known to be outside
the asymptotic convergence area may appear peculiar as authors seem to already
know that the refinement of this mesh is not sufficient to precisely capture the
flow field. However, it is the reflect of a day-to-day engineering practice: one
build a first mesh, perform some computations and tests on it, before testing
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finer meshes to assess solution verification [24]. Therefore, a second step consists
in running the code on a high fidelity mesh, but on some locations (in the
input space) where the low-fidelity code has been run. Indeed, sampling the
two models of different fidelities (framework called “multifidelity code” in the
UQ literature [25]) at the same locations would allow to study precisely the
difference between their output values (and then to evaluate their convergence).
This practice leads to a particular sampling issue that is considered in this paper:
How to extract an “optimal” sub-sample of a given size (to run the high-fidelity
code) from a first sample (where the low-fidelity code has been run)? In the UQ
literature, most of the times, the problem being addressed is the opposite as the
user wants to augment a first sample that has been used for the high-fidelity
code (see, e.g., the nested designs solution proposed in [26]). Therefore, for our
particular purpose, we propose to use the support points technique [27], which
is able to solve the problem of sub-sample extraction, as shown in [28].

Section 2 details the CFD modeling of the problem, as well as the description
of the uncertain model inputs. Section 3 presents the UQ exercise on the low-
fidelity model. Section 4 describes the method used to perform a small number
of high-fidelity model simulations and to evaluate the error between low-fidelity
and high-fidelity outputs. Section 5 provides the final results of the UQ on the
high-fidelity model by the way of metamodeling. A general conclusion stands
in Section 6.

2 CFD modeling

All the CFD computations are performed using code saturne1, an open-source
finite volume CFD solver developed at EDF R&D [29].

2.1 Description

Let consider, in a PWR, a fuel assembly blocked in the tube at a position tx in
the transfer tube open on the BR and BK pools at both ends (tx = 0 being the
center of the tube). The residual thermal power contained in the fuel assembly
is noted Pd. No mass flow is imposed in the tube (it is the worst scenario): in
this situation the fuel assembly cooling is only ensured by natural convection.
Hence, a fluid circulation is established between the hot fuel assembly and the
BR and BK pools, both maintained at a temperature TBR and TBK respectively.

2.2 Computational domain

The fluid volume consists in the full transfer tube and two arbitrary fluid vol-
umes representing the BR and BK pools (see Fig. 2, left). Inside the transfer
tube, an explicit representation of the element it contains is made as repre-
sented in Fig. 2 (right). Some hypotheses, sensible with the initial phenomena
identification of the study, are made in order to simplify the meshing process:

1https://www.code-saturne.org
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• The top and bottom of fuel assemblies are removed;

• The thermal conduction is neglected in the fuel assemblies (no meshing of
the solid part);

• The containment part and the grids are treated as thin wall (which is
coherent with their real slenderness);

• The mixing vanes are not represented on the mixing grids.

BR pool BK pool

Transfer tube

Core

Transfer tube

Fuel assembly

Mixing grid

Cart

Containment

Guiding rail

Figure 2: Sketch of the CFD fluid domain. Left: full domain. Right: elements
represented in the transfer tube.

Free software Salome platform, with free meshing algorithms, was employed.
Three mesh refinements were generated as illustrated in Figs. 3 and 4. These
different meshes are noted R1, R2 and R3 from the coarsest to the finest. The
coarse R1 mesh consists in about 8×106 cells and allows fast computations with
little guarantees of precision and will be called “low fidelity”. The finest mesh
R3 consists in 256 × 106 of cells and will be noted hereafter as “high fidelity”.
Mesh R2, standing in between, consists in about 45× 106 cells.

Figure 3: Cut of the CFD mesh in the transfer tube employed in this study.
The vicinity of the fuel assembly and the outer regions of the tube are meshed
with a grid invariant in the axis of the tube direction. The cart is meshed
with isotropic unstructured cells (mainly tetrahedra). The whole mesh is fully
conformal (from left to right : R1, R2 and R3).
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Figure 4: Meshing of the transfer cart, the tube and the grids (from left to right
: R1, R2 and R3)

2.3 Computational setup

The physical properties of water are dependent on the temperature and those
laws are taken from IAPWS database (www.iapws.org). Constant temperature
at TBR and TBK in the pools is ensured by a volumetric sink term in the heat
equation at the top of each pool (in the last 10% of the pool height, all the energy
produced by the fuel assembly is absorbed in this sink term). This models a
steady state where all the thermal power dissipated in the fuel assembly has to
be absorbed in the pools.

As we are not interested in the transitory part of the scenario, a steady
management of the flow is chosen. This ensure a local CFL number of one
everywhere in the domain, enabling a faster convergence towards the steady
state solution.

Regarding turbulence, a Reynolds Average Navier Stokes (RANS) strategy
is adopted. The k-ω SST model will be used. Despite its well known poor ability
to predict natural convection flows, this model is able to deal with all type of
mesh refinement at walls and show very good numerical stability, which made
him the best candidates to perform hundreds of computations. For the sake of
precision, a careful sensitivity to turbulence models was performed afterwards
by the authors. This study exhibits a very small dependence on the turbulence
model as most of the flow is quasi laminar where the head loss is the highest.
This is coherent with the very low Reynolds number in the fuel assembly that
can be estimated at approximately 400.

2.4 Uncertain input parameters

We propose to divide the uncertain parameter of this study in two categories:
physical parameters and geometrical parameters.
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2.4.1 Physical parameters

As already mentioned, the residual thermal power Pd, as well as the temperature
of the BR and BK pool, TBR and TBK , are uncertain parameters. One also
want to take into account the uncertainty in the axial distribution of the thermal
power Pd. Indeed, noting f(x) (W/m2) the thermal flux along the fuel assembly,
it should always verify

Pd =

∫∫
SAC

f(x)dx, (1)

with SAC the total heated surface of the fuel assembly.
Taking a constant heat flux f = Pd/SAC is however not fully representative

of the reality. Indeed, a typical spent fuel with high decay heat (encountered
in an unplanned stop of the plant) will show a bump around the middle of
the fuel assemblies, with decreasing heat flux towards the top and the bottom.
The position at which this bump occurs (hereafter noted xp) as well as its
intensity (hereafter noted fp) is subject to uncertainty. This parameterization
is illustrated in Fig. 5, where a typical spent fuel power distribution is compared
to the present linear approximation resulting from the introduction of xp and
fp.
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Figure 5: Typical spent fuel dimensionless power distribution compared to the
parameterization used in this study (linear approximation with location (xp)
and intensity (fp).

Table 1 summarizes all the uncertain physical parameters of the study. For
sake of simplicity, parameters xp and fp are made dimensionless with respect
to the length of the fuel assembly L and the constant heat flux value Pd/SAC ,
respectively.
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Parameter Notation Unit
BR pool temperature TBR

◦C
BK pool temperature TBK

◦C
Total thermal residual power Pd kW

Location of the thermal flux peak xp -
Intensity of the thermal flux peak fp -

Table 1: Uncertain physical parameters of the present study.

2.4.2 Geometrical parameters

The first obvious geometrical parameters is the blocked position of the fuel
assembly as it can be locked at any position tx inside the tube. We also decided
to take the represented volume of the pool as an input parameter. Indeed, as
we do not explicitly represent the whole pools, an arbitrary cubical volume is
constructed at each side of the transfer tube (see Fig. 2, left). We note fBR

and fBK the multiplicative coefficients applied to the side length of this cube.
Table 2 summarizes all the uncertain geometrical parameters of the study.

Parameter Notation Unit
Locked position of the fuel assembly tx m

Size factor for the BR pool representative volume fBR -
Size factor for the BK pool representative volume fBK -

Table 2: Uncertain geometrical parameters of the present study.

3 Uncertainty propagation on low-fidelity model

The peculiarity of CFD computations is its high requirements in terms of HPC.
It is indeed common in the nuclear industry to tackle problems involving meshes
with 50 millions to several hundreds millions of cells. The mean return time (the
total elapsed time, from the beginning of the computation to the moment the
engineer get the results) for those types of computation ranges from a day to
several weeks. This makes CFD particularly not suitable, as such, for UQ which
requires many evaluations of the same problem. That is why, as a first step,
we conducted an UQ on the low fidelity mesh R1 described previously. This
mesh contains 8 × 106 cells and it takes around 8 hours on 144 cores of the
EDF Cronos supercomputer (Atos BullSequana X system with 3,400 Intel Xeon
Platinum 8260 processors) to reach a fully steady solution.

The design of experiments, the uncertainty propagation as well as the anal-
ysis of the results which are described in the next sections were performed us-
ing OpenTURNS2, an open-source software platform developed by EDF R&D,

2https://openturns.github.io/www/
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Airbus, ONERA, Phimeca and IMACS, and dedicated to the treatment of un-
certainty [30].

3.1 Probabilistic representation of the problem

The uncertain parameters of the study being identified (seeSection 2.3), one
needs a knowledge on their variability.

Physical parameters. The residual thermal power in a fuel assembly has
been extensively studied in the nuclear community. A normal distribution of
this power, with a mean value of 120 kW and a standard deviation σ of 5 kW,
has been considered as a reasonable choice. The BR and BK pools are always
maintained at a temperature below 50◦C and theoretically never overshoot this
temperature. However, for the purpose of this UQ exercise, we adopted a pe-
nalizing approach consisting in taking values given by a normal distribution
centered on µ = 50◦C with a standard deviation σ of 1◦C for both the BR and
BK pools. Finally, the authors were not able to collect enough data to precisely
estimate the variability in the residual thermal flux peak location and intensity.
However, some observations allow to consider that it is:

• more likely to have light peak than a very sharp peak of the thermal flux,

• more likely to have a position of the peak in the upper part of the fuel
assembly.

Geometrical parameters. We assume that all the geometrical parameters
follows uniform probability distributions: there are no preferential values for
those parameters.

Summary. Table 3 summarizes all the adopted probabilistic definition for
the uncertain parameters of the study, where N (µ, σ2) is the normal probability
distribution centered on µ with standard deviation σ, N (µ, σ2, a, b) is the normal
probability distribution truncated on [a, b], and U(a, b) is the uniform probability
distribution on [a, b].

Parameter Notation Probability density function
Total thermal residual power Pd N (120, 52)

Location of the thermal flux peak xp N (0.7, 0.22, 0.5, 0.9)
Intensity of the thermal flux peak fp N (1.3, 0.22, 1.0, 1.7)

BR pool temperature TBR N (50, 1)
BK pool temperature TBK N (50, 1)

Locked position of the fuel assembly tx U(−0.7, 0.7)
Size factor for the BR pool representative volume fBR U(1.0, 2.0)
Size factor for the BK pool representative volume fBK U(1.0, 2.0)

Table 3: Uncertain parameters and their probabilistic models.
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3.2 Output variables

As specified in Section 1, the main objective of this study is to ensure that
temperature in the transfer tube remains far from the saturation temperature,
Tmax ≪ Tsat. Several output variables may be looked at as for example the
maximum temperature in the entire fluid domain. However, the latter parameter
is highly sensitive to the wall refinement used in the mesh (the temperature is
maximal at the wall around the fuel tube). For the purpose of this exercise,
and to reduce this sensitivity, the maximal temperature 25cm above the fuel
assembly in the tube is taken as the output variable of this study and is noted
Tmax.

3.3 Design of experiments generation

An optimized Latin Hypercube sampling (see, e.g., [31]), allowing to have a
good coverage and space filling properties of the design points, was chosen to
generate the numerical experiments involving our 8 parameters. It is noted
P600. The number of evaluations of the CFD model was set to N = 600. It has
been found that it offers the best compromise between the return time and the
variability representation of the parameters.

As stated above, one evaluation of the CFD model has an approximate return
time of 8h. Running 20 evaluations in parallel on the EDF supercomputer (i.e.
using 2880 processors) leads to a total return time for the 600 evaluations of
about 8 days.

3.4 Results

From a general physical point of view, a stratification is established in the tube.
Figure 6 gives an illustration of the temperature field in the domain. One can
clearly see the hot plumes coming from the fuel assembly and rising towards the
top of the tube and then going towards the pool, which in turn will cool the
fluid. As stated above, the maximum temperature in the tube above the fuel
assembly is noted Tmax.

Figure 6: Temperature field for one evaluation of the CFD model (in this view,
the cart has been cut for the sake of visibility).

Table 4 presents the mean, the standard deviation and the 99% empirical
quantile for this output variable after 600 evaluations on the design of exper-
iments previously defined. The 95%/95% quantile, computed with the Wilks
formula [10, 11], is also provided. Indeed, with the aim of increasing “safety”, a
conservative estimate of a quantile is often required. The Wilks method allows
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to impose that the obtained estimate does have a certain level of confidence (we
take here 95%) to overestimate the true (unkwnown) quantile.

Output Mean µ Standard deviation σ 99% quantile 95%/95% quantile
Tmax 60.08 0.86 62.1 61.68

Table 4: Main statistical quantities of interest (in ◦C) for Tmax.

Figure 7 gives the frequency histogram (probability density representation)
for this output variable with the main statistical quantities of interest described
above. As mentioned in the introduction, the accidental scenario studied here
exhibits maximal temperature that are far from the saturation temperature
(about 122◦C, represented by the red line) and no boiling can occur in the
tube.
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Figure 7: Probability density representation of the output variable Tmax for the
low fidelity model.

4 High fidelity modeling

It is well known in CFD that the choice made for the mesh (quality, refinement,
etc.) has a huge impact on the results. As a consequence, the mesh is itself a
parameter that can induce a strong variability in the distribution of the maximal
temperature described in the previous section. It is however very difficult to
include the mesh in the uncertainty propagation: the finest mesh that was
generated (“high fidelity” mesh R3) has 256 × 106 cells and one evaluation of
the CFD model has a return time of about 4 days on 2880 processors. Running
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the whole P600 design of experiments on such mesh is thus totally unreachable
(6 years of computation with actual cluster limitation).

The strategy that is proposed in this study is to reduce the size of P600 to
several well chosen points, so that the total number of CFD evaluations on finer
meshes has a reasonable return time. Sampling the two codes of different fideli-
ties at the same locations would allow to study precisely the difference between
their output values (and then to evaluate their convergence). One important
constraint is to ensure that the extracted sub-sample has the same distribution
than the initial sample (then the inputs’ probability density functions defined
in Section 3.1 are kept). Another objective is to have a sub-sample with good
space filling properties (see Section 3.3) as the initial sample. Therefore, for this
particular purpose, we propose to use the support points technique which can
easily be adapted to extract a sub-sample of a given size from a first sample.

4.1 High-fidelity design of experiments via support points

The support points method [27] allows to compact a continuous probability
distribution F into a set of representative points (called support points). Among
its different uses, it can extract a subsample from a given sample, for example
for building a test sample in machine learning [32, 33, 34]. It is highly efficient in
terms of computational cost, even for large-size sample N (up to N = 104) and
in high input space dimension d (as large as d = 500). Mathematical formulas on
support points and technical details on our extraction algorithm (called SPNN),
are described in Appendix A.

Figure 8 illustrates in two cases the results of applying the SPNN algorithm,
in comparison to applying a purely random extraction (Monte Carlo subsample).
Through this example, the representativeness of the SPNN points is clearly
illustrated:

• Red circles (given by SPNN algorithm) are located on all the different
zones of the initial sample points (black crosses) and are well-spaced each
other;

• Blue squares (given by pure random sampling) do not sample all the dif-
ferent zones of the initial sample points (black crosses) and can be close
to each other.

In the present study, the SPNN algorithm has been used to generate two
sets of points representative of the P600 design of experiments. The number of
points of each subset is chosen so that the return time of the CFD model on
mesh R2 and R3 is reasonable. A subset P50 with 50 points extracted from
the initial distribution P600 is created for the evaluation of the model on mesh
R2, and a subset P10 with 10 points is thus created for the evaluation of the
model on mesh R3. As a consequence, those sets of points fulfill the following
inclusions:

P10 ⊂ P50 ⊂ P600. (2)
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Figure 8: Illustrations of 20-size Monte Carlo samples (blue filled squares) and
SPNN samples (red filled circles), both extracted from the same 200-size Monte
Carlo samples (black crosses). Left: X1 and X2 follows the same uniform proba-
bility distribution; Right: X1 and X2 follows the same Gaussian mixture model.

Figure 9 illustrates these different nested design with the points’ projection on
two inputs.

The return time thus reached a total of 40 days on P10 for the evaluation
of the CFD model on mesh R3. A representation of those subsets for two
parameters (TBR and fBR, see Tab. 3) is given on Fig. 9. The left figure
illustrates all the points from P10, P50 and P600 and the right shows the good
representativity of the P50 subset.
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inputs from design P50 (middle and right).
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4.2 Error quantification on the low-fidelity CFD model

Figure 10 presents a qualitative view of the CFD model for one set of uncertain
parameters on all three meshes. One can notice differences, especially the lo-
cation of the stratification or the intensity of the thermal plume above the fuel
assembly. Figure 11 presents a more quantitative view of those differences as
it draws a temperature profile above the fuel assembly (from the beginning of
the cart to the end of the cart). It clearly appears that the hot peaks in the
temperature are much higher on mesh R2 and R3 than the ones observed on
the low-fidelity mesh R1. Moreover, there are less differences between mesh R2

and R3.

Figure 10: Transversal cut of the instantaneous temperature field for mesh R1

(top), R2 (middle) and R3 (bottom).

58

58.5

59

59.5

60

60.5

61

61.5

62

0 0.2 0.4 0.6 0.8 1

T
(o
C
)

Length

Mesh R1 Mesh R2 Mesh R3

Figure 11: Temperature profile above the fuel assembly in the transfer tube.

To properly quantify this error, let us consider P the smallest design of ex-
periments between meshes Ri and Rj . We introduce the two following standard
metrics:

• The bias on the temperature between two meshes Ri and Rj , defined
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as follows:
Bij
T (X) = TRi(X)− TRj (X), X ∈ P. (3)

For example, we write B21
Tmax

(X) the bias on Tmax between meshes R2

and R1. We then write E
(
Bij
T (X)

)
the mean bias value for all the points

of P.

• The Q2 criterion on the temperature between two meshes Ri and
Rj , defined as follows:

Q2,ij
T (X) = 1− 1

N

∑N
k=1

(
TRi(X(k))− TRj (X(k))

)2
Var(TRi(X))

, X ∈ P. (4)

where the variance at the numerator is chosen to be computed on the
finest mesh. It quantifies the loss of information between two meshes and
their variability. The more the criterion is close to 1, the less information
is lost going from the coarsest to the finest mesh.

Table 5 provides the results of these metrics for the maximum temperature
Tmax.The conclusions of those observations are threefold:

• The bias decreases as the mesh is refined. Going from 1.1◦C between mesh
R1 and R3 to 0.42◦C between mesh R2 and R3;

• The variability of Tmax decreases as the mesh is progressively refined;

• The loss of information between two meshes is minimized when going from
mesh R2 to R3.

Meshing E (BTmax
(X)) σ (BTmax

(X)) Q2
Tmax

R1/R2 0.936 0.296 0.902
R1/R3 1.01 0.208 0.927
R2/R3 0.129 0.124 0.974

Table 5: Metrics between all meshes for the output variable Tmax.

This emphasizes that the mesh R1 is not suitable to properly quantify the
absolute value of Tmax. However, the loss of information between mesh R2 to
R3 is relatively small compared to going from mesh R1 to R2. From here, we
can state that the low-fidelity mesh R1 is not refined enough and the mesh R2

is sufficiently refined to obtain precise results as it has small difference with the
high-fidelity mesh R3. This approach is a rather state-of-the-art procedure in
CFD engineering to analyze the sensitivity of a model to the mesh and to use a
fine enough mesh.
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5 Uncertainty quantification on high fidelity mod-
eling

Given the latter conclusion, how is possible to quantify uncertainty on a higher
resolution model? To answer this question, the only available data are the eval-
uations of the CFD model on the P50 design of experiments. Those evaluations
will be used to create a metamodel, which in turn will be used as a cheap CPU-
time emulator of our model to propagate uncertainties on the P600 design of
experiments.

5.1 Metamodel construction

The UQ of CPU-time expensive computer models can be done by approximating
the computer model by a CPU-time inexpensive mathematical function called
“surrogate model” or “metamodel”. A metamodel can be based on polynomials,
splines, Gaussian processes, random forests, neural networks, etc. [17], in fact on
any machine learning techniques. Built from a set of computer code simulations,
they must be as representative as possible of the code output values in the
domain of variation of the uncertain parameters while having good prediction
capabilities.

It was chosen in the present study to built a metamodel using a Gaussian pro-
cess model (see Appendix B) to estimate Tmax. This metamodel was designed
using OpenTURNS software [30] and validated against 15 points (noted T15).
Those 15 points were randomly chose among the 50 remaining points of a 100
points subplan which includes P50. To quantify the validation of the metamodel
it is common to draw, for those validation points, the results of the metamodel
against the values of the original model in a single plot as illustrated in Fig. 12.
The Q2 criterion (percentage of the output variable variance explained by the
metamodel in prediction, see [33]) value reaches 90.79% for those data. This re-
sult is rather suitable for a subsequent uncertainty propagation study, as shown
in [19]. This approach is a first work of metamodel-based UQ applied on a CFD
codes. A more powerful approach, that will be applied in future studies, would
be to build confidence-intervals around the quantile estimates using Gaussian
process conditional simulations [19].

5.2 Uncertainty propagation using the metamodel

Given that we are now able to perform an evaluation of the metamodel at an
extremely low CPU cost, it is possible to perform any evaluation with the pre-
cision of the high-fidelity CFD model. Table 6 compares, for Tmax, the previous
statistics resulting from the low-fidelity CFD model (coarse mesh R1, see Tab.
4) to the ones coming from the high-fidelity metamodel. Both were evaluated on
the P600 design of experiments in order to provide a precise comparison between
the results. Figure 13 illustrates the results by giving the frequency histogram
(probability density representation) for this output variable.
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Figure 12: Metamodel validation for Tmax.

Output Mean µ Standard deviation σ 99% quantile 95%/95% quantile
CFD model 60.08 0.86 62.1 61.68

(evaluated on R1)
Metamodel 61.01 0.93 63.04 62.67
(built on R2,

evaluated on R1)

Table 6: Comparison of the main statistical quantities of interest (in ◦C) for
Tmax.
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Figure 13: Probability density representation (green for the low-fidelity model
and blue for the high-fidelity one) of the output variable Tmax.

From Tab. 6 and Fig. 13, a bias of approximately one degree between
the low fidelity data and the results of the high-fidelity metamodel is clearly
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observed. This is consistent with the observations made in Section 4.2. It tends
to prove that it is possible to capture the high fidelity resolution of mesh R2

using a metamodel evaluated on the original design of experiments P600.

6 Conclusion

This paper studies the situation of a blocked fuel assembly in a PWR transfer
tube. In order to refine results obtained with previous CFD computations,
model inputs’ uncertainties are propagated through the CFD model with a low-
fidelity mesh. This mesh was the only one that ensures a reasonable return
time. This first UQ exercise leads to the conclusion that temperature in the
tube remains far from the defined saturation threshold.

To perform a global convergence study and quantify the error made in this
first part, the initial design of experiments has been reduced using the SPPN
algorithm. The CFD model was then evaluated on those reduced subsets. It
emphasizes a constant bias between the low-fidelity mesh and the higher resolu-
tion meshes, proving that it is not possible to have good confidence in the first
uncertainty propagation study.

In nuclear industrial studies, despite recent progresses both on hardware
(CPU and GPU supercomputer get more powerful each year) and software
(fully operational coupling between code saturne and OpenTURNS), CFD is
a domain where UQ remains highly challenging (mainly due to time cost is-
sues), and then cannot be considered as a standard practice for industrial CFD
applications. In this paper, it has been shown that metamodeling has potential
to overcome this main issue in the near future. Indeed, results in building CPU-
time inexpensive mathematical models (based on CFD computations) to quickly
propagate uncertainty are very encouraging. Regarding the present use case, a
metamodel was built on a high fidelity mesh and model inputs’ uncertainties
were propagated quickly on all points of the initial design of experiments with
success.

Despite this difficulty, attempts to use UQ with CFD become more common
in the literature. For example, a recent work [35] used physic-informed machine
learning to quantify the closure relations of a physical model. Also recently,
Wening et al [36], combined Reynolds Avergage Navier Stokes, Large Eddy
Simulation and Direct Numerical Simulation to produce a mutli-fidelity model
(built with Polynomial Chaos Expansion) and perform UQ on a buoyant flow
in the framework of nuclear safety.

For sampling the two levels CFD models and solving the “optimal” sub-
sample extraction (from a given sample) issue, this paper has shown that using
the support points method is adequate. However, recent works [33, 28] have
shown the efficiency of the kernel herding technique [37], which generalizes the
mathematical concept of support points. Kernel herding is available in a mod-
ule3 of the OpenTURNS UQ platform [30], and then will be tested in future
studies. Another avenue for improvement would be to use co-kriging models

3https://efekhari27.github.io/otkerneldesign/master/index.html
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(see, e.g., [25]) to build the metamodel on the high-fidelity level code runs, by
using all the information on the different low-fidelities code runs. This solu-
tion is known to be more efficient than just metamodeling each fidelity levels
independently to each other.

Appendix A: Support points and SPNN algorithm

The support points approach [27] consists in compacting a continuous probabil-
ity distribution F into a set of representative points, called support points. The
construction of the support points is based on the optimization of the energy
distance which is a particular case of the Maximum Mean Discrepancy criterion.
This criterion provides a distance between F and a uniform distribution (via a
kernel metric) and can be used with a relative good computational efficiency in
high dimension. Let denote x = (x1, . . . , xd) ∈ Rd. The discrete distribution of
Nv support points xNv = (x(i))i=1...Nv

is denoted FNv
and the energy distance

between F and FNv
writes:

d2E(F, FNv ) =
2

Nv

Nv∑
i=1

E∥x(i) − ζ∥ − 1

N2
v

Nv∑
i=1

Nv∑
j=1

E∥x(i) − x(j)∥ − E∥ζ − ζ ′∥ (5)

with ζ, ζ ′ ∼ F and by using the Euclidean norm. The energy distance is always
non-negative and equals zero if the two distributions are the same. The sup-
port points (ξ(i))i=1...Nv

are then defined by minimizing d2E(F, FNv
). Finding

the support points corresponds to solving an optimization problem where F is
empirically known by the sample points. To solve it, the objective function is
approximated by a Monte Carlo estimate giving

(ξ(i))i=1...Nv = arg min
x(1),...,x(Nv)

 2

Nvn

Nv∑
i=1

n∑
k=1

∥x(i) − x′(k)∥ − 1

Nv
2

Nv∑
i=1

Nv∑
j=1

E∥x(i) − x(j)∥


(6)

where (x′(k))k=1...n is the n-size sample from F . This cost function can be
written as a difference of convex functions in xNv and then can be minimized
thanks to efficient optimization algorithms [27]. The examples given by [27]
clearly show that support points distribution are more uniform than the ones
of Monte Carlo and quasi-Monte Carlo samples [17].

In this procedure, the selected points are not extracted from the dataset but
are the “best” points representative of the full dataset distribution. Therefore,
an additional step is required in order to find the Nv representative points
inside the dataset. For each support point, the nearest dataset point is selected.
The whole algorithm is called SPNN (“support points nearest neighbor”). This
algorithm is highly efficient in terms of computational cost, even for large-size
test sample N (up to N = 104) and in high input space dimension d (as large
as d = 500).
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Appendix B: Basics on the Gaussian process meta-
model

Gaussian process modeling [21], also called kriging model, treats a scalar output
variable of a computer code G(x) (x = (x1, . . . , xd) ∈ Rd) as a realization of
a random function Y (x), including a regression part and a centered stochastic
process:

Y (x) = h(x) + Z(x). (7)

We consider n evaluations of the computer code at different inputs’ values;
these n points are called the experimental design and are denoted as Xs =
(x(1), . . . , x(n)). The output values are denoted as Ys = (y(1), . . . , y(n)) with
y(i) = G(x(i)) ∀ i = 1 . . . n. The deterministic function h(x) provides the mean
approximation of the computer code. We can use for example a one-degree
polynomial model:

h(x) = β0 +

d∑
j=1

βjxj , (8)

where β = [β0, . . . , βd]
t is the regression parameter vector. The stochastic part

Z(x) is a Gaussian centered stationary process fully characterized by its covari-
ance function: Cov(Z(x), Z(u)) = σ2Kθ(x− u), where σ2 denotes the variance
of Z, Kθ is the correlation function and θ ∈ Rd is the vector of correlation
hyperparameters. This structure allows to provide interpolation and spatial
correlation properties. Several parametric families of correlation functions can
be chosen [21, 38].

If a new point x∗ = (x∗
1, . . . , x

∗
d) ∈ Rd is considered, we obtain the predictor

and variance formulas for the scalar output Y (x∗):

E[Y (x∗)|Ys] = h(x∗) + k(x∗)tΣ−1
s (Ys − h(Xs)) , (9)

MSE(x∗) = Var[Y (x∗)|Ys] = σ2 − k(x∗)tΣ−1
s k(x∗) , (10)

with
k(x∗) = [Cov(y(1), Y (x∗)), . . . ,Cov(y(n), Y (x∗))]t

= σ2[Kθ(x
(1), x∗), . . . ,Kθ(x

(n), x∗))]t
(11)

and the covariance matrix

Σs = σ2
(
Kθ

(
x(i) − x(j)

))
i=1...n,j=1...n

. (12)

The conditional mean (Eq. (9)) is used as a predictor. The variance formula
(Eq. (10)) corresponds to the mean squared error (MSE) of this predictor and is
also known as the kriging variance. This analytical formula for MSE gives a local
indicator of the prediction accuracy. More generally, Gaussian process model
defines a Gaussian distribution for the output variable at any arbitrary new
point. Regression and correlation parameters β, σ and θ have to be estimated
(see the recent review of [38] describing the various optimization algorithms that
can be used).
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[33] E. Fekhari, B. Iooss, J. Muré, L. Pronzato, and J. Rendas. Model predic-
tivity assessment: incremental test-set selection and accuracy evaluation.
In N. Salvati, C. Perna, S. Marchetti, and R. Chambers, editors, Studies in
Theoretical and Applied Statistics, SIS 2021, Pisa, Italy, June 21-25, pages
315–347. Springer, 2023.

23



[34] L. Pronzato and M-J. Rendas. Validation of machine learning prediction
models. New England Journal of Statistics in Data Science, 1:394–414,
2023.

[35] Yang Liu, Nam Dinh, Xiaodong Sun, and Rui Hu. Uncertainty quantifi-
cation for multiphase computational fluid dynamics closure relations with
a physics-informed bayesian approach. Nuclear Technology, 209(12):2002–
2015, 2023.

[36] Philipp J. Wenig, Stephan Kelm, and Markus Klein. Cfd uncertainty
quantification using stochastic spectral methods—exemplary application
to a buoyancy-driven mixing process. Nuclear Engineering and Design,
409:112317, 2023.

[37] Y. Chen, M. Welling, and A. Smola. Super-samples from kernel herding.
In Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial
Intelligence, pages 109 – 116. AUAI Press, 2010.

[38] A. Marrel and B. Iooss. Probabilistic surrogate modeling by Gaussian
process: A review on recent insights in estimation and validation. Reliability
Engineering & System Safety, 247:110094, 2024.

24


