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Opinion dynamics on signed graphs and graphons:
Beyond the piece-wise constant case

Raoul Prisant, Federica Garin, Paolo Frasca

Abstract— In this paper we make use of graphon theory
to study opinion dynamics on large undirected networks. The
opinion dynamics models that we take into consideration allow
for negative interactions between the individuals, i.e. competing
entities whose opinions can grow apart. We consider both the
repelling model and the opposing model that are studied in the
literature. We define the repelling and the opposing dynamics
on graphons and we show that their initial value problem’s
solutions exist and are unique. We then show that the graphon
dynamics well approximate the dynamics on large graphs that
converge to a graphon. This result applies to large random
graphs that are sampled according to a graphon. All these
facts are illustrated in an extended numerical example.

Index Terms— Graphons; graph Laplacian; opinion dynam-
ics; networks; multi-agent systems

I. INTRODUCTION

For more than a decade, the control community has been
interested in mathematical models of opinion dynamics on
social networks. This body of research has been summarized
by several survey papers [1]–[5]. A key question has been
to determine whether or not in the long run the individuals
in the social network reach a consensus, whereby their
opinions are in agreement [6]. A popular feature of non-
agreement models is the presence of negative, or antag-
onistic, interactions between individuals [3], [7]. Indeed,
negative interactions counter the positive interactions that
are commonplace in social influence models and that lead
individuals to conform with their peers.

Opinion dynamics take place on social networks that can
be very large: therefore, our mathematical methods need
be able to cope with large networks. In this perspective of
scalability, the control community has become interested,
in the last few years, in methods that represent network
dynamics by the evolution of continuous variables [8]–[11].
A useful instrument in this perspective is the theory of graph
limits, and particularly the notion of graphon, which was
developed in the 2000s and is thoroughly presented in [12].
Using graphons to study dynamical systems on networks is
currently a very active area of research [9], [13]–[18].

In this paper we consider opinion dynamics on signed
graphs and we define their graphon counterparts. More pre-
cisely, we consider both the so-called [3] repelling model and
the opposing model, two possible extensions of the classical
French-DeGroot model that allow the agents to have negative
interactions. We give three contributions regarding these

This work has been partly supported by the French National Research
Agency through grant COCOON ANR-22-CE48-0011.

All authors are with Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP,
GIPSA-lab, 38000 Grenoble, France (e-mails: paolo.frasca@gipsa-lab.fr;
federica.garin@inria.fr; raoul.prisant@gipsa-lab.fr).

two dynamics on graphs and graphons. First, we prove the
existence and uniqueness of the solutions to these dynamics
on signed graphons (Theorem 1). Second, we prove sufficient
conditions for the solutions on signed graphs to converge, as
the number of individuals n goes to infinity, to solutions
on signed graphons, as long as the sequence of graphs
converges to a graphon (the convergence error is estimated in
Theorem 2). These sufficient conditions are general enough
to apply to relevant cases, including sequences of random
graphs sampled from piece-wise Lipschitz graphons (our
third contribution, Theorem 3).

Related work: Several papers have considered opinion
dynamics on graphons, related Laplacian-based dynamics
on graphons, or the properties of graphon Laplacians. The
overwhelming majority of works assume nonnegative inter-
actions, including [16], [19]–[21]. Papers [17], [22] contains
a study of graphon opinion dynamics with nonnegative, but
possibly time-varying, interactions. Distributed optimization,
which is closely related to consensus dynamics, is studied
in [18]. Some works have also considered more general non-
linear dynamics on networks. For instance, the well-known
work by Medvedev [23], [24], on which much of our analysis
is based, covers nonlinear dynamics such as the Kuramoto
model of synchronization. In fact, our proof arguments for
Theorems 1 and 2 are adaptations of Medvedev’s [23], in
which we restrict the analysis to linear dynamics and extend
it to signed graphons and sampled graphs.

Signed graphons have been sometimes considered in the
literature [25], but rarely as a dynamical model, even though
the interest of large-scale signed social networks has been
recognized for quite some time [26]. Recently, the paper
[27] has considered the repelling dynamics on signed graphs
and has proved existence of solutions for piece-wise constant
graphons. Our results are more general than the latter as they
cover the opposing dynamics, include explicit approximation
bounds, consider the case of random sampled graphs, and
make weaker assumptions on the regularity of the graphons
(no assumption for Theorem 2 and piece-wise Lipschitz
continuity for Theorem 3).

Outline: In Section II, we recall the relevant models
of opinion dynamics on signed graph and we define their
graphon counterparts. We then prove that the latter have
complete classical solutions from any initial condition. In
Section III, we prove sufficient conditions for the solutions
of the dynamics on graphs of size n to converge, when n→∞,
to solutions of the graphon dynamics. In Section IV we show
that our convergence conditions apply to large random graphs
sampled from signed graphons (so long as the graphon is
Lipschitz). Finally, Section V contains an illustrative example



and Section VI reports some concluding remarks.
Throughout the paper, proofs are omitted due to space

constaints, but can be found in an extended version of this
paper uploaded on ArXiv [28].

II. OPINION DYNAMICS ON GRAPHS AND GRAPHONS

In this section, we recall established models of opinion
dynamics on signed graph and we define their counterparts
on signed graphons. On our way to the latter, we recall the
necessary preliminaries about graphons and about random
graphs sampled from graphons.

A. Opinion dynamics on signed networks

Opinion dynamics study the evolution of the opinions
of interacting individuals [1], [2]. The interaction network
is modeled by an undirected graph G(n), where the nodes
vi represent the individuals and the edges ei j represent an
interaction between vi and v j. In general, a weight matrix A(n)

can be assigned to determine the strength of each connection.
For the scope of this paper, we will take symmetric matrices
A(n) with entries A(n)

i j ∈ {−1,0,1}, where value 1 represents
a positive interaction, the two individuals respect each other
and as such their opinions grow closer, value 0 means lack of
interaction and value −1 represents the interaction between
individuals who dislike each other and whose opinions tend
to diverge.

Two relevant ways of defining an opinion dynamics as-
sociated to such signed graphs have been considered in the
literature [3, Sect. 2.5.2]. The first is the so-called repelling
model, in which the opinion of each node i is modeled as
u(n)i ∈ R, and whose evolution in time is determined by the
differential equationu̇(n)i (t) =

1
n

n

∑
j=1

A(n)
i j (u(n)j (t)−u(n)i (t)),

u(n)i (0) = gi,

(1)

where n is the number of nodes and gi the initial opinion of
node i.

The second is the opposing model, also known as Altafini
model, in which the evolution in time of the opinion is
instead described by the equationu̇(n)i (t) =

1
n
(

n

∑
j=1

A(n)
i j u(n)j (t)−

n

∑
j=1

|Ai j|u(n)i (t)),

u(n)i (0) = gi.

(2)

Following [3], we observe that the positive interactions are
consistent with the classical DeGroot’s rule of social inter-
actions, which postulates that the opinions of trustful social
members are attractive to each other [29]. Along a negative
link, the opposing rule [7] postulates that the interaction
will drive a node state to be attracted by the opposite of its
neighbor’s state; the repelling rule [30] indicates that the two
node states will repel each other instead of being attractive.

B. Graphs and graphons
When studying opinion dynamics on a society scale, the

dimension of the graph becomes too large to deal with. To
approach this problem, we make use of graphons. Through-
out this paper, we will assume graphons to be symmetric
measurable functions W : [0,1]2 → [−1,1]. We shall instead
refer to bounded symmetric measurable functions taking
values in R simply as kernels.

For every kernel W , we can define an integral operator
TW : L2[0,1]→ L2[0,1] by:

(TW f )(x) :=
∫ 1

0
W (x,y) f (y)dy.

Notice that TW1+W2 = TW1 +TW2 for any two kernels W1, W2.
We will equip the space of kernels with the operator norm
defined as

|||TW ||| := sup
∥ f∥2=1

∥TW f∥2.

As a tool to compare graphs of different sizes and
graphons, it is useful to represent a graph as a piece-
wise constant graphon. To do this, we partition the interval
I = [0,1] in n intervals Ii = ( i−1

n , i
n ] for i = 1, . . . ,n, and set

Wn(x,y) =A(n)
i j , for all (x,y)∈ Ii×I j. Informally, we can then

see a graphon as the limit of a sequence of graphs, as for
n → ∞ the interval of length 1

n corresponding to each node
has size that goes to 0, so that [0,1] becomes a continuum
of nodes.

To make this idea precise, in this paper we will use the
distance induced by the operator norm. Hence, we will say
that a sequence of graphs (seen as its associated graphons
Wn) converges to a graphon W if |||TWn −TW ||| goes to zero.
In fact, it turns out that this convergence notion is equivalent
to the notion induced by the more popular cut norm; see [31,
Lemma E.6]. Other (non-equivalent) norms are also used in
the literature, such as the L2 norm ∥Wn −W∥2 that is used
in [23].

C. Sampled graphs
The graph sequences of main interest for this paper are

sequences of sampled graphs. The latter are widely studied
in the literature for graphons with values in [0,1]. For values
in [−1,1], the natural extension is the following [32].

Definition 1 (Sampled signed graphs): Given a graphon
W and a set of points Xi ∈ [0,1] with i = 1, . . . ,n, a sampled
(signed) graph is a random graph with adjacency matrix A(n)

such that
A(n)

i j = sign(W (Xi,X j)) ·ηi j,

where ηi j ∼ Ber(|W (Xi,X j)|) are independent Bernoulli ran-
dom variables, for all i < j.

When we sample from a graphon W with positive values,
we have, for instance, that W (Xi,X j) = 0.5 corresponds to
a 50% chance of edge (i, j) existing (i.e. A(n)

i j = 1). The
definition is then a natural extension to negative values,
where W (Xi,X j) = −0.5 means there is a 50% chance of
a negative edge existing between nodes i and j.

When convenient, with a slight abuse of vocabulary, we
will call ‘graph sampled from the graphon W ’ also the



piece-wise constant graphon Wn(x,y) = ∑i, j A(n)
i j 1Ii(x)1I j(y)

associated with the actual graph.
For the set of points {Xi}, we consider two possible

definitions.
Definition 2 (Latent variables): For each n, consider n

points X1, . . . ,Xn in the interval I, defined as follows:
1) Deterministic latent variables: Xi =

i
n ,

2) Stochastic latent variables: Xi =U(i), where U1, . . . ,Un
are i.i.d. uniform in I and U(1), . . . ,U(n) is the corre-
sponding order statistics.

D. Opinion dynamics on signed graphons
In parallel with the graph case, for the repelling model we

can define the dynamics on the graphon as
∂u
∂ t

(x, t) =
∫

I
W (x,y)(u(y, t)−u(x, t))dy

u(x,0) = g(x),
(3)

where u : [0,1]×R+ → R and g : [0,1] → R is the initial
opinion distribution, whereas for the opposing model, we
can write

∂u
∂ t

(x, t) =
∫

I
W (x,y)u(y, t)dy−

∫
I
|W (x,y)|u(x, t)dy

u(x,0) = g(x).
(4)

Existence and uniqueness of solutions of (3) is given in
[23, Theorem 3.2]; a slight modification of its proof allows
to obtain the same for (4) as well.

Theorem 1 (Existence and uniqueness): Assume that
W ∈ L∞(I2) and g ∈ L∞(I). Then there exists a unique
solution of (3), u ∈ C1(R+;L∞(I)). The same holds
for (4). □

III. CONVERGENCE OF SOLUTIONS

The objective of this section is to compare the solutions
of (1) to the solutions of (3) (and analogously for solutions
of (2) and of (4)) for large values of n. Since these solutions
belong to different spaces, it is necessary to explain how
this comparison will be made. The following lemma is
instrumental to allow for a fair comparison.

Lemma 1 (Graph dynamics as graphon dynamics):
Define Wn(x,y) = ∑i, j A(n)

i j 1Ii(x)1I j(y), gn(x) = ∑
n
i=1 gi1Ii(x),

and un(x, t) = ∑
n
i=1 u(n)i (t)1Ii(x), where Ii = ( i−1

n , i
n ],

1Ii(x) = 1 if x ∈ Ii and 0 otherwise.
If u(n)(t) is solution of (1), then un(x, t) is solution of{

∂un
∂ t (x, t) =

∫
I Wn(x,y)(un(y, t)−un(x, t))dy

un(x,0) = gn(x).
(5)

Analogously, if u(n)(t) is solution of (2), then un(x, t) is
solution of

∂un

∂ t
(x, t) =

∫
I
Wn(x,y)un(y, t)dy−

∫
I
|Wn(x,y)|un(x, t)dy

un(x,0) = gn(x).
(6)
□

Notice that (5) and (6) are particular cases of (3) and (4),
respectively, where the graphon W and the initial condition

g are piece-wise constant. Hence, Theorem 1 on existence
and uniqueness of classical solutions applies to (5) and (6)
as well. This implies that (1) and (2) respectively have the
equivalent formulations (5) and (6) which use graphons, so
that we can now directly compare u(x, t) and un(x, t). We are
now ready to state the main result of this section. We will
use the notation ∥(u− un)(·, t)∥2 for the L2 norm of u− un
in the x variable only.

Theorem 2 (Convergence error estimate): Consider W :
I2 → [−1,1] symmetric and measurable, g ∈ L∞(I), Wn and
gn as in Lemma 1.

If un and u are solutions of (5) and (3), respectively, then
for all t ∈ [0,T ]

∥(u−un)(·, t)∥2
2 ≤ (∥g−gn∥2 +Cu|||TW −TWn |||)exp(2T ),

where Cu = esssup
t∈[0,T ],x∈I

|u(x, t)| (which is finite by Theorem 1).

If un and u are solutions of (6) and (4), respectively, then
for all t ∈ [0,T ]

∥(u−un)(·, t)∥2
2 ≤[

∥g−gn∥2 +Cu

(∣∣∣∣∣∣∣∣∣TW+ −TW+
n

∣∣∣∣∣∣∣∣∣+∣∣∣∣∣∣∣∣∣TW− −TW−
n

∣∣∣∣∣∣∣∣∣)]exp(4T ),

where W =W+−W− denotes the decomposition of W in its
positive part W+ = max(W,0) and its negative part W− =
max(−W,0). □

Theorem 2 implies that, so long as the initial conditions
converge and the finite graphs converge to the graphon, the
dynamics on the finite graphs converge to the dynamics on
the graphon, in the sense that solutions converge on bounded
intervals.

Remark 1 (Choice of the convergence norm): The proof
of convergence as n goes to infinity is based on adapting
arguments from [23]. Other than some extra terms involved
in the opposing Laplacian, the main differences with [23]
are that we restrict ourselves to linear dynamics and that we
obtain a stronger upper bound, which involves |||TW−Wn |||,
whereas [23] considers ∥W −Wn∥2. Having the operator
norm is essential to apply the result to sampled graphs, for
which |||TW−Wn ||| vanishes for large n under mild assumptions,
while this is not the case for ∥W −Wn∥2. □

IV. CONVERGENCE OF SOLUTIONS FOR SAMPLED
GRAPHS

In this section, we apply Theorem 2 to prove that solutions
to opinion dynamics on large graphs that are sampled from
graphons are well approximated by solutions to opinion
dynamics on graphons, over finite time horizons.

In order to have convergence of the solutions of the
two different dynamics, we need to have compatible initial
conditions. Given the initial condition g(x) for the dynamics
on the graphon, we choose to define the initial condition of
the dynamics on the sampled graph gn(x) as a piece-wise
constant function by assigning the value g(Xi) to the entire
interval Ii. With this choice of gn(x), we have that the term
∥gn −g∥2 present in Theorem 2 goes to 0 as n increases.

Proposition 1 (Convergence of sampled initial conditions):
Given g : I → R bounded and almost everywhere
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Fig. 1. The graphon used in the simulations.

continuous, and given X1, . . . ,Xn ∈ I, define the piece-
wise constant function gn(x) = g(Xi) for all x ∈ Ii.
If X1, . . . ,Xn are deterministic latent variables, then
limn→∞ ∥gn − g∥2 = 0. If X1, . . . ,Xn are stochastic latent
variables, then limn→∞ ∥gn −g∥2 = 0 almost surely. □

To show that the second terms of the right-hand sides of
the bounds in Theorem 2 go to 0, we have the following
proposition, where for simplicity we assume that the graphon
is piece-wise Lipschitz [13, Assumption 1].

Proposition 2 (Convergence of sampled graphs): If W :
[0,1]→ [−1,1] is a piece-wise Lipschitz graphon and Wn is a
graph sampled from W with either deterministic or stochastic
latent variables Xi, then almost surely |||TWn −TW ||| → 0,∣∣∣∣∣∣∣∣∣TW+

n
−TW+

∣∣∣∣∣∣∣∣∣→ 0 and
∣∣∣∣∣∣∣∣∣TW−

n
−TW−

∣∣∣∣∣∣∣∣∣→ 0 for n → ∞. □

Propositions 1 and 2 show that, under the given assump-
tions, all the norms in the right-hand sides of the bounds in
Theorem 2 go to 0, which proves the following theorem.

Theorem 3 (Convergence of solutions on sampled graphs):
Let W : [0,1] → [−1,1] be piece-wise Lipschitz and let u
be a solution to (3) (respectively, to (4)). For each n ∈ N,
consider deterministic or stochastic latent variables as in
Definition 2 and let Wn be a graph of size n, sampled
from W as per Definition 1, and un be the solution to (1)
(respectively, to (2)). Assume that the initial conditions
satisfy the assumptions of Proposition 1. Then, for any fixed
T > 0, for n → ∞,

max
t∈[0,T ]

∥un(·, t)−u(·, t)∥2 → 0 a.s.

□

V. SIMULATIONS

In this section we investigate through simulations an
example of graphon dynamics. We take inspiration from [27],
where the authors assume the network to be a stochastic
block model describing the interactions between three com-
munities, which can be thought of as left, center and right
parties.

In a stochastic block model, the interaction rate between
community i and community j is a constant ai j, so that
the model can be represented by a matrix A = {ai j} or
equivalently by a piece-wise constant graphon W (x,y) =

∑i, j ai j1Ci(x)1C j(y), where
⊔

i Ci = [0,1]. In the case consid-
ered there are three communities, consequently C1 = [0, 1

3 ],
C2 = ( 1

3 ,
2
3 ] and C3 = ( 2

3 ,1]. The idea at the base of the model
is to have positive interactions within each community, but
negative interactions between left and right parties, while the
center mediates and has positive interactions with everyone.
To account for diversity inside a specific community we
change the piece-wise constant graphon into a piece-wise
linear graphon. This flexibility allows us, for instance, to
distinguish between an extremist (i.e. x ∈ [0,ε] or x ∈ [1−
ε,1] for a small ε > 0), which will take into consideration
mostly the opinion of its own party, and someone more
moderate (x ∈ [ 1

3 − ε, 1
3 ] or x ∈ [ 2

3 ,
2
3 + ε]), which will value

the opinion of the center party more, and reject the opposing
party’s opinions less strongly. Similarly, a member of the
centre-left will listen to the left party more than the right
party, and vice versa for centre-right.

Let us consider C1, C2 and C3 respectively as left, center
and right party. On each set Ci ×C j we define a plane
according to the following rationale:

1) for (x,y) ∈ C1 ×C1, we consider the interaction to
be stronger between the extremists, diminishing as x
and/or y grow,

2) for (x,y)∈C1×C2, the strongest interaction is between
moderate left members and centre-left, and decreases
as x becomes more extreme or y grows towards centre-
right,

3) for (x,y) ∈C1 ×C3, the interaction is negative, greater
in absolute value when both x and y are extremists,
and more contained when both are moderate,

4) for (x,y) ∈C2 ×C2, is a constant.
The graphon on the remaining sets can be obtained by sym-
metry, resulting in the graphon in Fig. 1. For our simulations,
we will simulate the dynamics on this graphon and on graphs
sampled from it with deterministic latent variables.

The results for the repelling dynamics are shown in
Fig. 2. We can see that, for the chosen parameters, the three
communities’ opinions diverge and communities clearly sep-
arate. However, when this happens, the opinions within each
community do not collapse on the community barycenter,
like it happens for the piece-wise constant case (see [27,
Sect. 3.1] for a detailed example): instead, opinions are more
spread out, covering a wider range of values.

The results for the opposing dynamics are shown in Fig. 3.
Consistently with well-known results for finite graphs [7], the
dynamics converges to 0 because the graphon that we have
chosen describes a social network that is not structurally
balanced: in fact, there are negative interactions between
left and right, but the center has positive interactions with
everyone.

Another aspect worth pointing out is the difference
between the solutions of the dynamics with graphs and
graphons, shown in Fig. 4. Consistently with the theoretical
results, the error decreases as n grows for both dynamics. As
per the dependence on t, the bound from Theorem 2 allows
for the error to grow with time: this growth can indeed be
observed for the repelling dynamics and, at least during a
transient period, also for the opposing dynamics.
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VI. CONCLUSION

In this paper we considered two models of opinion dy-
namics with antagonistic interactions (the repelling and the
opposing model), and we extended them to graphons. We
have shown existence and uniqueness of solutions and stated
bounds on the error between graph and graphon solutions.
We then showed that these bounds go to zero if we take a
sequence of graphs sampled from a graphon, as the number
of nodes goes to infinity.

These results prove graphons to be a helpful tool to
handle large networks with antagonistic interactions, as we
have shown how dynamics on the graphon well approximate

their finite dimension respective versions. Future work is
aimed at understanding the general properties of the graphon
dynamics itself, such as its steady states and behaviour as
time goes to infinity.
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