

Analyse statistique des données écologiques. Programmes réalisables sur calculatrices H.P 67/97

Frédéric Lardeux

▶ To cite this version:

Frédéric Lardeux. Analyse statistique des données écologiques. Programmes réalisables sur calculatrices H.P 67/97. ORSTOM-Bouaké n°46, IRD - Institut de recherche pour le developpement. 1982, pp.61. hal-04694397

HAL Id: hal-04694397 https://hal.science/hal-04694397v1

Submitted on 11 Sep 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ORGANISATION MONDIALE DE LA SANTE L'ONCHOCERCOSE

RAPPORT ORSTOM N 46
DATE DE PARUTION
15 JANVIER 1982

ANALYSE STATISTIQUE DES DONNEES ÉCOLOGIQUES

PROGRAMMES RÉALISABLES SUR CALCULATRICES H.P. 67/97

F. LARDEUX

OFFICE DE LA RECHERCHE SCIENTIFIQUE ET TECHNIQUE OUTRE-MER

CENTRE ORSTOM DE BOUAKÉ - Côte d'Ivoire B.P. 1434 - BOUAKÉ 01

ANALYSE STATISTIQUE DES DONNEES ECOLOGIQUES PROGRAMMES REALISABLES SUR CALCULATRICES HEWLETT-PACKARD H.P. 67/97

par

F. LARDEUX

SOMMAIRE ...

1. TESTS STATISTIQUES PARAMETRIQUES - ESTIMATION - page 1

The state 🍝 the group of growth for the productions

- 1.1. Sécurité d'une moyenne Comparaison de 2 moyennes page 1
 - 1.1.1. Cas où la valeur exacte de l'écart type est connue (ou bien n > 30) page 1
 - 1.1.2. Cas où l'écart type n'est connu que par estimation (ou bien n <- 30) page 7
- 1.2. Comparaison de 2 pour centages observés dans le cas de petits échantillons (tableau 2 x 2 avec au moins un effectuf faible : test exact de Fisher). _ page 8
- 1.3. Tableau de contingence 2 x 2 avec correction de Yates. page 10

- 1.4. Tableau de contingence k x 1 (kmax = 9 ; 1 max = 9) page 12
- 2. TESTS STATISTIQUES NON PARAMETRIQUES page 14
 - 2.1. Test de Mann Whitney page 14
 - 2.2. Test de Kruskal Wallis page 15
 - 2.3. Coefficient de corrélation des rangs de Kendall. page 15
- 3. ADEQUATION A DES DISTRIBUTIONS THEORIQUES page 17
 - 3.1. Test d'adéquation à une loi normale page 18
 - 3.2. Calcul des fréquences théoriques d'une variable observée suivant une loi normale page 18
 - 3.3. Test d'adéquation à une loi de poisson page 19
 - 3.4. Test d'adéquation à une loi binominale négative page 20
 3.4.1. n < 50 il existe des échantillons vides page 21
 3.4.2. n < 50 il n'existe pas d'échantillons vides page 21
 3.4.3. n quelconque : test du X² page 24

- 4. PROGRAMMES DE REGRESSION page 26
 - 4.1. Regression linéaire Y = a + bx et log Y = a + bx page 26
 - 4.2. Test d'identité de 2 modèles linéaires simples. page 29
- 5. MODELISATION : ANALYSE DE LA VARIANCE page 31
 - 5.1. Test du chi-deux de Bartlett (homogéneité des variances) page 31
 - 5.2. Analyse de la variance à une voie page 33
 - 5.3. Analyse de la variance à deux entrées page 35
 - 5.4. Plan factorial disposé en blocs page 36
 - 5.5. Dispositif d'analyse de variance en carré Latin page 39
- 6. PROGRAMMES SIMPLES D'ESTIMATIONS DE PARAMETRES DE POPULATION page 41
 - 6.1. Estimation de la taille d'une population fermée par marquage et recapture unique (méthode de Petersen). page 41
 - 6.2. Estimation de la taille d'une population fermée par marquage et recaptures échelonnées (méthode de Paloheimo). page 43

n de la companya de Bangangan de la companya de la comp

and the second of the second o

The second of th

Not the state of t

and the second of the second o

and the second of the second o

The Book Committee of the Committee of t

7. SERIES DE FOURIER - page 44

- AVANT PROPOS -

Ce document, qui se veut tout d'abord pratique, présente une série de programmes d'analyse de données fréquemment utilisés par les écologistes.

Nullement exhaustif, ce recueil n'est qu'un simple complément aux "bibliothèques mathématiques et statistiques" éditées par les constructeurs de calculatrices.

Les programmes proposés, utilisables sur HP 67/97, ne sont ni synthétiques, ni optimaux : ils suivent pas à pas les instructions logiques décrites dans les brefs rappels théoriques, statistiques et mathématiques, précédant les modes d'emploi et les exemples d'application. Les listings des divers programmes sont donnés en fin du document. Il est donc très facile de modifier, d'améliorer, voir de transcrire sur des calculatrices plus puissantes (HP 41....) l'ensemble de ces programmes.

Les rappels théoriques ne sont que des formulaires peu développés qui n'excluent pas un approfondissement ultérieur des méthodes employées.

- 1. TESTS STATISTIQUES PARAMETRIQUES ESTIMATIONS
 - 1.1. Sécurité d'une moyenne Comparaison de deux moyennes

Introduction

Une moyenne expérimentale m obtenue sur un échantillon diffère de la moyenne u de la population qu'elle cherche à traduire, par une erreur d'échantillonnage que l'on cherche à déterminer.

De même, lorsque l'on compare deux moyennes expérimentales m1 et m2, on cherche à estimer dans quelle mesure leur différence a été affectée par les erreurs d'échantillonnage.

Deux cas sont à considérer selon la manière dont on connait l'écart-type de chaque population : par sa vraie valeur (ou quand les échantillons sont grands : n 30) ou par seulement une estimation à partir de l'échantillon considéré (ou quand n 30).

1.1.1. Cas où la valeur exacte de l'écart-type est connue

Par exemple, lorsque l'on connait déjà la loi de distribution ou lorsque la taille des échantillons est suffisamment grande (par ex.: n > 30) pour que l'on puisse confondre l'écart type et son estimation.

Pour comparer une moyenne m observée sur un échantillon de taille n à une valeur théorique u, on calcule le rapport $\frac{m-n}{s}$ (s = écart type de l'échantillon). Cette expression fluctue, sous l'hypothèse nulle (m = n), selon une loi normale réduite () l'intervalle de confiance est donc déterminé par

$$u = m + \varepsilon$$
 au seuil de probablité choisi.

Pour comparer deux moyennes expérimentales m1 et m2 observées, on calcule l'expression

qui, sous l'hypothèse nulle m1 = m2 (c.a.d.: la population parente est unique) fluctue selon une loi normale réduite. Sous cette hypothèse on a donc aussi l'égalité des écrats-types pour les deux échantillons (soit or cet écart-type). on a donc

$$\frac{m2 - m1}{\sqrt{\frac{1}{n1} + \frac{1}{n2}}}$$

. avec

$$\sqrt{\frac{(n1-1) s_1^2 + (n2-1) s_2^2}{n1 + n2 - 2}}$$

E suivant une loi normale réduite, il suffit de comparer sa valeur calculée à celle des tables statistiques, au seuil de probabilité que l'on s'est fixé. La plus petite différence significative est alors :

PPDS =
$$\frac{2}{\sqrt{1+1}}$$

au seuil & choisit (Exest lu dans la table).

Mode d'emploi du programme PGR 1

I _{N°}	THEMOLOGICAN	DONNEE	TOUCHE	RESULTAT
IN	INSTRUCTION	I DONN EE	TOUCHE	RESULTAT
1	Charger le programme	<u>.</u>	1	1
2	Initialisation - mise à zéro	! !	l D	0.00
1 3	Si on no connait pas m1, 0 1, et n1; m2, 0 2 et n2 aller en 4 - sinon en 10	 	I I I:	I I I 200
! 4 !	Introduire les valeurs xi observées du ler échantillon	! ! xi !	I I A I 12	l l i l
! ! 5 !	Introduire les valeurs yi observées du 2è échantillon	l İy <u>l</u> ikki İve	! ! B	! !
6	Test: introduire la valeur λ telle que l'on veuille m1-m2 = λ (λ = 0 si on teste m1 = m2)	Ι λ	i C i C i	1 1 1 1
1 7 1 1 1	Intervalle de confiance de m1 (IC)		f.a.	m1 (1 IC(0.05) IC(0.01)
8	Intervalle de confiance de m2		f.b.	m2 1 2 1 (0.05) 1 (0.01)
9	Autres paramètres : s d'une population unique, ¿ correspondant, PPDS à 0.05 et PPDS à 0.01		f.c.	s C PPDS 5 % PPDS 1 %
10	Introduire m1, 1, n1	m1 1 n1	个 正	
111	Introduire m2, 52, n2	m2 2 n2	↑ / f•e•	
12	Les autres touches : D, C, a, b, c restent fonctionnelles pour les tests			

Exemple: n1 = 160 m1 = 29.1 $\frac{2}{1} = 25.3$ n2 = 160 m2 = 30.6 $\frac{2}{0.2} = 25.6$

pour tester si m1 = m2, on trouve ξ = 2.67

Listing PGR 1 : voir page 49

1.1.2. Cas où l'écart-type n'est connu que par son estimation

Théorie

Lorsque l'écart-type de la population n'est connu que par l'estimation donnée par l'échantillon lui-même (ce qui est le cas par exemple lorsque n < 30), les méthodes précédentes s'appliquent sous réserve que la population parente soit normale. É ne suit alors plus de loi normale mais une loi t de Student. Soit deux échantillons (n1, m1, s1) et n2, m2, s2) dont on se demande s'ils appartiennent ou non à la même population, autrement dit si la différence (m2 - m1) est due à l'échantillonnage ou si elle est significative.

- Cas où les variances peuvent être considérées comme égales (test $\mathbf{r} = \frac{1}{\sqrt{2}}$) soit alors s l'estimation commune de l'écart-type :

$$s = \frac{(n1 - 1) s_1^2 + (n2 - 1) s_2^2}{n1 + n2 - 2}$$
sous Ho: $n = \frac{n}{n}$

$$t = \frac{(m2 - n1) - (n2 - n1)}{s\sqrt{\frac{1}{n1} + \frac{1}{n2}}} = \frac{m2 - m1}{\sqrt{\frac{1}{n1} + \frac{1}{n2}}}$$

si m1 et M2 suivent une loi normale, alors t suit une loi de Student à v = n1 + n2 - 2 degrés de liberté.

- Cas où les variances ne peuvent pas être considérées comme égales

t est encore applicable approximativement à la condition de prendre comme ddl $v = \frac{1}{\frac{u^2}{n-1}} + \frac{(1-u)^2}{n2-1}$

avec u =
$$\frac{s_1^2/n1}{s_1^2/n1 + s_2^2/n2}$$

et t vaut alors
$$\frac{\boxed{m2 - m1}}{\sqrt{\frac{s_1^2 + s_2^2}{n1 - n2}}}$$

Mode d'emploi du programme : PGR 2

	<u> </u>			
I _{No}	INSTRUCTION	DONNEE	TOUCHE	RESULTAT
1 1	Charger le programme		1 1	
2	Initialisation - mise à zéro		f.a.	0.00
3	Si on ne connait pas les mi, si et ni, aller en 4 sinon aller en 9			
1 4 1 1	Introduire les données xi du 1er échan tillon	 x1. 	A	i
1 5 1 5 1	Introduire les données yi du 2è échan- tillon	i Lyi	В	i
6	Test F pour savoir si J1 = J2		C	F
1 7 1 1 1	Si F significatif: introduire λ tel que l'on veuille m1 - m2 = λ (λ = 0 pour m1 = m2)	λ	D R/S	ddl t
8	Si F non significatif : introduire λ	λ	f.d. R/S	ddl t
9	Introduire m1, 51, n1	m1 971 n1	个 个 E	ddl puis t
10	Introduire m2, \(\mathbb{T}\)2, n2	m2 7 2 n2	f.e.	ddl puis t
11	Aller en 6 pour les divers tests		1	

Exemple: n1 = 9 m1 = 2.85 s1 = 0.32n2 = 8 m2 = 3.12 s2 = 0.40

pour tester si m1 = m2, on trouve t = 1,55 avec 15 ddl.

Listing PGR 2: voir page 48

1.2. Comparaison de deux pourcentages observés (tableau 2 x 2) dans le cas d'effectifs théoriques faibles.

Pour que les tests de χ^2 sur les tableaux de contingence soient valides, il faut que les effectifs théoriques dépassent 10, ou la rigueur 5. Lorsque ces conditions ne sont pas remplies, on peut, si le nombre de degrés de liberté est suffisant, procéder à des regroupements logiques (voir \$\frac{1.4}{2}\$, modifiant en cela quelque peu le problème posé, ou bien, si le nombre de degrés de liberté est égal à 1 et les effectifs théoriques supérieur à 3 ou à la rigueur 2, effectuer la correction de YATES qui consiste à diminuer la valeur absolue de (01 - C1) (voir \(\frac{1}{2} \) suivant : 1.3). Si les effectifs théoriques sont encore plus petits, il faut recourir à l'utilisation des lois exactes de fluctuation. C'est ce que nous allons faire dans ce paragraphe.

On calcule donc, dans l'hypothèse de liaison des 2 caractères la probabilité d'obtenir entre les deux groupes une différence supérieure ou égale à celle qu'on a observé. Si cette probabilité est trop faible, on rejette l'hypothèse HO de liaison : la différenc est significative.

Pour cela, on constitue, outre la configuration de départ (celle observée), toutes les autres qui correspondent à des écarts supérieurs entre les deux séries. A cet effet, on part du plus petit des effectifs inférieurs à la valeur calculée et on le fait décroitre unité par unité jusqu'à zéro en maintenant constants les totaux des lignes et des colonnes. On calcule la somme p des probabilités pi de ces configurations. Si $2p \leq 5\%$, la différence est significative et 2p fixe le degré de signification. Pour une configuration telle que

	A B C C LICE CONTROL OF THE CONTROL	,
	a b l	
	c d d 22	
•	C1 C2 N	
on montre que pi =	1 ₁ 1 ₂ C1 C2	
on monte que pr	a b c d N	

₩SAC v. v.		

Mode d'emploi du programme : PGR 3

	ALCOHOL MANAGEMENT OF THE STREET			
Ио	INSTRUCTION	DONNEE	TOUCHE	RESULTAT
1	Charger le programme	l	l. 1	
2	Initialisation - mise à zéro	! !	! E	0.00
3	Introduire a (le plus petit des chif- fres du tableau 2 x 2)	[[[1 1 1	
	b C	a b		
	d	l c l d	I ↑	
4	Résultats		Pause Pause	p1 ,p2 pn p =∑pi

2p < 5 %; la différence est significative entre les 2 séries.
(17,4) et (18,1)

Listing du programme PGR 3 : voir page 49

1.3. Tableau de contingence 2 x 2 avec correction de Yates

Théorie

Soit un tableau de contingence entre les caractères A, A, B, B, B.

	1 A 1 A.	1	
В	11 111	n ₁	•
В	i ₂ i' ₂	n _{2.}	•
	i n i n'	N N	

Dans le cas de petits échantillons, lorsque les effectifs sont faibles (en particulier lorsque l'effectif théorique calculé c est inférieur à 5), le calcul du $\frac{2}{2} = \frac{(i-c)^2}{c}$ est biaisé, surtout lorsque le nombre de degrés de liberté vaut 1 (c'est le cas dans un tableau 2 x 2). Yates a montré qu'on réduisait l'erreur commise dans ce cas précis en diminuant la valeur absolue de chaque écart i-c d'une demi-unité. Le $\frac{2}{c}$ corrigé devient donc

$$y' = \sum_{c} (\underbrace{i-c}_{c} - 0.5)^{2}$$
est alors:

la formule de calcul est alors :

$$\chi^{2} = \frac{N}{n^{1}n^{2} n^{1}} (i_{1} i_{2} - i_{2} i_{1} - \frac{N}{2})^{2}$$

Il n'y aurait aucun inconvénient à effectuer la correction de continuité de Yates lorsque les effectifs sont grands et on peut l'introduire systématiquement. Par contre, il est hors de question de l'utiliser quand ddl 1 (tableaux de contingence autres que 2 x 2) car elle n'est applicable que par suite de la forme très particulière de la loi du chi-deux lorsque ddl = 1

Mode d'emploi du programme PGR 4

I _{N°}	INSTRUCTION	DONNEE	TOUCHE	RESULTAT
1 1	Introduire le programme	! !	1	
2	Mise à zéro des registres	1	1 1 E	
3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Introduire i 1 i 2 i 2	i i i i i i i i i i i i i i i i i i i	1 1 1 1 1 A	
4	Résultat	! !	!	χ² (1)
5	Pour un autre cas, aller en 2	! !	!	

Exemple.
$$\frac{10 \ 5}{15 \ 3}$$
 = 2.31

Listing PRG 4: voir page 50

1.4. Tableau de contingence $k \times l$ (kmax = 9, lmax = 9)

Théorie

On considère k catégories et l séries. Il s'agit d'apprécier si ces séries peuvent être considérées ou non comme des échantillons d'une même population (test d'homogénéité), soit si les caractères qui les définissent sont indépendants de ceux qui définissent les catégories (test d'indépendance). On dresse un tableau de contingence k x l (k colonnes, l lignes) de la forme suivante :

	i x ₁ xi xk	effect i f marginal lignes
A state of		· · · · · ·
y1	i n ₁₁ ····· n _{i1} ···· nk ₁	n.1
λì	i n1j nij nkj	n.j
y.1	! n1l nil nkl	n•1
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
effectif marginal colonnes	! ! n1 ni nk.	n. Total

les effectifs théoriques du tableau sont Cij = $\frac{\text{ni.} \times \text{n.j.}}{\text{n..}}$

on calcule le $\chi^2 = \frac{(\text{nij} - \text{Cij})^2}{\text{Cij}}$ qui a v = (k - 1) (l - 1) degrés de liberté, sous réserve que les effectifs soient suffisants (Cij>5). Dans le cas contraire, on peut procéder à des regroupements logiques de catégories afin d'amener les Cij à un niveau convenable (>5 au moins)

Mode d'emploi du programme PGR 5

No	INSTRUCTION	DONNEE	TOUCHE	RESULTAT
1 1	Introduire le programme	<u>!</u> !	! !	
2	Mise à zéro des registres	! !	f.e.	0.00
3:	Introduire k (nb. de colonnes)	k	1	
!!	l (nb. de lignes)	1 1	! !	0.00.0
1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<pre>Introduire l'effectif marginal de chaque ligne n.j pour j = 1, l (quand 1.00 apparait à l'affichage, introduire l'effectif marginal des colonnes ni.)</pre>	n.j	I A	n.j
5	Introduire ni. pour i = 1, k quand ni k est introduit, il s'affi-che le total n	l ni l	В !	ni n
6	<pre>Introduire les nij pour i = 1, k et 1, k (c.a.d. ligne par ligne)</pre>	nij	C R/S R/S	Cij V ² partiel nij
7	En fin des introductions faire		R/S R/S	dd1 2 2
8	Pour un autre cas, aller en 2		!	
Exemp	le:		· ·	

$$\chi^2 = 53.7$$
 avec 6 ddl

Listing PRR 5: voir page 50

2. TESTS STATISTIQUES NON PARAMETRIQUES

2.1. Test de Mann - Whitney

Théorie

On dispose de deux échantillons indépendants de tailles n1 et n2 égales ou non. La statistique U sert pour tester l'hypothèse nulle Ho : les deux populations sont identiques

on a
$$U = n1 \ n2 + \frac{n1 \ (n1+1)}{2} - \sum_{i=1}^{n1} Ri$$

où Ri (i = 1,...n1) représente les rangs attribués à un des deux échantillons lorsque tous les élements des deux échantillons sont groupés en une seule suite unique et classés par ordre de rang croissant.

En cas d'ex-aequo sur les rangs, il suffit d'attribuer à chaque ex-aequo la moyenne de leurs rangs.

Exemple:	- échantillon 1	1	a	3	4	:5
	rangs	1	2	3.5	5	6.
	- échantillon 2	. 6.1	8 :	-	3	9
	- rangs	7	9	8	3.5	10

- si n1 et n2 sont petits (< 8) le test de Mann-Whitney se fonde sur une distribution exacte de U et sur des tables spéciales. (p. 61).
- si n1 et n2 sont tous les 2 grands (>8), on a

$$z = \frac{U - \frac{n1n2}{2}}{\sqrt{n1n2 (n1+n2+1) / 12}}$$

And the second of the second o

qui est distribué approximativement suivant une loi normale réduite.

Mode d'emploi du programme PGR 6

1	Иo	INSTRUCTION	DONNEE	TOUCHE	RESULTAT
1	1 :	Charger le programme		112472	
1	2	Initialisation	!	E	0.00
1	3	Introduire les rangs du 1e échan. : Ri	R i	A:	
1	4	Introduire les tailles ni et n2	n1	1	
1	!		n2	В	υ
1			<u> </u>	R/S	Z
1	5	Pour un autre cas, aller en 2			

电电子控制 医二甲酚 化二甲基二氯酚磺二甲基二甲基邻亚

£χ	em	p1	е	•

			- ,			•		-			
	1								. 1	٠	ī. ;
éch. 1	14.9	111.3	13.2	16.6	! 17	114.1	115.4	1 13	16.9	1	
rangs	1 7	! ! 1	1 4	1 12	1 1 14	1 5	10	1 -3-	1 13	1	٠
	1										
éch. 2	15.2	19.8	14.7	18.3	16.2	21.2	18.9	12.2	15.3	19.4	1
rangs	8	1 18	1 6	I I 15	1 11	1 19	1 16 1	2	9	17	"! !
	•	71		:				· (C-	i jedin		
	· · · · · · · · · · · · · · · · · · ·	n1 = 3	9 n2	= 10	υ = °	66.00	. z =	1.71			
	•		iii							:	

Listing PGR 6: voir page 50

2.2. Test de Kruskal-Wallis

Théorie

Ce test permet de comparer plus de deux échantillons en testant l'hypothèse nulle Ho que k échantillons aléatoires indépendants de dimensions n1, n2nk proviennent de la même population.

Pour ce faire, on ordonne toutes les valeurs des k échantillons ensemble, comme si ils formaient un seul échantillon, suivant un ordre croissant (les ex-aeques ont la moyenne des rangs).

soit Rij (i = 1,2 k ; j = 1,2 ni) le rang de la j^e valeur \mathfrak{A} ans le $\mathfrak{1}^{\Theta}$ échantillon

le test H de Kruskal-Wallis peut être utilisé pour tester Ho. on a :

$$H = \frac{12}{N (N+1)} \sum_{i=1}^{k} \frac{\binom{ni}{j=1} Rij}{2} - 3 (N+1)$$

$$\sum_{i=1}^{k} ni$$

Lorsque les dimensions de tous les échantillons sont grandes (>5), H est distribué approximativement suivant une loi de χ^2 avec k - 1 degrés de liberté. Pour les petits échantillons, le test est basé sur une table spéciale.

Mode d'emploi du programme : PGR 7

I _{No}	THERMINETEN	DONALD	Bortaira	DEGITE MAD
1 1	INSTRUCTION	DONNEE	LOUCHE	RESULTAT
1	Charger le programme			
2	Initialiser		E	0.00
3	Effectuer pour i = 1, k			
1	pour j = 1 nj	R i j	A	j
! !	qd j = nj, on remet les compteurs à zéro pour une autre série i par :	! ! !	В	0.00
4	Calcul de H	! !	Ç 🖂	Н

H = 9.83

2.3. Coefficient de corrélation des rangs de Kendall

Théorie

Supposons que n individus soient classés de 1 à n par k observateurs selon un critère.

Le coefficient W de corrélation de Kendall mesure l'accord des observateurs sur les rangs attribués (ou la corrélation des rangs)

$$W = \frac{12^{\sum_{i=1}^{n} (\sum_{j=1}^{k} Rij)^{2}}}{k^{2} n (n^{2} - 1)} = \frac{3 (n+1)}{n-1}$$

W varie de méro (pas de préférence commune) à 1 (accord parfait).

On peut tester l'hypothèse nulle que les observateurs n'ont aucune préférence commune à l'aide de tables spéciales; ou bien si n > 7 en calculant $\chi^2 = k$ (n-1) W qui suit approximativement une distribution de χ^2 à n-1 ddl.

Mode d'emploi du programme : PGR 8

				•
Ио	INSTRUCTION	DONNEE	TOUCHE.	RESULTAT
1	Introduire le programme	1		
.2	Initialiser	1	E	0.00
3	Introduire. xij pour i = 1 n j = 1 k	i i xij	C	j
	qd j=k, on remet les compteurs à zéro en appuyant sur f.c	1 1 :	f.c	0.00
4	Calcul de W	I I I	D R/S R/S	y ^W 2 ddl

Exemple:	i j	1 1	2	: 1 .3			"
	1 2	6	7	3			
105E, 1	3. 4	9 2	3 6 8	5 5 1		;	0.69
	6 7	3 5	2 9	6 8	χ^2		18.64
18 C.	8 9 10	8 7	1 10 5	4 10 7	ddl	¥	9 .

Linsting PGR 8: voir page 51

3. ADEQUATION A DES DISTRIBUTIONS THEORIQUES

3.1. Test d'adéquation à une loi normale

Théorie

Ce programme teste l'ajustament d'une série de données à une loi normale par un test du χ^2 ; il faut que N (nombre total de données) soit supérieur ou égal à 50 pour que le calcul du χ^2 soit justifié.

On choisit alors toutes les classes des probabilités égales pi et telles que l'on ait un effectif raisonnable pour chacune d'elles.

On découpe alors une distribution normale en 10 parties égales, les limites des 10 classes étant données par x = u + TX avec pour X les valeurs - 1.28; - 0.84; - 0.523; - 0.253; 0 et leurs symétriques. On estime u par m et T par s (échantillon). On obtient ainsi les limites des classes de la distribution, à l'intérieur desquelles on a c = Npi

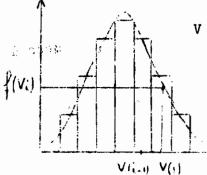
d'où
$$\chi^2 = \frac{(o-c)^2}{c} = \frac{1}{c} \sum (o-c)^2$$

avec N - 3 ddl

Mode d'emploi du programme PGR 9

	to the second second second second second second second second second second second second second second second		••	
Ис	INSTRUCTION	DONNEE	TOUCHE	RESULTAT
1	Introduire le programme	[]	l	
2	Initialiser	!	E	0.00
3	Introduire l'effectif de l'échant la moyenne l'écart type	• N m	1	10.00
4	Introduire les données xi (i = 1 N)	i i xi	I I A	
5	Résultats	l lancaria	C	ddl (=N-3)
6	Pour un autre cas, aller en 2	1	! !	

sem : au lieu de faire l'étape 4, on peut directement stocker dans les registres 0 à 9 le nombre de données de chaque classe déterminée par la formule m = m + sX, X prenant les valeurs données (voir théorie)


my that will

Listing PGR 9: voir page 51

3.2. Calcul des fréquences théoriques d'une variable observée suivant une loi normale

Théorie

- Soit l'histogramme de la variable que l'on peut assimiler à une loi normale (m, s^2)
 - l'intervalle de classe est INT = $X_1 + 1$ X_2 = cte
 - le programme donne les valeurs des fréquences théoriques de la loi normale (u, j²) pour les valeurs

$$V(i) = \frac{X(i) - X(i-1)}{2}$$

on calcule ainsi la courbe normale théorique s'ajustant à l'histogramme observé.

les fréquences théoriques sont calculées par la formule approchée de Hastings

Mode d'emploi du programme PGR 10

No	INSTRUCTION	DONNEE	TOUCHE	RESULTAT
1	Introduire le programme	! !		
2	Initialisation	! !	E	0.00
3	Introduire le nbre total d'observations la moyenne de l'échantillon l'écart type de l'échantillon l'intervalle de classe de l'histog.	I N I m I s I INT		N
4	Pour chaque couple V(i) V(i-1), les intro- duire	! ! V(i) ! v(i-1) !	1 A	 f(V(i)
5	Pour un autre problème, aller en 2	!	!	

Listing PGR 10 : voir page 51:

3.3. Test d'adéquation à une loi de poisson

Théorie

- le programme compare une distribution observée à une distribution théorique de poisson par un test de χ^2 .
- les limites du programme sont imposées à 18 classes, de méro à 18.

On calcule les diverses probabilités correspondant à chaque classe par la formule

pi =
$$\frac{x_i}{x_i}$$
 e $\frac{x_i}{x_i}$ e moyenne de l'échantillon

l'effectif théorique de chaque classe est donc

$$C_1 = \text{Npi où N} = \text{nbre total d'observations}$$

$$\text{le} \chi^2 \text{ vaut donc} \chi^2 = \sum_{c} \frac{(o-c)^2}{2}$$

Mode d'emploi du programme PGR 11

N° I	INSTRUCTION	DONNEE	TOUCHE	RESULTAT
1	Charger le programme	1	!	
2	Initialisation	!	E E	0.00
3	Introduire les xi successifs	xi	l A	
4 !	Calcul du χ^2	1 1 1 1	B pause pause	n° classe eff. observe eff. calcul
!			l pause	ddl

mem : le programme affiche pour chaque classe :

- son n°
- l'effectif observé
- l'effectif calculé

lorsque toutes les classes sont examinées, il s'affiche le nombre de degrés de liberté et la valeur du 2 mesurant le degré d'adé- de degré d'adé- de degré d'adé-

3.4. Test d'adéquation à une loi binominale négative
On envisagera 3 cas:

- 1°/ le nombre d'observations est inférieur à 50 et il existe une fréquence non nulle de comptes nuls
- 2°/ le nombre total d'observations est inférieur à 50 et il n'existe pas de comptes nuls
- 3°/ le nombre total d'observations est supérieur à 50.

rem : le choix d'un ajustement à une binominale négative peut être justifié par le calcul d'un test de dispersion : $\chi^2 = \frac{s^2 (n-1)}{\bar{x}}$ qui suit un χ^2 à (n-1) ddl testant s^2 , \bar{x} .

3.4.1. n < 50 - il existe des échantillons vides

Le paramètre k de la loi est d'abord estimé de façon grossière par la formule $\hat{k}_0 = \frac{\hat{x}^2}{s^2 - \hat{x}}$

avec \bar{x} = moyenne arithmétique de l'échantillon s^2 = variance de l'échantillon

puis on utilise une méthode itérative pour résoudre :

$$Log(\frac{n}{fo}) = k Log (1 + \frac{\overline{x}}{k})$$

où n est le nombre total d'échantillons et

fo le nombre d'échantillons ne contenant aucun individu (fréquence des comptes nuls).

le test d'edéquation utilise la statistique

 $U = s^2 - (x + \frac{x^2}{k})$ où k est la valeur trouvée par la méthode précédente.

On a : U = o pour un accord parfait, l'adéquation reste donc si U \neq o et plus petit que son erreur standard (pour son calcul, voir l'abaque p. 60)

Remarque: une valeur positive et élevée de U indique que la di tribution Log-normale semble plus appropriée.

Une valeur négative et élevée de U indique que des distributions comme celles de Neyman ou de Polya-Aeppli sont plus adaptées.

Mode d'emploi du programme PGR 12

No I	INSTRUCTION	DONNEE	TOUCHE	RESULTAT
1 1	Charger le programme		1	: :
2	Initiation		E	0.00_
3 1	Calcul de ko Introduire x s ²	x 2 s	I I I A	ko
4 ! ! ! ! !	Calcul exact de k introduire n fo	l l n l fo	: : : : B	i i i k
5 1	Calcul de U		C	Ū

n = 20 fo = 7
$$\bar{x}$$
 = 2.45 s² = 9.2079
U = -1.8171 standard erreur de U = 2 ($\frac{10}{\sqrt{n}}$) = 4.47

Listing PGR 12: voir page 52

3.4.2. n < 50 - il n'existe pas d'échantillons vides.

Une valeur approchée de k est d'abord calculée par la formule $ko = \frac{\bar{x}^2 - (s^2/n)}{s^2 - \bar{x}}$ le test T d'adéquation à la distribution binominale négative est alors :

$$T = \frac{(\sqrt{x^3 - 3} \cdot x^2 + 2 \cdot x^2 \cdot x^2)}{n} - s^2 \left(\frac{2s^2}{x} - 1\right)$$

un accord parfait entre la distribution théorique et observée est donné par T = 0

L'adéquation reste bonne pour $T \sim 0$ et plus petit que son erreur standard (pour son calcul, voir l'abaque p. 60)

Les calculs:

- quand $\bar{x} < 4$: on accepte k = ko et on calcule T

- quand $\bar{x} > 4$: on doit utiliser des transformations des données et des tables pour estimer k.

- si
$$2 \le k_0 \le 5$$
 et $\bar{x} \ge 15$
on utilise $y = \log (x + \frac{\hat{k}_0}{2})$

-
$$\sin k < 2 \text{ et } \overline{x} > 4$$

on utilise $y = \sinh^{-1} > \frac{x + 0.375}{k - 0.75}$

et on compare les variances à des variances théoriques tabulées (voir table p. 60).

Mode d'emploi du programme PGR 13

N°	INSTRUCTION	DONNEE	TOUCHE	RESULTAT
1 1	Charger le programme	ć.)		
2	Initialiser	:	f∙e	0.00
3	Introduire les données xi	xi	A	. .
1 4 1 1 1 1 1 1	Calcul de x s ²		B (pause)	
1 1	K _O Yo	! !	R/S R/S	ko T
5 1 5	si $\bar{x} \geqslant 15$ et $2 \le k_0 \le 5$ aller en 6 si $\bar{x} \geqslant 4$ et $k_0 \le 2$ aller en 8			
6	Remettre les registres à zéro		E	****
1 1	Introduire les xi	хi	С	i
1 7 1 1	Calcul de x s ² Utiliser les tables pour calculer k à partir de s2		B (pause)	- x 2 5
8	Remettre les registres à zéro		E	
1	Introduire les xi	хi	D	1
	Calcul de x 2 8 Utiliser les tables pour calculer k à partir de s2		B (pause)	x 2 s

Exemple: comptage: 4; 5; 8; 14; 14; 15; 15; 19; 28; 36

$$n = 10$$

 $\bar{x} = 15.8$
 $s^2 = 99.0667$ d'où $k_0 = 2.87$
 $T = -473.133$ erreur standard de $T = 320$ $\left(\frac{10}{n}\right) = 1011.936$

on a : x > 15 et 2 < ko < 5, la transformation appropriée des données est donc $y = \log (x + \frac{ko}{2})$. On comparera ensuite la variance obtenue à celles tabulées pour obtenir k.

Listing PGR 13: voir page 52

3.4.3. n > 50 - test d'adéquation par un χ^2 .

On calcule une valeur approchée de k par la formule

$$k_0 = \frac{\bar{x}^2}{s^2 - \bar{x}}$$

on choisit ko' et ko" tels que ko (ko" et on calcule l'équation du maximum de vraissemblance avec ko' et ko"

n Ln (1 +
$$\frac{\overline{x}}{k}$$
) = $\sum \frac{A(x)}{k+x}$

soit
$$z = n \operatorname{Ln} \left(1 + \frac{\overline{x}}{k}\right) - \sum \frac{A(x)}{k + x}$$

(pour la signification de A(x), voir l'exemple) on a donc z'. et z".

k est alors calculé par : $k = \frac{k!z!! - kez!}{000} - kez!$

Calcul du X 2 d'ajustement

Les fréquences théoriques T sont calculés par :

- f (x)1 =
$$\frac{N}{1+\overline{x}}$$
 pour la 1ère classe $\frac{1+\overline{x}}{k}$

- f (x)_i = f (x)_{i-1}
$$\frac{\bar{x}}{k+x}$$
 ($\frac{k+i-2}{i-1}$)

- f (x)_i = f (x)_{i-1}
$$\frac{x}{k+x}$$
 ($\frac{k+i-2}{i-1}$)
- pour la dernière classe ; f (x)d = n - $\sum_{i=1}^{d-1}$ f (x)_i:
et $\chi^2 = \frac{(0-T)^2}{1-1}$

$$et \chi^2 = \frac{(0-T)^2}{T}$$

avec ddl = nombre de classes pour le calcul du /2 - 3.

Mode d'emploi du programme PGR 14

				Manage Marie .
N°	INSTRUCTION	DONNEE	TOUCHE	RESULTAT
1 1 1	Introduire le programme		! !	
2	Initialisation		f.e:	0.00
3 1	Si on connait n, x, s: aller en 4 sinon, aller en 5		! ! !	1 1 1
1 4 1	Introduire n, x, 1	n	!	
1 1		ı x	1	! !
! ! !!		5	f.a	ko l
5	Introduire les données par 5 +	хi	Σ+	i
1 1 1 1	quand toutes les données sont intro- duites, appuyer sur A	W _a .	! A	ko
.6	Introduire l'intervalle et la fréquence correspondante	1	! ! !	
ii		fi	1 . B	1+1
7	qd tous les intervet freq. sont intro- duits,, appuyer sur C pour le cal-		1 [
1 1 11	cul de k	Ü	C	k
8	Calcul du χ^2 introduire la fréquence observée	fi I	I I I I	fréquence théorique
9	Introduire la <u>dernière fréquençe</u> (ou la somme restante si une freq théorique, attein t un seuil critique (1 par ex)) et appuyer sur E	i i i E	! ! ! !	χ2

Remarque: ko doit être supérieur à 0.1 sinon on ne peut pas calculer k 1 x 101112131415161718191401111121131141151161 1 1 1317191121101617161514131212111111111 IA(x)177170161149139133126120115111181614131211101 n = 80 $\bar{x} = 5.3125$ From the control of t s = 3.6789d'où ko = 3.4on a donc k = 3.3588Calcul du χ^2 P(x=0) = 3.31P(x=1) = 6.81P(x=2) = 9.09

d'où χ^2 = 1.58 avec ddl = 15 - 3 = 12 (les 3 dernières classes ont été réunies car leurs χ^2 partiels étaient inférieurs à 1).

Listing PGR 14: voir page 53

4. PROGRAMMES DE REGRESSION

4.1. Régression linéaire y = a + bx et log y = a + bx

Lorsqu'une liaison entre 2 variables x et y est significative (test sur le coefficient de corrélation r), on peut tenter de représenter au mieux la courbe de régression y = f(x) dans la population de mesures d'où viennent les données observées. Souvent, au vu des données, ou pour des raisons à priori, on peut supposer que cette relation est linéaire. On cherchera alors l'équation de la droite représentant le mieux possible la droite de régression vraie et vérifier ensuite la validité de l'ajustement.

Test de liaison : .

on calcule le coefficient de corrélation r :

$$\sum_{i} x_{i} y_{i} - \sum_{i} \sum_{j} y_{i}$$

$$\left[\sum_{i} x_{i}^{2} - \frac{\left(\sum_{i} y_{i}^{2}\right)}{n} \sum_{j} y_{i}^{2} - \frac{\left(\sum_{j} y_{i}^{2}\right)^{2}}{n}\right]$$
et la statistique $t = \frac{r}{\sqrt{1 - r^{2}}}$

où n = nombre d'observations. La statistique suit un t de Student à n - 2 ddl et teste r = 0.

Estimation de la droite de régression :

Soit
$$y = a + bx$$

$$b = \frac{\sum xiyi - \sum xi \sum yi}{n}$$

$$\sum xi^2 - \frac{(\sum xi)^2}{n}$$

$$a = \overline{y} - b\overline{x} \text{ avec } \overline{y} = \frac{\sum yi}{n} \text{ et } \overline{x} = \frac{\sum xi}{n}$$

- l'intervalle de confiance du coefficient de régression r

est donné par
$$\mathbf{r}$$
 a $\langle \mathbf{r} \rangle$ avec \mathbf{r} a $\langle \mathbf{r} \rangle$ b $\langle \mathbf{r} \rangle$ avec $\langle \mathbf{r} \rangle$ b $\langle \mathbf{r} \rangle$ b $\langle \mathbf{r} \rangle$ b $\langle \mathbf{r} \rangle$ c $\langle \mathbf{$

- intervalle de confiance des coefficients a et b :

Boit
$$\sqrt{a} = \sqrt{\frac{1}{n} + \frac{\overline{x}^2}{(xi-\overline{x})^2}}$$

$$\sqrt{\sum (xi-\overline{x})}$$
avec $\sqrt{\frac{2}{n}} = \frac{1}{n-2} \left[\sum (yi-\overline{y})^2 - b^2 \sum (xi-\overline{x})^2 \right]$

sous réserve que les résidus de la régression suivent une loi normale (0, σ^2),

$$(a = a + Ga \cdot t)$$
on a
$$(b = b + Gb \cdot t)$$

au seuil X choisi. twest lu dans une table de Student avec (n-2) ddl.

- tests sur a et b

soit à tester a = a et b = bon calcule la statistique $t = \frac{\begin{vmatrix} a - a \\ b \end{vmatrix}}{\sqrt{a}}$ ou $t = \frac{\begin{vmatrix} b - b \\ b \end{vmatrix}}{\sqrt{b}}$

qui suit un Student à (n-2) ddl

Mode d'emploi du programme PGR 15

Il calcule les régressions y = a + bx et log y = a + bx ainsi que les inverses, donne les intervalles de confiance de r_0 a, b et les valeurs des tests sur ces coefficients.

No	INSTRUCTION	DONNEE	TOUCHE	RESULTAT
1 1	Mise à zéro des registres		CL reg P == S CL reg CLX	0.00
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Introduire les couples (xi,yi) pour i = 1, 2 n en cas d'erreur sur (xi, yi), corriger par : -	l xi l yi l yi l xi l yi l xi l xi l xi	A Σ LN P Σ Σ Σ	1
3	Résultats y = a + bx		P S S	i - 1 r r ² a b
1 4 1	Intervalle de confiance de r	! ! !	C R/S	ra rb
5	Test r = 0	! !	f.c	t(n-2)
6	Ecant type de a	1 1 ^ 1	D :	√a.
7	Ecart type de b : (7 b	! !	f.d	⊕ b
8	Test a = a	l a _o	E	t(n-2)
9	Test b = b	i bo	f.e	t(n-2)
10	Regression Log y = a + bx reprendre en 3	1 1 1	1 1 1	

Remarque: une fois l'instruction 3 effectuée, on peut recommencer autant de fois que l'on veut les instructions suivantes. (touches C; fo; D; fd; E; f.e) sans changer de type d'ajustement. Une fois ces tests effectués, si on recommence l'instruction 3, on calcule alors la régression en Log et les tests correspondants. Si on désire commencer par l'ajustement en Log sans calculer la régression y a + bx, on appuye sur Pass et on continue les instructions (B; etc...).

Listing PGR 15: voir page 54

4.2. Test d'identité de 2 modèles linéaires simples

Théorie

Ce programme teste l'identité de 2 modèles linéaires simples et calcule les coefficients de la régression "commune" ainsi que les statistiques pour tester ces coefficients.

Soit un premier modèle $y = a_1 + b_1x$ dont on peut calculer la somme des carrés des écarts SCE1 de même un deuxième modèle $y = a_2 + b_2x$ donnera SCE2

- sous l'hypothèse nulle Ho: égalité des coefficients pour les 2 populations, on calcule y = a + bx et la somme des carrés des écarts sous o: SCE_{Ho}
- sous l'hypothèse alternative H_1 : les 2 modèles sont différents (2 populations différentes), on a $SCE_{H1} = SCE_1 + SCE_2$

le test est alors un F de Fisher à (p, n-p) où

p = nombre de coefficients (ici p = 2)

n = nombre de couples (x, y) dans le modèle "commun"

- si F < Ftable, on accepte Ho (identité)
- si F > Ftable, on rejette Ho

Dans le cas d'identité des deux modèles linéaires, on peut donc estimer la régression "commune" (résultante y = a + bx et estimer a, b, \sqrt{a} et \sqrt{b} (que l'on peut multiplier par $\sqrt{n-2}$ pour avoir un intervalle de confiance de a et b au seuil « choisi) et tester a = a et b = b par un t de Student à n - 2.

- 30 - Mode d'emploi du programme PGR 16

N°!	INSTRUCTION	DONNEE	TOUCHE	RESULTAT
1	Initialisation - mise à zéro		f.a	0.00
2	Introduire les couples (xi, yi) du 1er modèle pour i = 1, n1	xi yi	I	1
3	Quand tous ces couples sont entrées, on calcule la lère régression		B R/S R/S	r ₁ 2 r ₁ a ₁
			R/S R/S	b ₁ SCE ₁
4	Introduire lem couples (xi, yi) du 2è modèle (i = 1, n2)	xi yi	A A	
5	Résultats :		C R/S R/S R/S R/S R/S R/S R/S R/S R/S R/S	r ₂ r ₂ a ₂ b ₂ SCE 2 r a b sce 2 r r 2
ં	Tests écart type de a : a	in the	I I D I	Ja
	écart type de b : b	1.44	f.d	Г ъ
	test a = a	l ^a o	E I	ŧ
	test b = b	b _o	f.e !	t

Listing PGR 16 : voir page 55

5. MODELISATION : ANALYSE DE LA VARIANCE

5.1. Test du chi-carré de Bartlett

C'est un test d'homogénéité des variances, souvent nécessaire avant d'effectuer les tests classiques de l'analyse de variance. Léanalyse de variance repose sur l'estimation de la variance résiduelle qui exprime la variation moyenne à l'intérieur des groupes. Cependant, chaque groupe ou classe possède une variance interne propre et celles-çi sont seulement estimées globalement dans la variance résiduelle (variance intra-groupe moyenne). Si les variances intra-groupes n'étaient pas homogènes, l'estimation de la variance moyenne dans les classes serait biaisée. Aussi, lorsque les classes à comparer présentent une hétérogénéité manifeste et variable, c'est à dire une dispersion plus importante des données dans certaines d'entre elles, le contrôle de l'homogénéité des variances intra-classes peut être nécessaire. Toutefois, les tests de l'analyse de variance sont robustes et on peut admettre un certain écart à l'additivité des variances, de même qu'à la normalité des distributions. L'homogénéité des variances peut être contrôlée par le test de Bartlett.

- la statistique calculée est :

avec si = variance du 1e échantillon

fi = ddl relatifs à si²

i = 1, 2 k . k = nombre d'échantillons.

$$\bar{s}^2 = \frac{\sum_{i=1}^k fi si^2}{f}, f = \sum_{i=1}^k fi$$

le × 2 calculé suit approximativement une distribution de chi-deux avec (k-1) ddl, pouvant être utilisé pour tester l'hypothèse nulle Ho : s_1^2 , s_2^2 s_k^2 sont des estimations de la variance $\sqrt{}^2$ d'une même population.

Mode d'emploi du programme PGR 17

И°	INSTRUCTION	DONNEE	TOUCHE	RESULTAT
1 1	Charger le programme		!	
2	Initialiser		! !	0.00
3	Si on connait tous les couples (si ² , fi), aller en 4. Si on ne dispose que des échantillons aller en 6.	!	1 1 1 1 1	
1 4 1 1: 4 1	Introduire pour i = 1 K : si ² fi	si ² fi	I ↑ I A	l : l :
5	Calcul du 2		R ^B S	1 X 2
6	Pour chaque échantillon : i = 1 k - introduire xij j = 1ni - à chaque dernier xij faire: et reprendre un autre échantillon	i i xij i		
7	Calcul du χ^2		B R/S	χ ² 1

Listing PGR 17: voir page 55

5.2. Analyse de variance à une voie

Théorie

L'analyse de variance à une voie est un test d'homogénéité qui permet la comparaison simultanée de plusieurs moyennes d'un nombre k de groupes de traitements. On teste si les différences observées entre les moyennes sont dues au hasard ou sont représentatives des différences entre les moyennes réelles des populations. Pour ce faire, on calcule plusieurs séries de paramtères:

- La variance totale, à partir de l'ensemble des mesures :
 - → la variance factorielle, à partir des moyennes des groupes
 - la variance résiduelle, à partir des mesures de chaque groupe.

Ces variances sont estimées par SCE (SCE = somme des carrés des écarts ; ddl = degré de liberté correspondant). Le programme génère le tableau d'analyse de variance suivant :

On dispose de n observations réparties sur p modalités (le nombre d'observation peut être différent d'une modalité à l'autre).

	1	! !	! !	
Source de variation	n ddl	SCE	! Test	
Factorielle (inter- modalité)	i	! ! ! S ₄	! !	n_p
Résiduelle (intra- modalité)	n - p	. s _a	[*** 8 ₂	p- 1
Totale	i "n;1; i	l S		
1 8 1 1 1 7 1	1	i - ' - ' - ' - ' - ' - ' - ' - ' - ' -		
1			r	:

on rejette l'hypothèse Ho: homogénéité des traitements si le test F est supérieur à la valeur fo de la table de Fisher, au seuil choisi. Dans le cas de rejet de Ho, on admet alors que les traitements ne sont pas identiques. Pour savoir si 2 traitements i et i' sont entre eux significativement différents, on calcule la statistique suivante (critère de test):

$$\sqrt{(p-1) \cdot fo \cdot \left(\frac{1}{ri} + \frac{1}{ri!}\right) \cdot \delta}$$

$$= \frac{\sum_{i,j} \frac{(yij - \overline{y}i)^2}{n-p}}{\sqrt{(yij - \overline{y}i)^2}}$$

avec

ri = nombre d'observations du traitement i

ri' = nombre d'observations du traitement i'

yij = j^e valeur observée dans le traitement i

yi = moyenne du traitement i

on considère alors que les 2 traitements i et i' sont différents si la valeur expérimentale | yi - yi' | est supérieure à la statistique calculé.

Mode m'emploi du programme PGR 18

No!	TNSTRUCTTONS	DONNEE	топсне	RESULTAT
14 1	INDIROCIONS	DOMMER	10,000	
1 ;	Introduire le programme			
2 1	Initialisation		E	0.00
3 ! !	Introduire les observations de chaque modalité une à une	yij	A	! !
4 1	Une fois toutes les données d'une même modalité introduites, faire :		f.a	
5-1	Reprendre à 3 pour une autre modalité			
6	Résultats _		R/S R/S	SCE factoriel SCE résiduel SCE total ddl factoriel ddl résiduel test F
7	Tests de chassement des modalités introduire le numéro de la modalité (la modalité i porte le n° i - 1) - introduire le nbre d'observations de cette modalité - introduire le n° de la 2è modalité - le nbre d'observations danc cette modalité - introduire fo (table de Fisher)	p1 j - 1 pE	^ ^ C	yi - yj critère de test
		1 Introduire le programme 2 Initialisation 3 Introduire les observations de chaque modalité une à une 4 Une fois toutes les données d'une même modalité introduites, faire: 5. Reprendre à 3 pour une autre modalité 6 Résultats	1 Introduire le programme 2 Initialisation 3 Introduire les observations de chaque modalité une à une 4 Une fois toutes les données d'une même modalité introduites, faire: 5. Reprendre à 3 pour une autre modalité 6 Résultats 7 Tests de chassement des modalités introduire le numéro de la modalité (la modalité i porte le n° i - 1) 1 - introduire le nbre d'observations de cette modalité 1 - introduire le n° de la 2è modalité 2 pt 3 - introduire le n° de la 2è modalité 4 pt 5 - introduire fo (table de Fisher) 5 - fo	1 Introduire le programme 2 Initialisation 3 Introduire les observations de chaque modalité une à une 4 Une fois toutes les données d'une même modalité introduites, faire: 5. Reprendre à 3 pour une autre modalité 6 Résultats

Remarque: on peut introduire autant de moda ités qu'on le désire (instructions 3 à 5). Cependant, si on désire effectuer des tests de classement, le nombre de modalités est limité à 14. Si on désire comparer plus de 14 modalités, on doit impérativement supprimer les pas 29 à 31 inclus. Dans ce cas, on ne peut plus faire les tests de classement.

Exemple:

		1 :	1	t	1	t	1	1 1	ı
ı	Modalité								ļ.
1	1	88	99	96	68	85			l
į	2	78	•	•	•	•	88	i	
1	3	80	61	74	92	78	54	77	
i	4	71	65	90	46		i		ļ

Tableau d'analyse

	1		
Variation	SCE	ddl	F
factorielle	930.44	3	
r és id uelle	3599•56	18	1.55
totale	1 4530.00	21	

Listing PGR18: voir page 56

5.3. Analyse de la variance à 2 entrées (deux variables, sans duplication)

L'analyse de la variance à 2 entrées teste indépendamment l'effet ligne et l'effet colonne. Ce programme génère un tableau d'analyse de variance classique dans le cas où :

- chaque case n'a qu'une seule observation
- et les effets des lignes et des colonnes sont sans interaction

le programme génère le tableau d'analyse de variance suivant à partir d'un tableau à Q lignes et p colonnes.

and the second s	•	_	• • •
Variation	SCE	dd1 (23)	tes
entre les lignes	SCE 1	ddl = p-1	(p-1) F. ligne (p1)(q-1)
entre les colonnes	SCE c	ddl = q-1	(q-1) F. colonne (p-1)(q-1)
résiduelle	SCE r	ddl = (p-1)(q-1	}
Total	SCE T		

Mode d'emploi du programme PGR 19

1			1	
I N	INSTRUCTIONS	DONNEE	TOUCHE	RESULTAT
1 1 1	Introduire le programme		22 102	
2 1	Initialiser	;	E	0.00
3 I 1 3 I	Introduire les valeurs de la colonne 1 pour 1 = 1, n	x j	A .]
1 4 1 1 1 1 1	Quand i = n (toute la colonne est introduite), faire f.a recommencer en 3 pour une nouvelle colonne		f•a	
5	Entrer le total de chaque ligne pour l = 1 p	T _i	В	
6	Résultats :	.	C	SCE Total
1 1	giran in the first term of the second		R/S	SCE colonnes !
1 1	in the control of the second o		R/S	ddl colonnes
1	: 2e . g .		R/S	SCE lignes !
1 1 1 1		[]	R/S	ddl lignes
i i			R/S	SCE résiduels
I			R/S	ddl résidmels
!		<i>;</i> .	R/S	test F colonne
1 1	47.4.2		R/S	ddl associés
1 1		:	R/S	test F ligne
		1 1 1 m at	R/S	2 d dl asso ci és
1 <u></u> 1			1	1

Listing PGR19: voir page 56

5.4. Plan factoriel disposé en blocs

Dispositif expérimental:

On dispose de ta niveaux de traitement A ; the niveaux de traitements B et r répétitions. Soit, pour la commodité de l'exposé ta = 3 et t = 2. On a donc le dispositif suivant :

Traite	monts	1		BLO		·	
ITTALLE		1 1	1 2	1 3 1	!	• 60	 r
1	B ₁	!x11	1x12				1
A ₁	B ₂	! !	! !				
1	B _l] ; :	1 1)
1 A ₂	B ₂	I .	1	.	1		
1 1: ^A 3 1:	B1	1	1		1		
	B ₂	1			1		

et le tableau simplifié:

i j. 11	1 B ₁	B ₂ 1
	1 1 Y††	¥12 I
1 A2	-	Y22
1 A3		1 Y32 1
	1 1 Yij	: Yij

Le programme ge	én ère l e t a	bleau d'analyse	de variance suivant	:
Variation	SCE	ddl	Variance	F F
Totale .	SCE.T	r.ta.tb-1	1	1
entre blocs	! !SCE.b	1 / r-1 1 si si	$\frac{\text{SCE-b}}{\text{r-1}} = 1$! ! 1/6 = F1
entre trait.	i isce.t	Ita.tb1	$\frac{\text{SCE-t}}{\text{tabb-1}} = 2$! ! 2/6 = F2 !
Traitement A	! !SCE.A !	1: 1: ta - 1 1:	$\frac{\text{SCE.A}}{\text{ta-1}} = 3$	1 1 3/6 = F3
Traitement B	ISCE.B	! tb 1	$\frac{1}{1} \frac{\text{SCE}_{\bullet}B}{\text{tb-1}} = 4$	1 1 4/6 = F4
Interaction A	BISCE (AxB	!)!(ta-1)(tb-1) !	$\frac{\text{SCE}(AxB)}{(\text{ta-1})(\text{tb-1})} = 5$	l 1 5/6 = F5 1
résiduelle	!SCE.R	 (r-1)(ta-tb-1)	$\frac{\text{SCE}_{\bullet}R}{\text{ddl}} = 6$: ! !

Mode d'emploi du programme PGR 20

,	•				
No	Inst	RUCTION	DOMEE	TOUCHE	RESULTAT
1 1	Introduire le prog	ramme			
2	Initialisation : Introduir	e r ta tb	r ta tb	^ ^ E	
3	Introduire pour ch (pour i = 1, r;	aque bloc : xij	xij	A	i j
1 4 1 1	Quand toutes les d duites, introduire i = 1 r j = 1		yij	B	5
5	Puis introduire le	s ∑yij j=1	Sylj-	Ĝ	. j –
1 6 1 1	Résultats :	Résiduelle		D R/S R/S	SCE•R ddl variance R
1 1 1	! ! !	T otale		R/S R/S	SCE.T ddl.T
I I I I		Blocs	! 	R/S R/S R/S R/S	SCE.b ddl.b variance b
1 1 1 1		entre traitements		R/S R/S R/S R/S	SCE (t) ddl. t variance F2
]]]]	! ! !	Traitement A	##	R/S R/S R/S R/S	SCE.A ddl variance F3
1 1 1 1		Traitement B		R/S R/S R/S R/S	SCE.B ddl variance F4
! ! ! !	! ! ! !	Interaction traitement AxB	*******	R/S R/S R/S R/S	SCE AxB ddl variance F5
1	1		İ		l

5.5. Dispositif d'analyse de variance en carré Latin

Théorie

C'est un dispositif qui comporte autant de répétitions que de traitements.

Chaque ligne et chaque colonnne renferme tous les traitements pris une seule fois.

Exemple : carré Latin à 5 traitements : A - B - C - D - E.

les traitements sont affectés au hasard.

Remarque: au dessous de 5 traitements, ce dispositif manque de précisions.

Calculs: Soit le tableau (lignes x colonnes) où sont disposés les traitements x, y....z selon un dispositif en carré Latin

lia	Col	1 1	2	3	Sommes Li
Lig		!			
	1	xi	y 1 .	. z1	L †
	2	1 y2	z 2•••		L 2
	3	1		1	
	•	1		!	•
	: N	i zn	x 3	y 4	- En
Somme	s Ci	1 1 C ₁	c ₂ •••	. Cn	∑ x

on dispose aussi du tableau (traitement x répétitions)

Répétition> Traitement	1	2 ••••• n	Somme Ti	in the second of
X 1	× ₁	x ₂ xnl	${f Tx}$	*
Y !	^У 1	y ₂ •••••• yn1	Т у	
z i	^z 1	z ₂ ••••• zn	Tz	

Le program e génère le tableau d'analyse de variance suivant :

				_
Variation	ddl	SCE	Variance	Test
Lignes	n - 1	L ²	V _L (1)	F ₁ = 1/4
Colonnes	n - 1	c ²	v _C ² (2)	F ₂ = 2/4
Traitement	n - 1	T ²	v _T ² (3)	F ₃ = 3/4
erreur	(n-2)(n-1)	E ² 1:	V _E (4)	
Totalo		W ²		
	•			

Mode d'emploi du programme PGR 21

No	INSTRUCTION	DONNEE	TOUCHE	RESULTAT
1	Introduire le programme		! !	
2	Introduire le nombre de traitement : n	n	! E	n
3	Introduire les xi zi ligne par ligne	xi	! ! B :	
4	Introduire Li (i = 1 n)	Li	C	i
5	Introduire Ci (i = 1 n)	Ci	C	1
6	Introduire Ti (i = 1 n)	Ti	C	i
7	Résultats :	·.	A	SCE totale
			R/S R/S R/S	SCE ligne ddl variance
	To Display to the second of th		R/S R/S R/S	SCE colonne ddl variance
	india sula Palaban pina Palaban pina		-R/S R/S R/S	SCE traitemen ddl variance
			R/S	F ₁ ligne F ₂ colonne F ₃ traitement

Listing PGR 21: voir page 58

6. PROGRAMMES SIMPLES D'ESTIMATIONS DE PARAMETRES DE POPULATION

6.1. Methode de Petersen : estimation N de la taille d'une population Principe :

On prélève dans une population (taille N) un échantillon aléatoire de c individus qui sont alors marqués et remis dans la population. On prélève un deuxième échantillon de taille n et on désigne par m le nombre d'individus marqués recapturés.

A priori :

- population fermée (effectif constant)
- tous les animaux ont la même probabilité d'être capturés dans le 1er échantillon
- le marquage n'affecte pas la vulnérabilité
- tout individu marqué recapturé est reconnqueomme ayant été marqué.

<u> 1er cas : sondage direct :</u>

La taille du 2è échantillon est fixée, le nombre de marqués recapturés est aléatoire.

- tirage exhaustif : (le tirage modifie les probabilités au cours des épreuves ; par exemple, le nombre de capturés est grand devant la taille de la population)

l'estimation de Chapman donne :
$$\begin{cases} \hat{N} = \frac{(n+1)(c+1)}{n+1} - 1 \text{ (sans biais)} \\ \hat{V}_{N} = \frac{(c+1)(n+1)(c-m)(n-m)}{(m+1)^{2}} \end{cases}$$

- tirage non exhaustif :

estimateur de Bailey

$$\begin{cases} \hat{N} = \frac{c(n+1)}{m+1} \\ \hat{V}_{N} = \frac{c^{2}(n+1)(n-m)}{(m+1)^{2}(m+2)} \end{cases}$$

2è cas : sondage inverse :

La taille du 2è échantillon est aléatoire, le nombre de recapturés marqués est fixe.

$$\begin{cases} \hat{N} = \frac{n (c+1)}{m} - 1 \text{ (sans biais)} \\ \hat{V}_{N} = \frac{(c-m+1)(\hat{N}+1)(\hat{N}-c)}{m (c+2)} \text{ (biaisé)} \end{cases}$$

- tirage non exhaustif :

$$\begin{cases} \hat{N} = \frac{n \cdot c}{m} \text{ (sans biais)} \\ \hat{V}_{\hat{N}}^{*} = \frac{n \cdot c^{2} \text{ (n-m)}}{m^{2} \text{ (m + 1)}} \text{ (sans biais)} \end{cases}$$

Mode d'emploi du programme PGR 22

N°	INSTRUCTION	DONNEE	TOUCHE	RESULTAT
1	Charger le programme			
2	Initialisation		CLR P <> S CLR	
3	Introduire les données : - taille du 1er échantil. - taille du 2è échantillon - nbre de marqués recapt.	c n m	1 1	0.00
4	Sondage direct: - tirage exhaustif - tirage non exhaustif		B R/S C R/S	N V
5	Sondage indirect - tirage exhaustif - tirage non exhaustif		D R/S E R/S	N Vn N Vn

Listing PGR 22: voir page 58

6.2. Taille N d'une population. Méthode de Paloheimo

On utilise les mêmes à priori que pour la méthode de Petersen sauf que la "recapture" est ici une série de recaptures successives.

on a : No = effectif de la population au début de l'expérience

Mo = nombre de marqués initial

s = nombre de recaptures

ni = taille du i échantillon (i recapture)

mi = nombre de marqués dans la i^e recapture.

l'intervalle de confiance de No est donné par :

avec
$$\frac{\sum_{mi} \sum_{s=1}^{ni} \pm t_{(s-1, \frac{1}{2})} (\hat{\sigma}^2 \text{ ni})^{1/2}}{\sum_{s=1}^{mi} \sum_{s=1}^{ni} \left[\sum_{mi} \frac{(\sum_{mi})^2}{\sum_{mi}}\right]}$$

et $t_{(s-1, \sqrt{2})}$ est le t de Student à (s-1) ddl et au seuil $\propto /2$ (on admet une approximation Gaussienne).

Mode d'emploi du programme PGR 23

N°	INSTRUCTION	DONNEE	TOUCHE	RESULTAT
1	Charger le programme	!	1 1	
2	Initialisation	: :	E	0.00
3	Introduire les couples ni, mi pour 1 = 1, s.	i i ni	1 1 1	:
		i mi	I A	1
4	Résultats :	1 1' 1	B R/S	No inf. No sup.

Listing PGR 23: voir page 58

7. SERIES DE FOURIER

Théorie

Une façon de calculer le périodogramme d'une série de données est de développer ses composantes cycliques en une somme de termes périodiques impliquant la combinaison de sinus et de sosinus. Toute oscillation périodique peut donc s'écrire sous la forme d'une somme de sinus et cosinus, qui forment une suite harmonique.

La série, dite de Fourier, s'écrit :

$$f(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k cos = \frac{2 i t k}{T} + b_k sin \frac{2 i t k}{T})$$

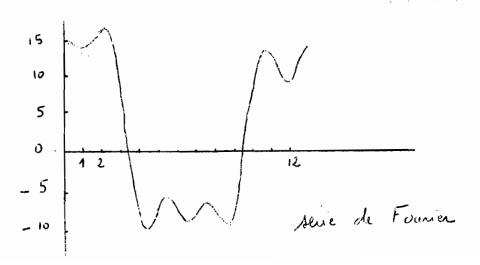
$$f(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} c_k cos (\frac{2 i t k}{T} - O_k)$$

$$d^{i}où: a_k = \frac{2}{T} \int_{0}^{T} f(t) cos \frac{2 i t k}{T} dt; k = 0, 1, 2...$$

$$b_k = \frac{2}{T} \int_{0}^{T} f(t) sin \frac{2 i t k}{T} dt; k = 1, 2...$$

$$c_k = (a_k^2 + b_k^2)$$

$$O_k = tan^{-1} (\frac{b_k}{a_k})$$


avec T = période de f(t)

Connaissant un nombre N suffisamment élevé de valeurs d'une fonction périodique. ce programme, calcule les coefficients de Fourier à partir de versions discrètes des formules çi-dessus. Dix paires consécutives de coefficients peuvent être calculés à partir de points équi-distants. Les coefficients sont affichables soit sous forme rectangulaire (ak, bk), soit sous forme polaire (ck, bk). La valeur de N doit être choisie supérieure au double du plus grand multiple prévu de la fréquence fondamentale.

Mode d'emploi du programme PGR 24

				and the second
Ио	INSTRUCTION	DONNEE	TOUCHE	RESULTAT
1	Initialisation et choix de représenta tion : - coordonnées rectangulaires - coordonnées polaires		D f.d	0.00 0.00
2	Introduire : - nbre de valeurs de f(t) observée - nbre de fréquences - ordre du 1er coefficient	s ni nf no	^ ^ c	
3	Introduire f(t) pour t=1, N	f(t)	R/S	t + 1
4	Quand t = N, il s'affiche SOL (solution) puis les coefficients:			SOL a o
	$(a_k, b_k (k = 1 \cdot \cdot \cdot nf-1))$ ou (c_k, f_k)		R/S R/S R/S etc	b a 1 b 1
5	Pour connaitre la valeur de f(t) à l'instant t, introduire t	t	E	f(t)

Exemple: calcul d'une représentation discrète en série de Fourier pour la forme d'onde représentée ci-après. Il y a 12 intervalles choisit donc 7 fréquences (fondamentale plus 6 harmoniques). L'ordre du 1er coefficient est 0.

on a les valeurs suivantes :

t	1 1 1	2 !	3	1 4	5	6	7
f(t)	1 14.758 1 1 14.758 1	17•732 !	2	! ! - 12	- 7•758	- 11	- 9.026

t	8	9	10	11	12
f(t)	- 12	2	14.268	10.026	15

le programme calcule les coefficients : (représentation rectangulaire)

$$a_0 = 4.0000$$
 $a_1 = 14.9998$
 $a_2 = 3.10^{-8}$
 $b_1 = 1.0000$
 $b_2 = 1.0000$
 $a_3 = -5.0000$
 $b_3 = 1.0000$
 $a_4 = 3.333.10^{-9}$
 $b_4 = 3.200.10^{-9}$
 $a_5 = 3.0002$
 $b_6 = 2.359.10^{-8}$

soit $f(t) = 2 + 15 \cos \frac{2 \pi t}{12} + \sin \frac{2 \pi t}{12} + \sin \frac{4 \pi t}{12} + \sin \frac{4 \pi t}{12}$
 $-5 \cos \frac{6 \pi t}{12} + \sin \frac{6 \pi t}{12} + 3 \cos \frac{10 \pi t}{12}$

listing du PGR 24 : voir page 59

COMPARAISON DE 2 MOYENNES - N INFERIEUR A 30

001	LBLA	037	PSE	073	P S	109	$\overline{\mathbf{x}}$	145	STO5	181	GSB5
002	· · · · · · · · · · · · · · · · · · · 	038	RCL2	074	GSB3	110	STO O	146	P S	182	P S
003	LSTX	039	PSE ·	075	P S	111	9	147	RCL1	183	+
004	SFO .	040	X V?	076	+	112	STO1	148	2	184	X
005	RTN	041	GSB2	077	RCL3	113	RTN	149	RCL9	185	1/X
006	LBLB	042	RCL1	078	4	114	LBL3	150	♦ Complete	186	ST05
007	P S	043	2	079	X	115	RCL9	151	P S	187	RCLO
800	+	044	STO3	080	STO5	116	. 1	152	RCL5	188	P S
009	LSTX	045	P S	081	RCL9	117	-	153	+	189	RCLO
010	P S	046	RCL1	ò82	1/X	118	RCL1	154	1/X	190	P S
011	SFO	047	2	083	PS:	119	2	155	RCL5	191	•.
012	RTN	048	P S	084	RCL9	120	X ·	156	X	192	ABS
013	LBLC	049	STO2	085	1/X	121	RTN		_	193	RCL8
014	FO?	050	RCL3	086	P S	122	LBL4	158	. 2	194	₩**
015	GSB5	051	X Y?	087	+	123	STO9	159	RCL9	195	RCL5
016	gsb8	052	X Y	088	X	124	R	160	· 1	196	X
017	RTN	053	•	089	RCL5	125	STO1	161	•••	197	ABS
018	LBL5	054	R/S	090	. X	126	R	162	•	198	RTN
019	GSB1	055	LBL2	091	1/X	127	STOO	163	ST06	199	RTN
020	P S	056	X Y	092	ST05	128	RTN	164	1		LBLa
021	GSB1	057	PSE	093	RCLO	1 29	LBLE	165	RCL5	201	CLRG
022	P S	058	RTN	094	P S	130	GSB4	166	•	202	P S
023	RTN	059	LBLD	095	RCLO	131	0	167	2	203	CLRG
	LBL8		STO8	096		-	RTN	168			CLX
			RCL9		· ·		LBLe		RCL9		RTN
026			P S	-	RCL8	-	P S		P S		LBL5
	-	1	RCL9				GSB4		· 1 ·		RCL1 2
	STO3		P S		ABS		P S	172		208	
	P S	065			RCL5		CFO		•		RCL9
	RCL9	066			X		RTN		RCL6	210	1
	1	067			STO8		LBLd		+	211	-
032			STO3		RCL3		STO8		1/X	212	•
	P S	-	GTO7		R/S		RCL1		INT		RTN
	ST02		RTN		RCL8	142			R/S	214	R/S
	RCL3		LBL7		RTN		RCL9		GSB5		
036	X Y?	072	GSB3	10 8	LBL1	144	•	180	P S		

COMPARAISON DE 2 MOYENNES - N SUPERIEUR A 30

					,		-				
001	LBLA	033	X	065	GSB3	097	•	129	. R↓	16	1 LBLa
002	Σ +	.034	ST03	066	P_S	098	.9	130	STO1	16	2 FO?
.003	LSTX		RCL2	067	GSB3	099	6	131	R.L	16	3 GSB1
004	SFO	036	2	···068	P~S	100	X	132	STOO	16	4 GT02
005	RTN	037	•	- 069		101	R/S		RCL1	16	5 RTN
	LBLB	038			RCL5	102			RCL9	- 16	6 LBLb
007	P≓S	039		071	4	. 103	•	135	\sqrt{x}		7 P≓S
	Σ+	040	X		$\vee \mathbf{x}$	104		136	•	16	8 FO?
009	LSTX	041	STO4		ST05	105	8.	137	ST02	16	9 GSB1
010	P≓S	042	0	074	R/S	106	RCL5	138	gsb8	17	O GSB2
011	SFO	043	RTN		RCL9	107	Х	139	RTN	17	1 P,≕S
012	RTN	044	LBLC	076	1/X	108	RTN	140	LBL6	17	2 RTN
013	LBL1	045	STO8	077	P-S	109	LBL3		RCL2	17	3 LBL2
014	$\overline{\mathbf{x}}$	046	FO?	078	RCL9	110	RCL9	142	.χ2	17	4 RCLO
015	STOO	047	GSB5	079	P⇌S	· 111	1	143	$P \rightarrow S$	17	5 R/S
016	9	048	GSB6	080	1/X	1 1 2 ⁻		144	RCL2	17	6 RCL1
017	STO1	049	RTN	081	+	113	RCL1	145	P = S		7 R/S
018	P 🏯 S	050	LBL5	082	\sqrt{x}	114	. _X 2	146	x^2	17	8 RCL3
019	RCL9	051	GSB1	6 83	RCL5	115	X	147	+		9 R/S
020	\sqrt{x}		P S	084			RTN		\sqrt{x}	18	O RCL4
021	1/X	053	GSB1	. 085	ST05	117	LBLE	149	ST06	18	1 R/S
. 022	X		P S	086	RCLO	118	ĆFO	150	RCLO	18	2 LBLD
023	P⇒S	055	RTN	087	P҉S	119	GSB4	151	P⇒S		3 CLRG
024	STO2	056	LBLs	088	RCLO	120	RTN	152	RCLO	··· 18	4 P≓S
025	GŞB 8	057	RCL9	089	P∢≕S	· 1 21	LBLe	153	PS		5 CLRG
026	RTN	058	P S	090		122	CFO	154	9000		e crx
027	LBL8	059	RCL9	091	ABS		P⊸S		RCL8		7 CFO
028	RCL2		P S		RCL5	124	GSB4	156	-	- 18	8 RTN
029	• 1	061	4	. 093			P.		ABS	:	. ,
030	•	062	2		R/S		RTN		RCL6		
031	9	063	-		RCL5		LBL4	159	, +		
032	6	064	STO5	096	1	128	STO9	160	RTN		

COMPARAISON DE 2 POURCENTAGES OBSERVES PAR LE CALCUL DE LA PROBABILITE EXACTE DU TABLEAU 2 X 2 (UN DES EFFECTIFS AU MOINS EST FAIBLE)

001	LBLA	024	STO7	048	RCL1	071	RCL1	094	9	117	STOA
002	STO3	025	RCL6	049	GSB1	072	. 1	095	Χ÷ΣΥ	118	RTN
	R ↓		+		RCL2		+		$X \leq X.$	119	LBL2
004	STO2	027	STO8	051	GSB1	074	STO1		GT02	120	RCL9
005	R J	028	GSB9	052	RCL3	075	RCL2	098	Ϋ́ξΧ	121	N. I
006	STO1	029	GSB8	053	GSB1	076	. 1		à	122	LOG
007	R ↓	030.	R/S	054	RCL8	077	+	100	X	123	RCLA
800	STOO	031	LBL9	055	GSB1	078	STO2	101	Pi.	124	+
009	RCL1	032	RCL4	056	RCLB	079	RCL3	.102	X	125	STOA
010	+	033	GSB1	057	RCLA		1	103	\sqrt{x}	126	RTN
011	STO4	034	RCL5	058	-	081	,, -	104	LOG	127	LBLE
012	RCL2	036	RCL6	059	10 ^x		STO3		STOC	128	CLRG
013	RCL3	037	GSB1	060	PSE	·· 083	RCLO	106	RCL9	129	P҉S
014	+	038	RCL7	061	RCLD		X<03	107	1	130	CLRG
015	ST05	039	GSB1	062	+	085	GTOC	108	ex		CLX
016	0	040	RCLA	063	STOD	086	GSB8	109	<u>•</u>	132	ENT 7
017	RCLO	041	STOB	064	GSB7		RTN	110	LOG	133	ENT 🏲
018	RCL2		RTN		RTN		LBLC	111	RCL9	-	ENT
	+	-	LBL8		LBL7	_. 089	RCLD	112		135	R/S
020	STO6		0		RCLO		R/S	113	RCL ©		
021	RCL1	045	STOA		1	091	LBL1	114	+	:	
022	RCL3	046	RCLO	069			STO9		RCLA		,
023	+	047	GSB1	070	STOO	093	6	116	+		

CHI-DEUX D'UN TABLEAU 2 X 2 AVEC CORRECTION DE YATES

	•		• •		
002 ST03 01 003 R ↓ 01 004 ST02 01 005 R ↓ 01 006 ST01 01 007 R ↓ 01 008 ST00 01 009 RCL1 01	2 RCL2 3 RCL3 4 + 5 ST05 6 RCL0 7 RCL2 8 + 9 ST06	022 + 023 B T07 024 RCL6 025 + 026 ST08	031 RCL1 032 X 033 - 034 RCL8 035 2 036 ÷ 037 - 038 X ² 039 RCL8 040 X	041 RCL4 042 ÷ 043 RCL5 044 ÷ 045 RCL6 046 ÷ 047 RCL7 048 ÷ 049 R/s 050 LBLE	051 CLRG 052 P→S 053 CLRG 054 CLX 055 R/S
	CHI-D	EUX D'UN TABI	LEAU K x L	to be	
002 ST01 02 003 ISZI 02 004 RCLE 02 005 RCLI 03 006 X>Y? 03 007 GT01 03 008 DSZI 03 009 RCL1 03 010 1SZ1 03 011 RTN 03 012 LBL1 03 014 ST0I 03 015 SF0 04 016 RTN 04 017 LBLB 04 018 P₹S 04 019 ST01 04 020 ISZI 04 021 P₹S 04 022 RCLD 04 023 RCLI 04	26 P S 27 DS I 28 RCL 1 29 ISZI 30 P S 31 RTN 32 LBLD 33 GSB1 34 GTOc 35 RTN 36 LBLc 37 SF2 38 RCL 1 39 P ST+0 41 P S 42 ISZI 43 RCLE 44 RCLI 45 GTOC 46 GTOC 47 GTOC 48 RTN	051 RCLO 052 P S 053 RTN 054 LBLE 055 STOE 056 R 057 STOD 058 1 059 STOI 060 CLX 061 ENT↑ 062 ENT↑ 063 ENT↑ 064 RTN 065 LBLe 066 CLRG 067 P S 068 CLRG 069 RTN 070 LBLC 071 STOC 072 F2? 073 GSB2	076 GSB9 077 RTN 078 LBL2 079 1 080 ST00 081 RTN 082 LBL8 083 RCL0 084 ST0I 085 CF0 086 RCL1 087 ST0B 088 1 089 ST0I 090 GSB9 091 RTN 092 LBL9	101 R/S 102 CHS 103 RCLC 104 + 105 X ² 106 RCL1 107 ÷ 108 R/S 109 RCLA 110 + 111 STOA 112 ISZI 113 RCLD 114 RCLI 115 X>Y? 116 GTOa 117 RCLC 118 RTN 119 LBLa 120 1 121 ST+O 122 SFO 123 RCLE 124 RCLD	126 RCLD 127 RCLE 128 RCLO 129 X>Y? 130 GTOd 131 RCL9 132 RTN 133 LBLd 134 RCLC 135 R/S 136 RCLD 137 1 138 - 140 1 141 - 142 X 143 R/S 144 RCLA 145 R/S
			100 ST01	125 X>Y?	16. 1.
002 ST02 01 003 R ↓ 01 004 ST01 01 005 RCL2 01 006 X 01 007 RCL1 01 008 1 01 009 + 01	11 X 12 2 13 ÷ 14 + 15 P s 16 RCL4 17 P s 18 - 19 STO4	TEST DE MANN 021 RCL1 022 RCL2 023 X 024 2 025 ÷ 026 CHS 027 RCL4 028 + 029 ST05 030 RCL1	031 RCL2 032 + 033 1 034 + 035 RCL2 036 X	041 - 042 VX 043 1/X 044 RCL5 045 X 046 R/S 047 LBLE 048 CLRG 049 Pts	051 CLX 052 R/S 053 LBLA 054 ∑+ 055 R/S
		TEST DE KRUSI	CAL-WALLIS	in the second	
002 ∑+ 01 003 R/S 01 004 LBLB 01 005 P → S 01 006 RCL4 01 007 X ² 01	9 ÷ 10 P ST+0 2 P S RCL9 4 P S ST+1	017 CLRG 018 P≓S 019 0	025 ÷	033 1 034 + 035 3 036 X 037 - 038 R/S 039 LBLE 040 CLRG	041 P _₹ S 042 CLRG 043 CLX 044 R/S

COEFFICIENT DE CORRELATION DES RANGE DE KENDALL

001 LBLC 002 ∑+ 003 R/S 004 LBLc 005 P= S 006 RGL4 007 X ² 008 ∑+ 009 RGL9 010 P= S 011 ST00	012 P=S 013 CLRG 014 P=S 015 0 016 R/S 016 LBLD 018 RCL4 019 1 020 2 021 X 022 RCL0	023 X ² 024 ÷ 025 RCL9 026 ÷ 027 RCL9 028 X ² 029 1 030 • 031 ÷ 032 ST01 033 RCL9	035 + 9 036 RCL9 0 037 1 0 038 - 0 039 ÷ 0 040 3 041 X 042 CHS 043 RCL1	045 R/S 946 RCLO 047 X 048 RCL9 059 1 050 - 051 X 052 X 053 R/S 054 RCL9 055 1	056 - 057 R/S 059 LBLE 059 CLRG 060 P=S 061 CLRG 062 CLX 063 R/S
		* * * *		=	
001 LBLB 002 ST0A 003 R↓ 004 ST0B 005 R↓ 006 ST0E 007 1 008 • 009 2 010 8 011 ST09 012 CHS 013 ST01 014 • 015 8 016 4 017 ST08 018 CHS 019 ST02 020 • 021 5	O22 2 O23 3 O24 STO7 O25 CHS O26 STO3 O27 • O28 2 O29 5 O30 3 O31 STO6 O32 CHS O33 STO4 O34 O O35 STO3 O36 1 O37 STOI O38 RCLE O39 1 O40 O O41 ÷ O42 STOD	043 GTOb 044 RTN 045 LBLb 046 RCLA 047 RCLi 048 X 049 RCLB 050 + 051 STOi 052 ISZI 053 9 054 RCLI 055 R/S 056 R/S 057 GTOb 058 RTN 059 LBLE 060 CLRG 061 P⇒S 062 CLRG 063 CLX	065 ENT ↑ 066 ENT ↑ 067 RTN 068 LBLA 069 STOC 070 9 071 STOI 072 GTOo 073 RTN 074 LBLc 075 RCL1 076 RCL0 077 X>Y? 078 GTOd 079 DSZI 080 RCLI 081 RCLI 082 X=0? 083 GTOd	085 RTN 086 LBLa 087 RCLI 088 P S 089 1 090 ST+1 091 P S 092 1 093 ST+0 094 RCL0 095 R/S 096 LBLC 097 0 098 ST00 099 ST0I 100 GT0 101 RTN 102 LBL 103 P S 104 RCL 1	106
•.	FREQUENCES THE	ORIQUES D'UI	IE VARIABLE OBSERV	VEE NORMALE	
001 LBLA 002 ST07 003 R ↓ 004 ST09 005 RCL6 006 ♣ 007 - 008 RCL9 009 + 010 RCL3 011 - 012 RCL4 013 ÷ 014 ST09 015 RCL6 016 2 017 - 018 RCL7 019 + 020 RCL3 021 - 022 RCL4 223 ÷ 024 ST07 025 RCL9 026 GSB1	O27 STO8 O28 RCL7 O29 GSB1 O30 STO7 O31 RCL8 O32 RCL7 O33 - O34 RCL5 O35 X O36 RTN O37 LBLB O38 STO6 O39 R ↓ O40 STO4 O41 R ↓ O42 STO3 O43 R ↓ O44 STO5 O45 RTN O46 LBL1 O47 STOO O48 ABS O49 O50 O51 O52	053 6 054 4 055 1 056 9 057 X 058 1 059 1/X 061 ST01 062 RCLO 063 X 064 CHS 065 2 066 067 068 3 070 071 072 073 4 074 2 3 075 ST02 076 ST02 077 ST02	079 1 080 • 081 3 082 3 083 0 084 2 085 7 086 4 087 X 088 1 089 • 090 8 091 2 092 1 093 2 094 5 095 6 096 - 097 RCL1 098 X 099 1 100 • 101 7 102 8	105 7 106 8 107 + 108 RCL1 109 X 110 • 111 5 112 6 113 6 114 6 115 8 117 8 118 = 119 RCL1 120 X 121 • 122 1 124 9 125 8 127 1 128 5+ 128 1 129 RCL1	131 X 132 RCL2 133 X 134 STO2 135 1 136 RCL2 137 STO2 138 RCL0 140 GSB2 141 GSB2 142 RCL2 143 RTN 144 R/S 145 LBL2 146 1 147 RCL2 148 STO2 150 RTN 151 LBLE 152 CLRG 153 PCLS 154 CLRG 155 R/S

TEST D'ADEQUATION & UNE LOI DE POISSON

				., .	_
001 LBLA 002 STOA 003 PCS 004 ST+9 005 1 006 ST+8 007 PCS 008 0 009 STOI 010 GT01 011 RTN 012 LBL1 013 RCLI 014 RCLA 015 XXY? 016 GTOA	017 ISZI 018 GSB1 019 RTN 020 LBLa 021 1 022 ST+1 023 RCLI 024 RCLC 025 X\(\frac{1}{2}\)? 026 RCLI 027 STOC 028 RCLA 029 R/S 030 LBLB 031 0 032 STOI	033 P→S 034 RCL9 035 RCL8 036 → 037 STOB 038 O 039 STO9 040 P→S 041 GSB2 042 RTN 043 LBL2 044 RCLB 045 RCLI 046 YX 047 RCLB 048 CHS	049 e ^x 050 X 051 RCLI 052 N! 053 ÷ 054 P ⇒ S 055 RCL6 056 X 057 P ⇒ S 058 STOD 059 RCLI 060 PSE 061 RCL1 062 PSE 063 RCLD 064 PSE	065 CHS 066 RCL1 067 + 068 X ² 069 RCLD 070 ÷ 071 P=8 072 ST+9 073 P=8 074 ISZI 075 RCLC 076 RCLI 077 X>Y? 078 GT03 079 GSB2 080 RTN	081 LBL3 082 RCLI 083 1 084 - 085 PSE 086 P≓S 087 RCL9 088 R/S 089 LBLE 090 CLRG 091 P≓S 092 CLRG 093 0 094 R/S
		UNE LOI BIN	OMINALE NEGATI	IVE	
001 LBLA 002 ST04 003 R ↓ 004 ST02 005 CHS 006 RCL4 007 + 008 1/X 009 RCL2 010 X ² 011 X 012 ST01 013 ST06 014 0 015 ST00 016 RCL6 017 R/S	018 LBLB 019 ST08 020 R ↓ 021 ST07 022 RCL8 023 ÷ 024 LOG 025 ST03	035 RCL6 036 X 037 ST05 038 RCL3 039 RCL5 040 - 041 ST09 042 X<0? 043 GT0c 044 GT0d 045 R/S 046 LBLc 047 GSB1 048 RCL6 049 ST01 050 RCL0	052 2 053 ÷ 054 ST06 055 GT0b 056 R/S 057 LBLd 058 GSB1 059 RCL6 060 ST00 061 RCL1 062 + 063 2 064 ÷ 065 ST06 066 GT0b 067 R/S	069 • 070 0 071 0 072 0 073 1 074 RCL9 075 ABS 076 XXY? 077 GTOe 078 RTN 079 R/S 080 LBLe 081 RCL6 082 R/S 083 LBLC 084 RCL2 085 X2	086 RCL6 087 ÷ 088 RCL2 089 + 090 CHS 091 RCL4 092 + 093 R/S 094 LBLE 095 CLRG 096 P > S 097 CLRG 098 CLX 099 R/S
		UNE LOI BIN	OMINALE NEGATI	IVE	· .
001 LBLA 002 ST00 003 3 004 YX 005 P→S 006 ST+1 007 P→S 008 RCLO 009 ∑+ 010 R/S 011 LBLB 012 DSP4 013 X 014 P→S 015 ST02 016 P→S 017 PSE 018 8 019 X ²	020 R/S 021 P=S 022 ST03 023 RCL9 024 ÷ 025 CHS 026 RCL2 027 w² 028 + 029 ST08 030 RCL3 031 RCL2 032 - 033 1/X 034 RCL8 035 X 036 P=S 037 ST00 038 R/S	039 P→S 040 RCL3 041 2 042 X 043 RCL2 044 ÷ 045 1 046 - 047 RCL3 048 X 049 ST08 050 RCL1 051 RCL5 052 RCL2 053 X 054 3 055 X 056 - 057 RCL4	058 RCL2 059 X ²	077 R/S 078 LBLD 079 ST01 080 • 081 3 082 7 083 5 084 + 085 RCLO 086 • 087 7 088 5 089 - 091 VX 092 ST02 093 X ² 094 1 095 +	096 VX 097 RCL2 098 + 099 LN 100 PSE 101 ∑+ 102 R/S 103 LBLE 104 P⇒S 105 CLRG 106 P⇒S 107 R/S 108 LBLe 109 CLX 110 CLRG 111 GTOE 112 R/S

- 53 **-**

ADEQUATION A UNE LOI BINOMINALE NEGATIVE (n QUELCONQUE) PAR UN TEST DE X2

			V								
001	LBLa	032	. =	063	R/S	094	X	1 25	LBLD	156	LBL2
002	STOC	033	STO1	064	LBLC	095	RCL2	126	ST08	157	RCL8
003	R ↓	034	RCLE	065	RCLB	096	RCL1	127	ISZI	158	RCL2
004	STOB	035	•	066	RCL1	097	, 44	128	RCLI	159	-
005	R↓	036	1	067	÷	098	X	129	1	160	x^2
006	STOA	037	+	068	1	099	RCL1	130	X=Y?	161	RCL2
007	STOD	038	ST02	069	+	100	+	131	GTO2	162	÷
800	GTO1	039	RCLE	070	LN	101	STOO	132	RCLI	163	ST+7
009	R/S	040	R/S	071	RCLA	102	RCLB	133	RCLO	164	RCL2
- 010	LBLA	041	LBLB	072	X	103	RCLO	: 134	 γ +	165	ST+3
011	<u>x</u>	042	STO3	073	RCL9	104	÷	13 5	2	166	R/S
012	STOB	043	R ↓	074		105	1	136	· -	167	LBLe
013	В	044	STO4	075	STO5	106	. +	137	RCLI	168	CLRG
014	STOC	045	RCLD	076	RCLB	107	RCLO	138	. 1	169	P≓S
015	P_S	046	RCL3	077	RCL2	108	Yx	139	· 	167	CLRG
016	RCL9	047	٠.	078	÷	109	1/X	140	÷	171	CLX
017	P,'s	048	STOD	079	1	110	RCLA	141	RCL1	172	R/S
018	STOA	049	RCL1	080	+	111	· . X	142	X	173	LBLE
019	STOD	050	RCL4	081	LN	112	STO2	143	RCL2	174	STO8
020	LBL1	051	. +	082	RCLA	113	0	144	X .	175	RCLA
021	RCLC	052	÷	083	X	114	STOI	145	STO2	176	RCL3
022	x ²	053	ST+9	084	RCL8	- 115	STO3	146	ST+3	177	-
023	RCLB	054	RCLD	085	-	116	RCLB	147	RCL8	178	ABS
024	<u> </u>	055	RCL2	086	STO6	117	RCLO	148	RCL2	179	STO4
025	1/X	056	RCL4	087	ABS	118	+	149	-	180	RCL8
026	RCLB	057	+	088	RCL5	119	1/X	150	x ²	181	-
027	χ ²	058	-	089	ABS	120	RCLB	151	RCL2	182	x^2
028	X	059	ST+8	090	+	121	Х	152	÷	183	RCL4
029	STOE	060	RCL4	091	1/X	122	STO1	153	ST+7	184	÷
030	•	061	1	092	RCL5	123	RCLO	154	RCL2	185	ST+7
031	1	062	+	093	ABS	124	R/S	155	RTN	186	RCL7
							,			187	R/S

REGRESSION LINEAURE Y = a + bx Log Y = a + bx

2. 2. 8.2

1			<u>:</u>		
001 LBLA	039 X ²	077 LBL4	115 x ²	153 GSB6	1 95 0
002 ST01	040 RCL9	078 RCLD	116 RCLD	154 VX	196 STOI
003 X	041 ÷	079 1	117 X ²	155 RCLE	197 GSB5
004 ST00	042 CHS	080 +	118 CHS	156 ÷	198 1/X
005 Σ+	043 RCL7	081 RCLD	119 1	157 RTN-	199 RCLA
006 RCL1	044 +	082 CHS	120 +	158 L BL5	200 X
007 LN	045 ÷	083 1	121 🗦	159 RCL1	201 STOA
008 RCLO	046 STOC	084 +	122 RCL9	160 ISZI	202 RCL9
009 P,⇒S	047 VX	085 ÷	123 2	161 ISZI	203 1/X
010 E+	O48 STOD	086 LN	124 -	162 ISZI	204 +
011 P≓S	049 RCL3	087 2	125 X	163 ISZI	205 √X
O12 RTN	050 X<0?	088 ÷	126 √X	164 RCL i	206 RTN
O13 LBLB	051 GSB1	089 STOA	127 RTN	169 +	207 LBLE
014 X	052 RCLD	090 RCL9	128 LBLD	170 RTN	208 RCL1
015 P ⇒ S	053 R/S	091 3	129 RÇL4	171 LBL6	209 🗕
016 ST00	054 RCLC	092 💂	130 X ²	1 72 0 %	210 ABS
017 X ⇒ ¥	055 R/S	093 √ X	131 RCL9	173 STOI	211 STOB
018 ST02	056 RCL6	094 1/X	132 ÷	174 GSB5	212 GSBD
019 RCL8	057 RCL4	095 2	133 CHS	175 RCL3	213 LBLb
020 RCL4	058 RCL3	096 X	134 RCL5	176 X ²	214 1/ X
021 RCL6	059 X	097 F2?	135 +	177 X	215 RCLB
022 X	060 -	098 CHS	136 RCL9	178 STOA	216 X
023 RCL9	061 RCL9	099 RGLA	137 X	179 2	217 R/S
024 ÷	062 ÷	100 + .	138 1/X	180 STOI	218 LBLe
025 -	063 ST01	101 2	139 RCL5	181 GSB5	219 RCL3
026 ENT?	064 R/S	102 X	140 X	182 RCLA	220 -
O27 ENT?	065 RCL3	103 e ^x	141 STOE	183 🗕	22 1 ABS
028 RCL4	066 R/S	104 STOA	142 GSB6	184 RCL9 .	222 STOB
029 X ²	067 LBL1	105 1	143 RCLE	185 2	223 GTOb
030 RCL9	O68 RCLD	106 -	144 <u>x</u>	186 🗕	*
031 ÷	069 CHS	107 RCLA	145 Y X	187 ÷	
032 RCL5	070 STOD	108 1	146 RTN	188 RTN	
033 X ≓ Y	071 RTN	109 + ,	147 LBLd	189 LBL7	
034 -	072 LBLC	110 ÷	148 0	190 RCLO	. *
035 ÷	073 SF2	111 R/S	149 STOI	191 x^2	· .
036 ST03	074 GSB4	112 RTN	150 GSB5	192 RCL9	
037 X	075 GSB4	113 LBLc	151 VX	193 X	¥.
038 RCL6	076 RTN	114 RCLD	152 STOE	194 STOA	4.00
		·		41 7	
	ν		1.5	: 1	6
	· *			٠	
		•,			

TEST D'IDENTITE DE 2 MODELES LINEAIRES SIMPLES

001 LBLA 002 ST01 003 X → Y 004 ST00 005 ∑ + 006 F0? 007 GT0b 008 RTN 009 LBLb 010 RCL1 011 RCL0 012 P→ S 013 ∑ + 014 P→ S 015 RTN 016 LBLa 017 CF0 018 CLX 019 CLRG 020 P→ S 021 CLRG 020 P→ S 021 CLRG 022 RTN 023 LBLB 024 GSB4 025 ST0A 026 SF0 027 RTN 028 LBL4 029 X 030 P→ S	036 RCL6
032 X ₹Y	067 RCLD 102 ISZI 137 4 172 P⇒S 207 STOB
033 ST02	068 R/S 103 ISZI 138 - 173 0 208 GSBd
034 RCL8	069 RCLC 104 ISZI 139 2 174 STOI 209 CTOc
035 RCL4	070 R/S - 105 ISZI 140 ÷ 175 GSB5 210 R/S
	TEST DE X ² DE BARTLETT
001 LBLA 002 ST01 003 X=Y 004 ST00 005 X 006 ST05 007 GT0a 008 R/S 009 LBLa 010 RCL5 011 P=S 012 ST+6 013 P=S 014 RCL0 015 LN	016 RCL1

ANALYSE DE VARIANCE A UNE VOIE

•											
001	LBLA	022	х2	043	P≓S	064	÷		R/S		RCL6
200	STO1	023	RCL9	044	RCLD	065	STO7	086	LBLC	107	1/X
003	Σ+	024	÷	045	x ²	066	R/S	087	STOA	108	+
004	RGL1	025	RCLA	.046	RCLE	067	RCLE	088	R↓	109	RCLB
	RCLD	026	+	047	<u> -</u>	068	RCLB	089	STOB	110	X
006	+ -	027	STOA	048	CHS	069	~	090	R↓	111	RCL9
007	STOD	028	P₹	049	RCLA	070	STO8	091	STOC	112	X
800	RCLE	029	$\overline{\mathbf{x}}$	050	+	071	RCLB	092	R↓	113	RCL6
009	1		STOi	051	STO4	072	1	093	STOD	114	RCL8
010	+	031	ISZI	052	R/S	073	•	094	STOI	115	÷
011	STOE	032	P = S	053	RCLC	074	STO9	095	RCL1	116	x
012	RCL1	033	0	054	RCLA	075	÷	096	ΧŽY		VX
013	χ2	034	STO4	055	-	076	RCL5	097	R↓	118	R/S
	RCLC	035	STO9	056	ST06	077	X	098	· ·	119	LBLE
015	. +		P≓S	057	R/S	078	STO5	099	ABS	120	CLRG
016	STOC	037	RCLB		1/X	079	RCL9	100	R/S	121	P≠S
017	RCLE	038	1	059	RCL4	080	R/S	101	LBLc	122	CLRG
018	RTN	039		060	X	081	RCL8	102	STOB	123	CLX
	LBLa	040	STOB	061	STO5	082	R/S	103	PZS	124	R/S
-	P		RTN		RCL4		RCL5	104	RCLA		•
	RCL4		LBLB		RCL6		P , S		1/X		
						, .	. •		-		

ANALYSE DE LA VARIANCE A 2 VOIES

004	LBLA	021	RTN	0/14	P₹S	061	-	081	STO7	101	RCL4
	STOO		LBLB		RCL2		STO4		R/S		RCL2
	Σ+		XS		÷		R/S		RCL6		
_	_							_		103	_
	RCLO		ST+1		RCLO		RCL2		RCL7		RCL8
_	P₹S		1 "		_ _	065		-	÷	105	
	Σ+		•		STO3		~		STO8	106	•
	P₹S		RTN	•	R/S	•	STO2		RCL3		RCL7
800	RTN	028	LBLC	048	P⊋S	068	R/S	088	P=S	108	R/S
009	LBLa		RCL4	049	RCLO	069	RCL5	089	RCL8	109	RCL2
010	P <u></u> ≓`S	030	x ² .	050	1	070	RCL3	090	P≓S	110	R/S
.011	RCL4		RCL9	051	-	071	-	091	÷	111	LBLE
012	χ2	032	÷	052	STO8		RCL4	092	RCL8	112	CLRG
013	ST+3	033	STOO	053	P,⇒S	073	-	093	÷.		PIS
014	1	034	RCL5	054	R/S	074	R/S	094	R/S	-	CLRG
015	ST+O	035	RCLO	055	RCL1	075	STO6	-	RCL7	115	CLX
-	ST08		-		P≓S		RCL2		R/S	116	
	0	-	STO5	_	RCLO		P≓ S	-	P≓S		
	STO9		R/S		P S		RCL8		RCL8		
	STO4	-	P≓S		-		P=2S		P∓S		
•	P_S		RCL3		RCLO		X		R/S		
020	-4 N	U+U	KULIJ	500	KOHO	000	, •	100	ry o		

ANALYSE DE LA VARIANCE : PLAN FACTORIEL DISPOSE EN BLOCS (CAS GENERAL)

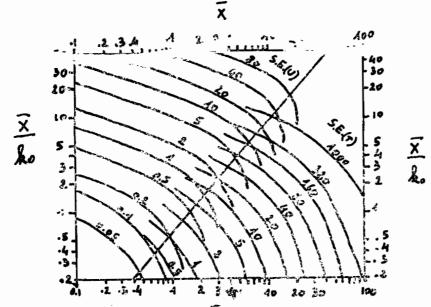
001	LBLA	038	STO3	075	CLRG	112	<u>•</u>	149	RCL2	186	
	STOE	039	χŽ		STO2			150	X		GSB3
	RCLA		RCLE		R ↓			151	1		P S
004	+	041			STO1		RCL8	152			RCL1
	STOA		STOE		R ↓	-		153			P,≕S
-	RCLE		RCL3		STOO		STO4		R/S		R/S
	RCLB		RCL4		R/S			155			RCL2
008	+	045			LBLD		RCLO		STOI		1
	STOB		STO4		RCLA		÷		R/S		
•	RCLE		ISZI	084			RCL1		RCL7		GSB3
011			RCL1		RCLO '		÷		R/S		PæS
	RCLC		RCLI	086			RCL8		RCLO		RCLO
013			X=X3		RCL1	-	•		RCL1		P=S
	STOC		GTO2		÷		P≓S	162			R/S
	ISZI		RTN				STO1	163	RCL2		RCL1
	RCL2		LBL2		÷			164	X	201	1
	RCL1		RCL4		STO8		RCL5	165	1	202	-
018	X	055	x^2				RCL4	166	•••	203	RCL2
	RCLI		RCLB		RCL8	130		167	R/S	204	1
-	X=X.	057		094			P≓S	168	RCL6	205	_
	GTO1		STOB		STO7		RCL1	169	R/S	206	X
022	RTM	059			RCLD	133	P≓S	170	RCLO	207	GSB3
023	LBL1	060	STOI	097	RCL1	134	-	171	1	208	
	RCLB	061	STO4		÷	135	P=S	172	-	209	LBL3
025	x ²	062	RCL1	099	RCL2	136	STOO	173	GSB3	210	R/S
	RCLD	063	R/S	100	÷	137	P, ⊂` S		RCL5		÷
027	+	064	LBLC	101	RCL8	138	RCL7		R/S	212	
028	STOD	065	$\mathbf{x}_{\mathbf{Z}}$	102	-		RCL6		RCL1		RCLI
029	0	066	RCL9	103	STO6		-		RCL2	214	
030	STOI	067	+		RCLE		RCL5	178		215	R/S
031	STOB	068	STO9	105	RCLO	142	-	179			
032	STOE	069	ISZI	106	÷		STO3	180			
033	RCL1	070	RCLI	107	RCL8		R/S		GSB3		
034	RCL2	071	R/S	108		145	RCLO		RCL4		
035	X	072	LBLE		STO5	146			R/S		
	RTN		CLRG		RCL9	147			RCL1		
937	LBLB	074	P⊋S	111	RCLO	148	RCL1	185	1		

ANALYSE DE VARIANCE : CARRE-LATIN

Telephone in the

	LBLA			-		039		_	RCL9			RCLI		096	LBLC
	RCL4	· O	21	STO 1		040	STOI	059	, 2		078	3		097	\mathbf{x}^2
003	χ2	O	22	R/S	٠.	041	LBL3	060	-		079	X ≠ Y?		098	ST+1
	RCL			RCL9			LBLi	061	X		080	GT05	. :	099	1
005	χ2	. 0	24	1		043	ST+7	062	R/S		081	RCLO			st+8
06 6	÷	· · O	25	· 🖚		044	ISZI	063	÷		082	R/S		101	RCL9
007	STO	0	26	R/S		045	RCLI	064	R/S		083	LBLE		102	RCL8
800	CHS	. 0	27	÷		046	3	065	STO8		084	CLRG		103.	X=Y?
009	RCL3	0	28	R/S	ef	047	X≖Y?	066	0		085	P⇄S		104	GTO _c
010	+	0	29	P≓S		048	GSB4	067	STOI		086	CLRG		105	R/S
011	STO	0	30	STOi		049	GSB3	068	LBL5			STO9		106	LBLc
012	R/S	. 0	31	P≓S	`	0 50	LBL4	069	P≓S		088	R/S		107	ISZI
013	0	0	32	ISZI		051	RCL6	070	RCLi		089	LBLB		108	0
014	STOI	. 0	33	RCLI		052	RCL7	071	P≓S			STOA		109	STO8
015	LBL1	0	34	3		053	-	072	RCL8		091	X2	.,	110	RCL9
016	RCL!	. 0	35	X≈Y?		054	R/S	073	÷		092	ST+3	:	111°	R/S
	RCLS	0	36	GSB2		055	RCL9	. 074	R/S	,	093	RCLA			
018	÷	0	37	GSB1		056	1	075	STOO		094	ST+4	.1		
019	RCL	0	38	LBL2		057	-	076	ISZI		095	R/S		,	
										·		:		į.	Y
		ESTIMAT	OI	I DE I	A TA	ATTTE	D'UNE	POPULA	MOTT!	PAR	T.A. I	ЭТОНТЭМ	DF		

ESTIMATION DE LA TAILLE D'UNE POPULATION PAR LA METHODE DE PALOHEIMO


										1.1.1		
001	LBLA	011	RCL1	021	RÇL4	031	RCL6	041	RCL7		051	RCL7
002	STOO	012	÷	022	χ ²	032	Х	042	-		052	RCL1
003	R↓	013	ST+2	023	RCL6	033	\sqrt{X}	043	STO1		053	÷
004	STO1	014	RCL9	024	÷	034	RCL8	044	RCL3		054	R/S
005	RCLO	015	R/S	025	-	035	X	045	RCL6		055	LBLE
006	P , S	016	LBLB	026	RCL9	036	STO7	046	Χ .		056	CLRG
007	Σ+	017	SOTS	027	1	037	RCL4	047	STO7		057	P⇌S
800	P≓S	018	R ↓	028	-	038	+	048	RCLO :		058	CLRG
009	RÇLO	019	STO3	029	÷	039	STOO	049	÷		059	CLX
010	X<	020	RCL2	030	STO5	040	RCL4	050	R/S		060	R/S

ESTIMATION DE LA TAILLE D'UNE POPULATION PAR LA METHODE DE PETERSEN

			•							•	
		021	1		RCL3	061		081	RCL8	101	÷
002	STO3	022	+ ; -	042	-	062	X	082	1	102	STO9
003	R↓		RÇL6	043	RCL9	063	RCLO	083	+ :	103	R/S
004	STO2	024	χ ²	044	X	064	÷	084	X		RCL9
005	R↓	025	X	045	RCL7	065	RTN	085	RCL8		RCL1
006	STO1	026	STOO	046	X	066	\mathtt{LBLD}	086	RCL1	106	
007	1	027	RCL2	047	RCLO	067	RCL2	087			RCL7
800	+	028	RCL3	048	÷	068	RCL5	088	X	108	
009	STO5	029	-	049	RTN	069	X	089	RCL3		RCL3
010	RCL2	030	STO7	050	LBLC	070	RCL3	-	÷	110	-
011	1	031	0	051	RCL4	071	<u>.</u>	091	RCL1	111	RCL6
012	+	032	R/S	052	RCL1	072		092		112	
013	STO4	033	LBLB	053	X	073		-	+	113	-
014	RCL5	034	RCL9	054	RCL6	074	STO8	094	<u>-</u> -		•
015	X	035	RCL6	055	÷		R/S	•	RTN		
016	STO9	036	÷		R/S		RCL1		LBLE		
017	RCL3	037		_	RCL1	•	RCL3		RCL2		
018	1	038	-	058		078			RCL1		
019	+	039	R/S	-	RCL4	079		099			
-	ST06		RCL1		RCL7	080			RCL3		
					•						

SERIES DE FOURIER

						- 0					_
001	LBLC	029	X Z Y	057	2	085	DSZI	113	PI	141	5
002	STOD	030	P→R	058	CHS	086	GTO2	114	X	142	RTN
003	R↓	031	ST+i	059	÷	087	RTN	115	RCLO	143	LBLD
004	STOB	032	X=X	060	RCLD	088	LBL3	116	X	144	CF1
005	2	033	DSZI	061	+	089	$X \stackrel{\longleftarrow}{\rightarrow} X$	117	RCLE	145	LBLO
006	X	034	ST+1	062	RTN	090	$R \rightarrow P$	11 8	÷	146	CLRG
007	STOB	035	RCLC	063	LBLA	091	2	119	1	147	P_s
800	R ↓	036	ENT↑	064	DSP4	092	RCLE	120	FO?	148	CL R G
009	STOE	037	DSZI	065	CF1	093	÷	121	GSB8	149	CTX
010	1	038	GTO1	066	RCLB	094	X	122	P→ R	150	RAD
011	STOO	039	1	067	STOI	095	R/S	123	RCLi	151	R/S
012	LBL5	040	STO+O	068	LBL2	096	X₹Y	124	X	152	LBLd
013	RCLO	041	RCLE	069	RCLi	097	R/S	125	X=Y	153	SF1
014	R/S	042	RCLO	070	DSZI	098	DSZI	126	DSZI	154	GTOO
015	STOC	043	$x \leq x$	071	RCL1	099	GTO2	127	RCLi	155	R/S
016	RCLB	044	GT05	072	F1?	100	RTN	128	X	156	LBL9
017	STOI	045	GT09	073	GTO3	101	LBLE	129	+	157	5
018	LBL1	046	R/S	074	2	102	CFO	130	RCLE	158	0
019	CLX	047	LBLB	075	RCLE	103	STOO	131	÷	159	I
020	RCLO	048	DSP4	076	÷	104	RCLB	132	2	160	f-x-
021	GSB7	049	SF1	077	X	105	STOI	133	X	161	F1?
022	RCLE	050	RCLB	078	$Y \stackrel{\longrightarrow}{\rightarrow} X$	106	CLX	134	+	162	GTOB
023	÷	051	STOI	079	LastX	107	LBL6	135	DSZI	163	GTOA
024	X	052	GTO2	080	X	108	GSB7	136	GT06	164	R/S
025	2	053	LBL7	081	LBL4	109	X=0?	137	R/S		
026	x	054	RCLI	082	R/S	110	SFO	138	R/S		
027	PI	055	RCLB	083	ΧŢΥ	111	2	139	LBL8		
028	x	056	-	084	R/S	112	Х	140	· •		

J'antres valeurs de n, multiplier le S.E. de l'abaque par 10 Vm

EXPECTED VARIANCE OF TRANSFORMED COUNTS FROM A NEGATIVE BINOMIAL

	FROM A	NEGA	TIVE BIN	NOMIAL		
0-1886 trigamma k						
for x ≥ 15			0.25 triga	mma k fo	or ē≥4	
li .	k:		k 25 tings		k	
20 0:216	2.0	0-1612	6·5	0.0416	12.0	0.0217
2.1 0.1145	2.1	0.1517	6.6	0.0409	12.2	0.0214
2.2 0.1081	2.2	0.1432	6.7	0.0402	12.4	0.0210
2-3 0-1023	2.3	0.1356	6.8	0.0396	12.6	0.0210
2.4 0.0972	2.4	0.1288	6.9	0.0390	12.8	0.0203
2.5 0.0925	2.5	0.1226	7.0	0.0384	13.0	0.0200
2.6 0.0882	2.6	0.1170	7.1	0.0378	13.2	0.019
2-7 0-0843	2.7	0.1118	7.2	0.0373	12.4	0.0194
2.8 0.0308	2.8	0.1071	7.3	0.0367	13.6	0.0191
2.9 0.0775	2.9	0.1028	7-4	0.0362	13.8	O-0188
3.0 0.0745	3.0	0.0987	7.5	0.0357	:4.0	0.0185
3-1 0-0717	3.1	0.0950	7.6	0.0352	14.2	0.0183
3-2 0-0691	3.2	0.0916	7.7	0.0347	14.4	0.0180
3-3 0-0667	3.3	0.0854	7.8	0.0.42	14.6	0.9177
3-4 0-0644	3.1	0.0854	7.9	0.0538	14.8	0.0175
3.5 0.0623	3.5	0.0826	2.3	20/3:	15 G	0-0172
3.6 0.0603	3.6	0.0800	8-1	0.0325	15.2	0.0170
3-7 0-0585	7	0.0775	5-2	0.0324	15-4	0.0168
3-8 0-0567	3.6	0.0752	8.3	C-0320	15-6	0.0166
3.9 0.0551	3.9	0.0730	8.4	9 03 16	15.8	0.0163
4.0 0.0535	4-(;	0.0710	8.5	0.0317	15·0	0.0151
4-1 0-0521	4.1	0.0690	8.5	0.0308	16.2	0.0159
4.2 0.0507	A-2	0.0672	8.7	0.0305	16.4	0.0157
4-3 0-0494	4.3	0-0554	83	0.0301	16.6	0.0155
4.4 0.0431	4.4	0.0533	29	0.029.	10.8	0.0153
4·5 U·U469	4.:	0.0622	9-0	3 (3)54	.7-5	0.0152
4-6 U-0458	4.6	0.0507	94	0.0791	7.2	0.0150
	4.7				17-4	0.0148
4-7 0-0447	4.8	0:0593 0:0579	9·2 9·3	0.0287	:76	0.0146
4/5 0 8437				0.0234		
4·9 · 0·0427	4.9	0.0556	9.4	0.0381	17.5	0.0145
5·0 0·0417	5-0	0.0553	9.5	0.0278	18/0	0.0143
	5-1	0.0542	9.6	€ 0275	18-2	0.0141
	5.2	0.0530	9.7	C 0272	18-4	0.0140
	5.3	0.0213	5.3	0 0253	18-6	0 0138
	5.4	0 -U509	93	0.0766	18.8	0.9137
	5.5	0.0498	10.0	0.0260	19.0	0 0135
	5.6	0.0489	10.2	0.0258	19.2	0.0134
	5.7	6.0473	104	0.0252	194	0.0132
	5.8	C-0470	1)-6	0.0247	19.6	0.0131
	5.9	0.0462	1 1.8	0.02+3	19.8	0.0130
	6.0	0.0453	1 .0	0.0238	20.0	0.0128
	6-1	0.0445	1 2	0.0234		
		0.0438	1 4	0.0229		
	6.3	0.0430	1 .6	0.0225		

6.4 0.0423

1 -8 0-0221

VALEURS DE LA STATISTIQUE U DE MANN-WHITNEY AU SEUIL DE SIGNIFICATION 5 %

- n1 et n2 sont les tailles de chaque échantillon
- Remarque: les faibles valeurs de U entrainent le rejet de Ho au seuil 5 % (Ho = les 2 échantillons proviennent de la même population parente).
- si le U calculé est plus petit ou égal à la valeur tabulée, Ho est rejetée au seuil 5 %.

n1	n2	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
2 3 4			•	0	0	1 2	1 3	0 2 4	0 2 4	0 3 5	0 3 6	1 4 7	1 4 8	1 5 9	1 5 10	1 6 11	2 6 11	2 7 12	2 7 13	2 8 13
5 6			0	1 2	2	3 5	5 6	6 8	7 10	8 11	9 13	11 14	12 16	13 17	14 19	15 21	17 22	18 24	19 25	20 27
7			1	. 3	5	6	8	10	12	14	16	18	20	22	24	26	28	30	3 2	34
8		0	2	4	6	8	10	13	15	17	19	22	24	26	29	31	34	36	38	41
9		0	2	4	7	10		15	17	20	23	26	28	31	34	37	39	42	45	48
10		0	3	5	8	11	14	17	20	23	26	29	33	36	39	42	45	48	52	55
11		0	3	6		13		19		26	30	33	37	40	44	47	51	55	58	62
12		1	4	7			18			29	33	<i>3</i> 7	41	45	49	53	57	61	65	69
13		1	4	8			20			33	37	41	45	50	54	59	63	67	72	76
14		1	5	9			22		31	36	40	45	50	55	59	64	67	74	78	83
15		1	5	10			24		34	39	44	49	54	59	64	70	75	80	85	90
16		1	6	11	15	21	26	31	37	42	47	53	59	64	70	75	81	86	92	98
17 18		2	6	11	17			34	39	45	51	57	63	67	75	81	87	93	99	105
18		2	7	12	18	24	30	36	42	48	55	61	67	74	80	86	93	99	106	112
19		2	7	13	19	25		38	45	52	58	65	72	78	85	92	99		113	119
20		2	8	13	20	27	34	41	48	55	62	69	76	83	90	98	105	112	119	127

O.R.S.T.O.M.

Direction générale :

24, rue Bayard - 75008 PARIS

Service des Publications :

70-74, route d'Aulnay - 93140 BONDY

Laboratoire d'Hydrobiologie :

#B.P. 1434 - BOUAKÉ (Côte d'Ivoire)

Imp. S.S.C. Bondy O.R.S.T.O.M. Éditeur Dépôt légal :